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Basel, 1992.

2



Contents

1 Classification of PDE Models 4

1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Elliptic PDEs 16

2.1 Maximum principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Sobolev Spaces and Variational Formulation . . . . . . . . . . . . . . . . . 36

2.4 Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Parabolic PDEs 66

3.1 Initial-boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Finite difference methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Semidiscretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Hyperbolic PDEs of Second Order 91

4.1 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Finite difference methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Methods of Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Hyperbolic Systems of First Order 114

5.1 Systems of two equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Numerical methods for linear systems . . . . . . . . . . . . . . . . . . . . . 131

5.4 Conservative methods for nonlinear systems . . . . . . . . . . . . . . . . . 148

3



Chapter 1

Examples and Classification

1

This lecture deals with the numerical solution of partial differential equa-
tions (PDEs). The exact solution depends on several independent variables,
which are often the time and the space coordinates. Different types of PDE
models exist even in the linear case. Each class exhibits certain properties
and thus requires corresponding numerical methods. Initial and/or bound-
ary conditions appear.

In contrast, systems of ordinary differential equations (ODEs) can be writ-
ten in the general form

y′(x) = f(x, y(x)) (y : R→ Rn, f : R×Rn → Rn).

The independent variable x often represents the time. Thus initial value
problems y(x0) = y0 are the most important task. An analytical solution
is not feasible in general. Hence we need numerical methods to achieve an
approximate solution. Nevertheless, a convergent numerical method can
resolve an arbitrary system of ODEs.
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1.1 Examples

We present three important examples, which illustrate the three classes of
PDE models.

Poisson equation

We consider an open bounded domain Ω ⊂ R2. For example, we can choose
Ω = (0, 1)× (0, 1). For u ∈ C2(Ω), the Laplace operator is defined via

∆u :=
∂2u

∂x2 +
∂2u

∂y2 . (1.1)

The Poisson equation (in two space dimensions x, y) reads

−∆u = f

with a predetermined function f : Ω → R. The special case f ≡ 0 re-
produces the Laplace equation. Hence the solution of the Poisson equation
(1.1) is stationary, i.e., it does not change in time.

Now we specify boundary value problems. Let ∂Ω be the boundary of Ω.
Boundary conditions of Dirichlet type read

u(x, y) = g(x, y) for (x, y) ∈ ∂Ω

with a given function g : ∂Ω → R. Boundary conditions of Neumann type
specify the derivative of the solution perpendicular to the boundary, i.e.,

∂u

∂ν
(x, y) := 〈ν(x, y),∇u(x, y)〉 = h(x, y) for (x, y) ∈ ∂Ω

with the normal vector ν (‖ν‖2 = 1) and a given function h : ∂Ω → R.
Often mixed boundary conditions

u(x, y) = g(x, y) for (x, y) ∈ ΓD,
∂u

∂ν
(x, y) = h(x, y) for (x, y) ∈ ΓN

appear with ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅.
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We derive the Poisson equation for electric fields in case of three space dimensions (x =
(x1, x2, x3)). Let E : R3 → R3 be the electric field and Φ : R3 → R the corresponding
potential. It holds

E(x) = −∇Φ(x)

with the gradient ∇Φ = ( ∂Φ
∂x1

, ∂Φ
∂x2

, ∂Φ
∂x3

). It follows

divE(x) = −∆Φ(x).

Let ρ : R3 → R describe the charge distribution and ε > 0 be the permittivity. The first
Maxwell’s equation (Gauss’ law) reads

divE(x) =
ρ(x)

ε
.

Comparing the two relations, we obtain the Poisson equation

−∆Φ(x) =
ρ(x)

ε
,

where ρ is given and Φ is unknown.

A connection to complex analysis is given for holomorphic functions. Let g : C → C be
holomorphic and Ω ⊂ C be bounded, connected and open. On the one hand, Cauchy’s
integral formula yields

g(z) =
1

2πi

∮

∂Ω

g(ζ)

ζ − z
dζ for z ∈ Ω.

It follows that g is already determined uniquely inside Ω by its values on the boundary ∂Ω.
On the other hand, the formulas of complex differentiation (Cauchy-Riemann-PDEs) imply

∆(Re g) = 0 and ∆(Im g) = 0,

i.e., real and imaginary part are solutions of the Laplace equation in two dimensions. The

values of g on ∂Ω specify Dirichlet boundary conditions. It follows a unique solution for the

real and the imaginary part in Ω, respectively. Thus the two theoretical concepts agree.

Wave equation

In a single space dimension, the wave equation reads

∂2u

∂t2
= c2∂

2u

∂x2 , (1.2)
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where the real constant c > 0 is the wave speed. The solution u depends
on space as well as time. We solve the wave equation using d’Alembert’s
method. New variables are introduced via

ξ = x− ct, η = x + ct.

It follows

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
=

∂

∂ξ
+

∂

∂η
,

∂2

∂x2 =
∂2

∂ξ2 + 2
∂2

∂ξ∂η
+

∂2

∂η2 ,

∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂η

∂η

∂t
= c

(
− ∂

∂ξ
+

∂

∂η

)
,

∂2

∂t2
= c2

(
∂2

∂ξ2 − 2
∂2

∂ξ∂η
+

∂2

∂η2

)
.

We obtain the transformed PDE

c2
(

∂2

∂ξ2 − 2
∂2

∂ξ∂η
+

∂2

∂η2

)
u(ξ, η) = c2

(
∂2

∂ξ2 + 2
∂2

∂ξ∂η
+

∂2

∂η2

)
u(ξ, η)

and thus
∂2u

∂ξ∂η
= 0.

It is straightforward to verify that the general solution is given by

u(ξ, η) = Φ(ξ) + Ψ(η)

with arbitrary functions Φ, Ψ ∈ C2(R). A special case is Φ ≡ Ψ (only for
∂u
∂t (x, 0) ≡ 0). It follows

u(x, t) = Φ(x− ct) + Ψ(x + ct).

