Introduction to Numerical Methods for Computer Simulation

Exercises No. 7

E 19: Ordinary Gradient Method.

Consider the linear system $A x=b$ with

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \quad \text { and } \quad b=\binom{3}{0} .
$$

The global minimum of the function

$$
f(x):=\frac{1}{2} x^{T} A x-x^{T} b
$$

is just $x^{*}=A^{-1} b$, since $\operatorname{grad} f(x)=A x-b$ holds. An approximation of the minimum point can be determined iteratively using the ordinary gradient method:

$$
\begin{aligned}
& k=0,1,2, \ldots \\
& r^{k}=b-A x^{k} \\
& \sigma^{k}=\frac{r^{k} r^{k}}{r^{k} r^{k}} A r^{k} \\
& x^{k+1}=x^{k}+\sigma^{k} r^{k}
\end{aligned}
$$

a) Perform two steps of the ordinary gradient method using $x^{0}=(1,1)^{T}$.
b) Prove that the directions r^{0} and r^{1} are orthogonal.
c) How many matrix-vector-multiplications, scalar products, scalar-vector-multiplications and vector-vector-additions/subtractions are required to execute l steps?
d) Sketch the iteration steps in a coordinate system including the contour lines of the function $f(x)$, which run through the points x^{0}, x^{1}, x^{2}.

Consider the linear system $A x=b$ with

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \quad \text { and } \quad b=\binom{3}{0} .
$$

The conjugate gradient (CG) method to solve the linear system iteratively reads:

$$
\begin{aligned}
& p^{0}=r^{0}=b-A x^{0} \\
& k=0,1,2, \ldots \\
& \alpha^{k}=\frac{r^{k} T}{r^{k} r^{k}} \\
& x^{k+1} A p^{k}=x^{k}+\alpha^{k} p^{k} \\
& r^{k+1}=r^{k}-\alpha^{k} A p^{k} \\
& \beta^{k}=\frac{r^{k+1} r^{T} r^{k+1}}{r^{k} r^{k}} \\
& p^{k+1}=r^{r^{k+1}}+\beta^{k} p^{k}
\end{aligned}
$$

a) Perform two steps of the conjugate gradient method using $x^{0}=(1,1)^{T}$.
b) Prove that the directions p^{0} and p^{1} are A-orthogonal.
c) How many matrix-vector-multiplications, scalar products, scalar-vector-multiplications and vector-vector-additions/subtractions are required to execute l steps?
d) Sketch the iteration steps in a coordinate system including the contour lines of the function $f(x)=\frac{1}{2} x^{T} A x-x^{T} b$, which run through the points x^{0}, x^{1}, x^{2}.

E 21: Krylov Spaces.

Let $A \in \mathbb{R}^{n \times n}$ be a regular matrix ($\operatorname{det} A \neq 0$). Given an arbitrary $y \in \mathbb{R}^{n}$, the corresponding j th Krylov space is defined by

$$
\mathcal{K}^{j}(y, A):=\operatorname{span}\left\{y, A y, A^{2} y, \ldots, A^{j-1} y\right\} \quad \text { for } j=1,2, \ldots
$$

According to the linear system $A x=b$ with $x, b \in \mathbb{R}^{n}$ and an arbitrary $x^{0} \in \mathbb{R}^{n}$, let $r^{0}:=b-A x^{0}$ be the residual.
Prove that

$$
\mathcal{K}_{j}\left(r^{0}, A\right)=\mathcal{K}_{j+1}\left(r^{0}, A\right)
$$

implies $x^{*}:=A^{-1} b \in x^{0}+\mathcal{K}_{j}$, i.e. $x^{*}=x^{0}+v$ with $v \in \mathcal{K}_{j}$ holds.