The functions Φ, Ψ follow from initial conditions. As an interpretation, we
rewrite

Φ(x− ct) = Φ(x + c∆t− c(t + ∆t)) = Φ(x∗ − ct∗)

with x∗ := x + c∆t and t∗ := t + ∆t. In the period ∆t, the information
travels from the point x to the point x∗ with ∆x = c∆t. Hence the term
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Φ(x−ct) represents a wave moving at speed c. Likewise, the term Ψ(x+ct)
yields a wave moving at speed −c. The solution u is the superposition of
two waves travelling at opposite speeds.

For initial values u(x, 0) = u0(x), ∂u
∂t (x, 0) = cu1(x) at t = 0, a formula for

the exact solution is available, i.e.,

u(x, t) =
1

2

(
u0(x + ct) + u0(x− ct) +

∫ x+ct

x−ct

u1(s) ds

)
. (1.3)

It follows that the solution u at a point (x∗, t∗) for t∗ > 0 depends on initial
values at t = 0 in the interval x ∈ [x∗ − ct∗, x∗ + ct∗] only. Hence the wave
equation includes a transport of information at a finite speed.

The linear PDE (1.2) of second order can be transformed into a corre-
sponding system of PDEs of first order. We define v1 := ∂u

∂t and v2 := ∂u
∂x .

Assuming u ∈ C2, the theorem of Schwarz yields

∂v1

∂x
=

∂2u

∂x∂t
=

∂v2

∂t
.

The PDE (1.2) implies
∂v1

∂t
= c2∂v2

∂x
.

It follows the system

∂

∂t

(
v1

v2

)
+

(
0 −c2

−1 0

)
∂

∂x

(
v1

v2

)
=

(
0
0

)
. (1.4)

The resulting matrix exhibits the eigenvalues +c and −c, i.e., the wave
speeds. To obtain the solution u of (1.2), an integration using v1, v2 still
has to be done.

Heat equation

In a single space dimension, the heat equation reads

∂u

∂t
= λ

∂2u

∂x2 (1.5)
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with a constant λ > 0. To demonstrate some solutions of this PDE, we
choose λ = 1 and consider the finite domain x ∈ [0, π] without loss of
generality. We arrange homogeneous boundary conditions

u(0, t) = 0, u(π, t) = 0 for all t ≥ 0. (1.6)

The functions
vk(x, t) := e−k2t sin(kx) for k ∈ N (1.7)

satisfy the heat equation (1.5) and the boundary conditions (1.6). Given
initial values u(x, 0) = u0(x) for x ∈ [0, π] with u0(0) = u0(π) = 0, we can
apply a Fourier expansion

u0(x) =
∞∑

k=1

ak sin(kx)

with coefficients ak ∈ R. Since the heat equation (1.5) is linear, we obtain
the solution as a superposition of the functions (1.7)

u(x, t) =
∞∑

k=1

ake
−k2t sin(kx)

for t ≥ 0.

Alternatively, boundary conditions of Neumann type can be specified. Ho-
mogeneous conditions

∂u

∂x
(0, t) = 0,

∂u

∂x
(π, t) = 0 for all t ≥ 0

imply that there is no heat flux through the boundaries.

Given initial conditions u(x, 0) = u0(x) in the whole space domain, it follows
a formula for the exact solution of the heat equation (λ = 1)

u(x, t) =
1

2
√

πt

∫ +∞

−∞
e−ξ2/4tu0(x− ξ) dξ (1.8)

provided that the integral exists. We recognise that the solution in some
point (x, t) depends on the initial values u0(ξ) for all ξ ∈ R. Hence the
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transport of information proceeds at infinite speed. However, the magnitude
of the information is damped exponentially for increasing distances.

We derive the heat equation in three space dimensions. Let T : R3 → R
be the temperature, F : R3 → R3 the heat flux and κ > 0 the diffusion
constant. It follows

F = −κ∇T.

For the energy E : R3 → R, we obtain

∂E

∂t
= −div F = κdiv∇T = κ∆T.

Let α := ∂E
∂T be a constant material parameter. It holds ∂E

∂t = ∂E
∂T

∂T
∂t . Con-

sequently, the heat equation

∂T

∂t
=

κ

α
∆T

is achieved with λ = κ
α .

Black-Scholes equation

The above examples are motivated by physics and technical applications.
We discuss shortly an example from financial mathematics. Let S be the
price of a stock and V be the fair price of a European call option based
on this stock. It follows a PDE with solution V , where the independent
variables are the time t ≥ 0 and the value S ≥ 0. The famous Black-Scholes
equation reads

∂V

∂t
+ 1

2σ
2S2∂

2V

∂S2 + rS
∂V

∂S
− rV = 0, (1.9)

with constants r, σ > 0. Although the Black-Scholes equation (1.9) looks
complicated, it can be transformed into the heat equation (1.5) by trans-
formations in the domain of dependence. Thus the properties of the Black-
Scholes equation are the same as for the heat equation.

Remark: The wave equation (1.2), the heat equation (1.5) and the Black-
Scholes equation (1.9) are relatively simple such that formulas for corre-
sponding solutions exist, see (1.3) and (1.8). Hence numerical methods are
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not required necessarily. However, an analytical solution is often not feasible
any more if a source term appears, i.e.,

∂2u

∂t2
= c2∂

2u

∂x2 + f(x, t, u) or
∂u

∂t
= λ

∂2u

∂x2 + f(x, t, u).

Now we need numerical schemes to obtain an approximative solution. Nev-
ertheless, the fundamental properties of the PDEs do not change by adding
a source term.

1.2 Classification

We consider a linear PDE of second order
n∑

i,j=1

aij
∂2u

∂xi∂xj
= f

(
x1, . . . , xn, u,

∂u

∂x1
, . . . ,

∂u

∂xn

)
(1.10)

with n ≥ 2 independent variables. Let the solution u : Ω → R satisfy
u ∈ C2(Ω) for some open domain Ω ⊆ Rn. We apply the abbreviations
x = (x1, . . . , xn) and ∇u = ( ∂u

∂x1
, . . . , ∂u

∂xn
). The types of PDEs with respect

to the degree of linearity read:

• linear PDE: The coefficients aij are constants or depend on x only and
the right-hand side is linear (f = b(x)+c(x)u+d1(x) ∂u

∂x1
+· · ·+dn(x) ∂u

∂xn
).

• semi-linear PDE: The coefficients aij are constants or depend on x only
and the right-hand side f is nonlinear.

• quasi-linear PDE: The coefficients aij depend on u and/or ∇u. (The
right-hand side f can be linear or nonlinear.)

The definition of well-posed problems is as follows.

Definition 1 A PDE or system of PDEs with corresponding initial and/or
boundary conditions is well-posed if and only if a unique solution exists and
the solution depends continuously on the input data. Otherwise, the problem
is called ill-posed.
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PDEs of
second order

of first order

elliptic PDE parabolic PDE

hyperbolic PDE

hyperbolic systems

Figure 1: Classification of PDEs.

The coefficients aij form a matrix A = (aij) ∈ Rn×n. Without loss of gener-
ality, we assume that the matrix A is symmetric due to u ∈ C2. Thus A is
diagonalisable and all eigenvalues (EVs) λ1, . . . , λn are real. The classifica-
tion of PDEs (1.10) is based on the definiteness of A. (The classification is
independent of the right-hand side f .) In case of two dimensions (n = 2),
it holds det(A) = λ1λ2, i.e., the definiteness follows from the sign of the
determinant. The quadratic form

q(z) := z>Az (A ∈ R2×2, z ∈ R2)

can be investigated for a geometrical interpretation of the definiteness. This
yields the nomenclature of the types of PDEs. Fig. 1 illustrates the corre-
sponding classes.
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Case 1: A (pos. or neg.) definite → elliptic PDE
(all EVs of A are positive or all EVs of A are negative)
Elliptic PDEs describe stationary solutions. Boundary conditions yield well-
posed problems.

For n = 2, the set {z ∈ R2 : z>Az = ±1} represents an ellipse.

Example: Poisson equation
In n dimensions, the Poisson equation reads

−∆u = − ∂2u

∂x1
2 − · · · −

∂2u

∂xn
2 = f(x1, . . . , xn). (1.11)

It follows that the matrix A ∈ Rn×n is diagonal an all diagonal elements
(eigenvalues) are equal to −1. Consequently, the PDE (1.11) is elliptic.

Case 2: A indefinite, det A 6= 0 → hyperbolic PDE
(at least two EVs have opposite sign, all EVs are non-zero)
Hyperbolic PDEs model transport processes. Initial conditions (possibly
additional boundary conditions) result in well-posed problems.

For n = 2, the set {z ∈ R2 : z>Az = 1} represents a hyperbola.

Example: Wave equation
In n space dimensions, the wave equation is given by

∂2u

∂t2
− c2∆u =

∂2u

∂t2
− c2

(
∂2u

∂x1
2 + · · ·+ ∂2u

∂xn
2

)
= 0 (1.12)

with wave speed c > 0. Again the coefficient matrix A ∈ R(n+1)×(n+1) is
diagonal. It follows a simple EV +1 and a multiple EV −c2. Hence the
wave equation (1.12) is a hyperbolic PDE.

Often one EV exhibits a different sign than all other EVs (the time differs
qualitatively from the space coordinates). If two pairs of eigenvalues have
an opposite sign, then the PDE is called ultrahyperbolic (n ≥ 4 necessary).
However, we will not consider ultrahyperbolic PDEs in this lecture.

In the case n = 2, a hyperbolic PDE of second order can be transformed into
an equivalent hyperbolic PDE of first order. An example has been given
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in (1.4). Vice versa, not each hyperbolic PDE of first order is equivalent to
a PDE of second order.

Case 3: det A = 0 → parabolic PDE
(at least one EV is equal to zero)
Parabolic PDEs describe diffusion, for example. Initial conditions in addi-
tion to boundary conditions yield well-posed problems.

For n = 2, the set {z ∈ R2 : z>Az = 1} corresponds to straight lines. If
linear terms are added to the quadratic form (q(x) := z>Az + b>z), then a
parabola can appear.

Example: Heat equation
In n space dimensions, the heat equation reads

∂u

∂t
− λ∆u =

∂u

∂t
− λ

(
∂2u

∂x1
2 + · · ·+ ∂2u

∂xn
2

)
= 0 (1.13)

including a constant λ > 0. The coefficient matrix A ∈ R(n+1)×(n+1) is
diagonal. A simple EV zero and a multiple eigenvalue −λ appears. It
follows that the PDE (1.13) is parabolic.

The classification is unique in case of constant coefficients aij. For aij(x),
the same PDE (1.10) may exhibit different types in different domains Ω.
For aij(u), the type of the PDE may even depend on the corresponding
solution u. However, this happens rather seldom in practice.

Scaling

Multiplying the PDE (1.10) by a coefficient α 6= 0 changes the matrix A

into αA. The differences in the signs of the eigenvalues remain the same.
Thus the type of the PDE is invariant with respect to this scaling.
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Basis transformations

Now we investigate the invariance of the type of a PDE (1.10) with respect
to basis transformations in the domain of dependence Ω. We consider con-
stant coefficients aij, since a generalisation to non-constant coefficients is
straightforward. Let y = Bx using a regular matrix B = (bij) ∈ Rn×n. In
the new coordinates y, the solution is ũ(y) = ũ(Bx) = u(x). The chain rule
of multivariate differentiation implies

∂ũ(Bx)

∂xi
=

n∑

k=1

∂ũ(Bx)

∂yk
bki,

∂2ũ(Bx)

∂xj∂xi
=

n∑

k=1

n∑

l=1

∂2ũ(Bx)

∂yl∂yk
bkiblj.

It follows
n∑

i,j=1

aij
∂2u(x)

∂xj∂xi
=

n∑
i,j=1

aij

n∑

k,l=1

∂2ũ(Bx)

∂yl∂yk
bkiblj =

n∑

k,l=1

[
n∑

i,j=1

aijbkiblj

]
∂2ũ(y)

∂yl∂yk
.

Let Ã = (ãkl) be the coefficients in the new basis. It holds

Ã = BAB>. (1.14)

The matrix Ã is always symmetric. However, the eigenvalues of A are in-
variant just for orthogonal matrices B, i.e., B−1 = B>. Hence orthogonal
transformations do not change the type of the PDE. Each symmetric ma-
trix A can be diagonalised via D = SAS> using an orthogonal matrix S.
Thus each PDE (1.10) can be transformed into an equivalent equation with
diagonal coefficient matrix of the same type.

Non-orthogonal basis transformations may change the type of the PDE in
case of n ≥ 3. Nevertheless, the type is invariant for an arbitrary basis
transformation in case of n = 2. Thereby, the type depends just on the
sign of det(A), i.e., elliptic for det(A) > 0, hyperbolic for det(A) < 0 and
parabolic for det(A) = 0. The transformation (1.14) yields

det(Ã) = det(B) · det(A) · det(B>) = (det(B))2 det(A).

Hence the sign of det(Ã) is identical to the sign of det(A).
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Chapter 2

Elliptic PDEs

2

In this chapter, we discuss the numerical solution of boundary value prob-
lems of second-order elliptic PDEs. Thereby, the Poisson equation repre-
sents a benchmark problem. Two classes of numerical methods exist: finite
difference methods and finite element methods.

2.1 Maximum principle

We consider the Poisson equation

−∆u(x) := −
n∑

i=1

∂2u(x)

∂x2
i

= f(x1, . . . , xn) (2.1)

in n ≥ 2 space dimensions. Let Ω ⊂ Rn be an open and bounded domain.
Boundary conditions of Dirichlet type read

u(x) = g(x) for x ∈ ∂Ω (2.2)

with a predetermined function g : ∂Ω → R. We assume the existence
of a solution u ∈ C2(Ω) ∩ C0(Ω̄). (Corresponding theorems on existence
require some assumptions and are hard to prove.) The uniqueness as well
as the continuous dependence on the input data follows from the maximum
principle.
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Theorem 1 (maximum principle) Let u ∈ C2(Ω) ∩ C0(Ω̄). It holds:

(i) maximum principle: If −∆u = f ≤ 0 in Ω, then u exhibits its maxi-
mum on the boundary ∂Ω.

(ii) minimum principle: If −∆u = f ≥ 0 in Ω, then u exhibits its minimum
on the boundary ∂Ω.

(iii) comparison: If v ∈ C2(Ω) ∩ C0(Ω̄) and −∆u ≤ −∆v in Ω and u ≤ v

on ∂Ω, then it follows u ≤ v in Ω.

Proof:

We show the property (i) first. We assume f < 0 in Ω. If ξ ∈ Ω exists with

u(ξ) = sup
x∈Ω

u(x) > sup
x∈∂Ω

u(x),

then ξ is also a local maximum. It follows ∇u(ξ) = 0 and the Hesse matrix
∇2u(ξ) = (uxi,xj

(ξ)) is negative semi-definite. In particular, the entries on
the diagonal are not positive. Thus it holds

−(ux1,x1
(ξ) + · · ·+ uxn,xn

(ξ)) ≥ 0.

This is a contradiction to −∆u = f < 0. Hence the maximum must be on
the boundary ∂Ω.

Now let f ≤ 0 and η ∈ Ω with

u(η) = sup
x∈Ω

u(x) > sup
x∈∂Ω

u(x).

We define h(x) := (η1 − x1)
2 + · · ·+ (ηn − xn)

2 and w(x) := u(x) + δ · h(x)
using a real number δ > 0. Since h ∈ C2(Ω) ∩ C0(Ω̄) holds, the function w
exhibits its maximum inside Ω for sufficiently small δ. It follows

−∆w(x) = −∆u(x)− δ∆h(x) = f(x)− 2δn < 0.

Again a contradiction appears. Hence η must be situated on the bound-
ary ∂Ω.
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The property (ii) follows from (i) applying the maximum principle for the
function v := −u.

To verify the property (iii), we define w := v − u. It follows

−∆w = −∆v + ∆u ≥ 0

due to the assumptions. It holds w ≥ 0 on the boundary ∂Ω. The minimum
principle implies w(x) ≥ 0 for all x ∈ Ω. ¤

Using this maximum principle, we achieve the following estimate.

Theorem 2 For u ∈ C2(Ω) ∩ C0(Ω̄), it holds

|u(x)| ≤ sup
z∈∂Ω

|u(z)|+ c sup
z∈Ω

|∆u(z)|. (2.3)

for each x ∈ Ω with some constant c ≥ 0.

Proof:

The bounded domain Ω is situated inside a circle of radius R with its center
at x = 0. We define

w(x) := R2 −
n∑

i=1

x2
i .

It follows wxi,xj
= −2δij. It holds −∆w = 2n and 0 ≤ w ≤ R2 in Ω. Now

we arrange

v(x) := sup
z∈∂Ω

|u(z)|+ w(x) · 1
2n sup

z∈Ω
|∆u(z)| ≥ 0.

Due to this construction, we have −∆v ≥ |∆u| in Ω and v ≥ |u| on ∂Ω.
Theorem 1 (iii) implies −v(x) ≤ u(x) ≤ +v(x) in Ω. Since w ≤ R2 holds,
it follows (2.3) with c := R2

2n . ¤

Let u1 and u2 be two solutions of the boundary value problem (2.1),(2.2),
i.e., it holds −∆u1 = f1, −∆u2 = f2 in Ω and u1 = g1, u2 = g2 on ∂Ω.
Inserting the difference u1 − u2 into (2.3) yields

|u1(x)− u2(x)| ≤ sup
z∈∂Ω

|g1(z)− g2(z)|+ c sup
z∈Ω

|f1(z)− f2(z)| (2.4)
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for all x ∈ Ω. Hence the solution is Lipschitz-continuous with respect to the
input data. Moreover, the solution of a boudary value problem of Dirichlet
type (2.1),(2.2) is unique (choose f1 ≡ f2, g1 ≡ g2).

Boundary value problems of Dirichlet type are well-posed, see Definition 1,
due to (2.4) (just existence is not shown but assumed). We give an example
that initial value problems are ill-posed. We consider the Laplace equation
∆u = 0 in the domain Ω = {(x, y) ∈ R2 : y ≥ 0}. Let initial values be
specified at y = 0

u(x, 0) = 1
n sin(nx), ∂u

∂y (x, 0) = 0.

It follows the unique solution

u(x, y) = 1
n cosh(ny) sin(nx),

which grows like eny. It holds |u(x, 0)| ≤ 1
n , whereas u becomes larger and

larger at y = 1 for n → ∞. Considering the limit case u(x, 0) = 0, the
solution does not depend continuously on the initial data.

Now we consider a general differential operator of elliptic type.

Definition 2 The linear differential operator L : C2(Ω) → C0(Ω)

L := −
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
(2.5)

is called elliptic, if the matrix A = (aij) is positive definite for each x ∈ Ω,
i.e., it holds ξ>A(x)ξ > 0 for all ξ ∈ Rn. The operator (2.5) is called
uniformly elliptic in Ω ⊂ Rn, if a constant α > 0 exists such that

ξ>A(x)ξ ≥ α‖ξ‖2
2 for all ξ ∈ Rn and all x ∈ Ω. (2.6)

The maximum principle given in Theorem 1 also holds with L instead of −∆
in case of a general elliptic operator (2.5). The estimate from Theorem 2 is
valid with L instead of −∆ for uniformly elliptic operators (2.5).
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Figure 2: Grid in finite difference method.

2.2 Finite Difference Methods

We introduce the class of finite difference methods for boundary value prob-
lems of elliptic PDEs in two space dimensions.

Laplace operator on unit square

As benchmark, we consider a boundary value problem of Dirichlet type on
the unit square Ω := {(x, y) : 0 < x, y < 1} for the Poisson equation

−∆u = − ∂2u

∂x2 −
∂2u

∂y2 = f(x, y) (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω.
(2.7)

We introduce a uniform grid in the domain of dependence Ω using a step
size h := 1

M+1 for some M ∈ N
Ωh := {(xi, yj) = (ih, jh) : i, j = 1, . . . , M}, (2.8)

see Figure 2. We construct a difference formula via Taylor expansion. It
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holds for u ∈ C4(Ω)

u(x + h, y) = u(x, y) + hux(x, y) + h2 1
2uxx(x, y) + h3 1

6uxxx(x, y)

+ h4 1
24uxxxx(x + ϑ1h, y)

u(x− h, y) = u(x, y)− hux(x, y) + h2 1
2uxx(x, y)− h3 1

6uxxx(x, y)

+ h4 1
24uxxxx(x− ϑ2h, y)

with 0 < ϑ1, ϑ2 < 1. It follows

u(x + h, y) + u(x− h, y) = 2u(x, y) + h2uxx(x, y) + h4 1
12uxxxx(x + ϑh, y)

with −1 < ϑ < 1 and thus

∂2u

∂x2 (x, y) =
u(x + h, y)− 2u(x, y) + u(x− h, y)

h2 +
h2

12

∂4u

∂x4 (x + ϑh, y)

∂2u

∂y2 (x, y) =
u(x, y + h)− 2u(x, y) + u(x, y − h)

h2 +
h2

12

∂4u

∂y4 (x, y + ηh)

with −1 < ϑ, η < 1. These difference formulas are of order two. Now we
replace the derivatives in (2.7) by these difference formulas using the grid
points (2.8). Let ui,j := u(xi, yj), fi,j := f(xi, yj) and

(∆hu)i,j :=
ui−1,j − 2ui,j + ui+1,j

h2 +
ui,j−1 − 2ui,j + ui,j+1

h2

Omitting the remainder terms, it follows the linear system

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1
.
= h2fi,j (2.9)

for i, j = 1, . . . , M . This discretisation can be illustrated in form of a five-
point star, see Figure 3. The homogeneous boundary conditions imply

u0,j = uM+1,j = ui,0 = ui,M+1 = 0 for all i, j.

We arrange the unknowns and the evaluations of the right-hand side f in
the form

Uh = (u1,1, u2,1, . . . , uM,1, u1,2, . . . , uM,2, . . . , u1,M , . . . , uM,M)>

Fh = (f1,1, f2,1, . . . , fM,1, f1,2, . . . , fM,2, . . . , f1,M , . . . , fM,M)>.
(2.10)
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Figure 3: Five-point star (left) and nine-point star (right).

We obtain a linear system AhUh = Fh of dimension n = M 2. The matrix Ah

is a band matrix

Ah =
1

h2




C −I

−I C . . .
. . . . . . −I

−I C


 with C =




4 −1

−1 . . . . . .
. . . . . . −1

−1 4


 . (2.11)

The matrix Ah is sparse, since each row includes at most five non-zero
elements. Obviously, the matrix Ah is symmetric. It can be shown that Ah

is always positive definite. Hence the matrix is regular. The corresponding
solution Uh = A−1

h Fh represents an approximation of the solution u of the
PDE in the grid points.

Laplace operator on general domain

Now we consider an arbitrary open and bounded domain Ω ⊂ R2, see Fig-
ure 4. The application of a finite difference method requires the construction
of a grid. We define an auxiliary (infinite) grid

Gh := {(x, y) = (ih, jh) : i, j ∈ Z}.
Now the used (finite) grid reads

Ωh := Gh ∩ Ω.

Let Ωh = {z1, . . . , zR} be the grid points. Boundary conditions appear in
the points of

∂Ωh := ({(ih, y) : i ∈ Z, y ∈ R} ∪ {(x, jh) : j ∈ Z, x ∈ R}) ∩ ∂Ω.
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Figure 4: Grid in a general domain Ω.
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(x−h  ,y)W

(x,y−h  )S

(x,y+h  )N

(x+h  ,y)EZ

Figure 5: Five-point star for variable step sizes.
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To arrange the difference formulas near the boundary, variable step sizes
have to be considered.

We apply a five-point star again, see Figure 5. Taylor expansion yields

∂2u

∂x2

∣∣∣∣
Z

=
2

hE(hE + hW )
uE − 2

hEhW
uZ +

2

hW (hE + hW )
uW +O(h)

∂2u

∂y2

∣∣∣∣
Z

=
2

hN(hN + hS)
uN − 2

hNhS
uZ +

2

hS(hN + hS)
uS +O(h)

provided that u ∈ C3(Ω). Hence four (possibly) different step sizes are in-
volved. Let h := max{hE, hW , hN , hS}. This scheme to include the bound-
ary data is also called the Shortley-Weller star.

In general, a five-point star and a nine-point star are specified via their
coefficients




αN

αW αZ αE

αS


 and




αNW αN αNE

αW αZ αE

αSW αS αSE


 ,

respectively, cf. Figure 3. A discretisation of the Poisson equation (2.7)
using arbitrary five point stars reads

∑

l=Z,E,S,W,N

αlUl = fZ

for each Z ∈ Ωh. A general difference formula can be written in the form

LhU :=
∑

l

αlUl,

where the sum is over all non-zero coefficients αl. The discrete operator Lh

depends on the step sizes. We apply the notation

Lhu :=
∑

l

αlu(Zl),

where a function u : Ω̄ → R (usually a solution of the PDE problem) is
evaluated at the nodes Zl ∈ Ωh ∪ ∂Ωh.
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We outline the algorithm of the finite difference method for the Dirichlet
problem of the Poisson equation on a general domain Ω.

Algorithm: FDM for Dirichlet problem

1. Choose a step size h > 0 and determine Ωh as well as ∂Ωh.

2. Choose a numbering of the unknown UZ for Z ∈ Ωh.

3. Arrange the difference formulas

αZUZ + αEUE + αWUW + αNUN + αSUS = fZ

for each Z ∈ Ωh.

4. If boundary values UB with B ∈ ∂Ωh appear in the left-hand side of
a difference formula, then replace UB by gB and shift this term to the
right-hand side.

5. Arrange and solve the linear system

AhUh = Fh

with the chosen numbering of the unknowns Uh = (UZi
) for Zi ∈ Ωh.
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General differential operator

Difference schemes for mixed derivatives also exist. For example, it holds

∂2u

∂x∂y
(xi, yj) =

ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4h2 +O(h2). (2.12)

We verify this formula via (multivariate) Taylor expansions of the neigh-
bouring points around the central point u ≡ ui,j.

ui+1,j+1 = u + hux + huy + 1
2h

2(uxx + 2uxy + uyy)

+ 1
6h

3(uxxx + 3uxxy + 3uxyy + uyyy) +O(h4)

ui−1,j+1 = u− hux + huy + 1
2h

2(uxx − 2uxy + uyy)

+ 1
6h

3(−uxxx + 3uxxy − 3uxyy + uyyy) +O(h4)

ui+1,j−1 = u + hux − huy + 1
2h

2(uxx − 2uxy + uyy)

+ 1
6h

3(uxxx − 3uxxy + 3uxyy − uyyy) +O(h4)

ui−1,j−1 = u− hux − huy + 1
2h

2(uxx + 2uxy + uyy)

+ 1
6h

3(−uxxx − 3uxxy − 3uxyy − uyyy) +O(h4)

⇒ ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1 = 4h2uxy +O(h4),

Now we can discretise an arbitrary differential operator of second order

Lu := a
∂2u

∂x2 + 2b
∂2u

∂x∂y
+ c

∂2u

∂y2 (2.13)

with a, b, c ∈ R for n = 2. The operator (2.13) is elliptic, if and only
if ac > b2 holds. The derivatives ∂2u

∂x2 ,
∂2u
∂y2 are replaced by the difference

formulas in ∆h and the mixed derivative ∂2u
∂x∂y is substituted by (2.13). It

follows the (discrete) difference operator

Lhu = a
h2 [ui−1,j − 2ui,j + ui+1,j]

+ b
2h2 [ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1]

+ c
h2 [ui,j−1 − 2ui,j + ui,j+1].

(2.14)

The difference formula represents a nine-point star, see Figure 3.
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Consistency, Stability and Convergence

We are interested in the convergence of a finite difference method, i.e., if
the global error converges to zero for small step size. The consistency of
the difference formula with respect to the underlying differential operator
alone is not sufficient for the convergence. We require an additional stability
property to guarantee the convergence. The conclusions are similar as in
solving initial value problems of ODEs by multistep methods.

As for initial value problems of ordinary differential equations, we define a
local error and a global error.

Definition 3 (local and global error) Given Ω ⊂ Rn and a (finite) grid
Ωh ⊂ Ω. Let L be a differential operator and Lh be a difference operator.
For a sufficiently smooth function u : Ω → R, the local error is given by
τ(h) := Lu−Lhu on Ωh. If u is a solution of the PDE Lu = f and U ∈ R|Ωh|

a numerical solution on Ωh, then the global error is η(zi) := u(zi) − Ui for
each zi ∈ Ωh.

Now the definition of the convergence is based on the global error.

Definition 4 (convergence) A numerical method using a difference op-
erator Lh is convergent, if the global error satisfies

lim
h→0

max
zi∈Ωh

|η(zi)| = 0.

The method is convergent of order p (at least), if

max
zi∈Ωh

|η(zi)| = O(hp).

In case of h → 0, the number of grid points usually tends to infinity, i.e.,
|Ωh| → ∞. To achieve a convergent method, the consistency of the differ-
ence scheme represents a crucial property.
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Definition 5 (consistency) A difference operator Lh is called consistent
with respect to a differential operator L : V → W , if the local error satisfies

lim
h→0

τ(h) = 0 uniformly on Ωh

for all functions u ∈ V . The method is consistent of order p (at least), if

τ(h) = O(hp) uniformly on Ωh

for all functions u ∈ V .

For example, the difference operator (2.14) is consistent of order p = 2 with
respect to the differential operator (2.13) for V = C4(Ω̄).

We analyse the convergence of the Dirichlet problem of the Poisson equation,
i.e., the discretisation ∆h of the Laplace operator ∆. It holds

AhUh = Fh, AhÛh = Fh + Rh,

where Ûh = (u(zi)) represents the data of the exact solution in the grid
points. Thus Rh is a vector, which contains the local errors τ(h). Since the
difference formula is consistent of order p = 2, it holds ‖Rh‖∞ = O(h2).
We apply the maximum norm, since the size of the vectors depends on h.
Assuming that Ah is regular for all h > 0, we obtain

Uh − Ûh = A−1
h Fh − A−1

h (Fh + Rh) = −A−1
h Rh

and thus
‖Uh − Ûh‖∞ ≤

∥∥A−1
h

∥∥
∞ · ‖Rh‖∞ ≤ C

∥∥A−1
h

∥∥
∞ h2

with some constant C > 0 for sufficiently small h. However, to guarantee
the convergence, we require a condition like

∥∥A−1
h

∥∥
∞ ≤ K or

∥∥A−1
h

∥∥
∞ ≤ K

h

for all h < h0 uniformly with some constant K > 0. Such a condition
corresponds to the stability of the finite difference method.

We obtain a more general stability criterion by the following theoretical
result. Thereby, we have to assume that the grid Ωh is connected.
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Definition 6 (connected grid) A grid Ωh ⊂ Ω ⊂ R2 is connected if each
two points of the grid can be connected by piecewise straight lines, which
remain inside the lines corresponding to the grid as well as inside Ω.

Typically, a connected grid is guaranteed for sufficiently small step size.
Now we can formulate a discrete analogon of Theorem 1.

Theorem 3 (discrete maximum principle)
Let the elliptic PDE Lu = f with f ≤ 0 in Ω and Dirichlet boundary val-
ues be given. Let Lh be a five-point star difference operator on a connected
grid Ωh with negative coefficients outside the center and the sum of all coeffi-
cients is zero. Let the data {UZ : Z ∈ Ωh∪∂Ωh} satisfy the finite difference
scheme. Then either all values UZ are constant or the maximum of the
values UZ is not situated on Ωh but on the boundary ∂Ωh.

Proof:

We assume that the condition

max
Z∈Ωh

UZ ≥ max
B∈∂Ωh

UB

holds and show that then UZ is constant on Ωh ∪ ∂Ωh, which also means
that the discrete maximum appears on the boundary. Let UZ be a maximum
within Ωh. Hence the neighbours satisfy the relation

UZ ≥ max
l=E,W,N,S

Ul.

Furthermore, the difference formula implies
∑

l=Z,E,S,W,N

αlUl = fZ ≤ 0.

It follows
∑

l=E,S,W,N

αl(Ul − UZ) =
∑

l=Z,E,S,W,N

αl(Ul − UZ)

=

( ∑

l=Z,E,S,W,N

αlUl

)
−

(
UZ

∑

l=Z,E,S,W,N

αl

)
=

∑

l=Z,E,S,W,N

αlUl ≤ 0.
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It holds αl < 0 and Ul − UZ ≤ 0 for all l in the original sum. Thus all
terms of the original sum are non-negative. It follows that each term must
be equal to zero. Again αl < 0 yields

UZ = UE = UW = UN = US

i.e., the neighbours of UZ have the same value. We continue this conclusion
proceeding from UZ to the boundary. Each neighbour of the original UZ

fulfills the assumptions and thus their neighbours also have the same value.
Hence UZ exhibits the same value for all Z ∈ Ωh as well as Z ∈ ∂Ωh.
Thereby, we assume that the grid Ωh is connected, i.e., each two grid points
of Ωh ∪ ∂Ωh are connected by difference formulas. ¤

Remarks:

• The discrete maximum principle also holds for operators Lh based on
a nine-point star with analogous conditions on the coefficients. Just
near the boundary, five-point stars have to be applied.

• The discrete operator (2.14) is consistent of order two with respect to
the differential operator (2.13). However this difference formula does
not satisfy the crucial condition αl < 0 for all coefficients outside the
center. Thus a further analysis of stability is necessary in this case.

Further conclusions from the discrete maximum principle in Theorem 3 are:

• discrete minimum principle: If Lu = f with f ≥ 0 holds, then
the discrete solution is either constant or it exhibits the minimum not
on Ωh but on the boundary ∂Ωh.

• discrete comparison: If LhUZ ≤ LhVZ for all grid points Z ∈ Ωh

and UB ≤ VB for all B ∈ ∂Ωh, then it follows UZ ≤ VZ in all Z ∈ Ωh.

Now we can show that the linear system from our finite difference method
has a unique solution.
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Theorem 4 We consider an elliptic PDE Lu = f on Ω with Dirichlet
boundary conditions u = g on ∂Ω. Let AhUh = Fh be the linear system
from a finite difference operator satisfying the assumptions of the discrete
maximum principle. It follows that the matrix Ah is regular and thus has a
unique solution.

Proof:

The homogeneous linear system AhUh = 0 represents the discretisation of
the PDE for f ≡ 0 and g ≡ 0. Let Uh be a solution. The discrete maximum
principle implies UZ ≤ 0 in each Z ∈ Ωh, whereas the discrete minimum
principle yields UZ ≥ 0 in each Z ∈ Ωh. It follows Uh = 0. Hence the matrix
is not singular. ¤

It remains to show that the finite difference method is convergent. In the
following, we restrict to the Laplace operator Lu = −∆u. We apply the
five-point star, which is consistent of order at least one and satisfies the
discrete maximum principle.

Lemma 1 Let u ∈ C2(Ω) ∩ C0(Ω̄) be the solution of the Poisson equation
−∆u = f with Dirichlet boundary conditions u = g on ∂Ω. Let Lh be the
difference operator of the five-point star on a grid Ωh. Then the local error
and global error of the finite difference method fulfill the estimate

max
Z∈Ωh

|u(Z)− UZ | ≤ K max
Z∈Ωh

|τ(Z)| (2.15)

with a constant K > 0, which is independent of the step size h.

Proof:

We investigate the local and global errors

τ(Z) = −∆u(Z)− Lhu(Z), η(Z) = u(Z)− UZ for Z ∈ Ωh.

It follows due to the linearity of the operators

Lhη(Z) = Lhu(Z)− LhUZ = Lhu(Z)− f(Z) = Lhu(Z) + ∆u(Z) = −τ(Z).
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The global error vanishes at the boundary ∂Ωh, since the solution is equal
to the predetermined boundary values. We analyse the problem

Lhη = −τ in Ωh, η = 0 on ∂Ωh.

The scaling

η̃ :=
η

γ
, τ̃ :=

τ

γ
with γ := max

Z∈Ωh

|τ(Z)|

yields the problem

Lhη̃ = −τ̃ with − 1 ≤ τ̃(Z) ≤ 1 for all Z ∈ Ωh.

It still holds η̃ = 0 on ∂Ωh. Let Ω ⊂ {(x, y) ∈ R2 : x2 + y2 < R2}. We
define the auxiliary function

w(x, y) := 1
4(R

2 − x2 − y2) ≥ 0.

Since all third derivatives of w are identical zero, the local errors of the
five-point star vanish. It follows Lhw = −∆w = 1 in Ωh. Since the five-
point star satisfies the discrete maximum principle, the discrete comparison
implies

η̃ ≤ w ≤ 1
4R

2 for all Z ∈ Ωh.

Using −w instead of w, the discrete comparison yields

−1
4R

2 ≤ −w ≤ η̃ for all Z ∈ Ωh.

Hence it follows
max
Z∈Ωh

|η(Z)| ≤ 1
4R

2 max
Z∈Ωh

|τ(Z)|

and we can choose the constant K := R2

4 . ¤

In the proof of Lemma 1, both the consistency and the discrete maximum
principle corresponding to the five-point star are applied. The discrete
maximum principle guarantees the stability of the finite difference method.
Now we can conclude the convergence.
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Theorem 5 Let u ∈ C3(Ω̄) be the solution satisfying the Poisson equation
−∆u = f with Dirichlet boundary conditions u = g on ∂Ω. Let Lh be the
difference operator of the five-point star. Then the numerical solution of the
finite difference method converges to the exact solution and it holds

max
Z∈Ωh

|u(Z)− UZ | = O(h).

If u ∈ C4(Ω̄) and all step sizes are equidistant, then it holds

max
Z∈Ωh

|u(Z)− UZ | = O(h2).

Proof:

The consistency of the five-point star yields τ(Z) = O(h) for all Z ∈ Ωh.
The estimate (2.15) from Lemma 1 implies

max
Z∈Ωh

|η(Z)| ≤ 1
4R

2Ch for all 0 < h < h0

with some constant C > 0. In case of u ∈ C4(Ω̄) and equidistant step sizes,
it follows τ(Z) = O(h2) and thus convergence of order p = 2. ¤

A further analysis shows that a convergence of order p = 2 is also given for
variable step sizes. Moreover, the convergence can also be shown in case of
u ∈ C2(Ω̄).
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Generalisations

We outline the generalisation of the above finite difference method to further
problems.

• von-Neumann boundary value problem: We consider the Poisson equa-
tion −∆u = f in Ω ⊂ R2 with boundary conditions ∂u

∂ν = g(x, y) on ∂Ω.
For example, let Ω = (0, 1)× (0, 1). We apply the grid points (2.8) for
i, j = 0, 1, . . . , M, M +1. In comparison to Dirichlet problems, 4M ad-
ditional unknowns appear (the four edges of the square are not used).
Hence we arrange 4M equations using difference formulas to replace
the derivative ∂u

∂ν :

g(xi, 0) = −∂u
∂y (xi, 0)

.
= 1

h [ui,0 − ui,1] for i = 1, . . . , M ,

g(xi, 1) = ∂u
∂y (xi, 1)

.
= 1

h [ui,M+1 − ui,M ] for i = 1, . . . , M ,

g(0, yj) = −∂u
∂x(0, yj)

.
= 1

h [u0,j − u1,j] for j = 1, . . . , M ,

g(1, yj) = ∂u
∂x(1, yj)

.
= 1

h [uM+1,j − uM,j] for j = 1, . . . , M .

Techniques for Neumann boundary conditions on arbitrary domains Ω
also exist. Remark that a solution of a pure von-Neumann boundary
value problem is not unique and thus requires an additional condition.

• space-dependent coefficients: Given the elliptic PDE

Lu := a(x, y)
∂2u

∂x2 + 2b(x, y)
∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2 = f(x, y),

the coefficients a, b, c : Ω → R depend on space. Appropriate finite
difference methods can be constructed in this case. For proving the
convergence, a uniformly elliptic operator, see Definition 2, has to be
assumed.

• right-hand side includes the solution: We consider the (nonlinear) PDE
−∆u = f(x, y, u) with a nonlinear function f . Let Ω be the unit
square. Homogeneous boundary condition u = 0 on ∂Ω are applied.
The five-point star with equidistant step sizes yields the equations

1
h2 [4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1] = f(xi, yj, ui,j)
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for i, j = 1, . . . , M . We obtain a nonlinear system for the unknowns ui,j.
Newton’s method yields an approximation of the corresponding dis-
crete solution. In the special case f(x, y, u) = b(x, y) + c(x, y)u, it
follows a linear system again.

• three-dimensional space: The Laplace operator in three space dimen-
sions reads ∆u = uxx + uyy + uzz. We consider an open and bounded
domain Ω ⊂ R3 for the Poisson equation −∆u = f . The above theory
of finite difference methods can be repeated in this case. The same
results appear concerning consistency, stability and convergence.

Iterative solution of linear systems

The finite difference methods yield large and sparse linear systems. Gaus-
sian elimination becomes expensive, since many fill-ins appear in the fac-
torisation. In contrast, iterative methods allow for efficient algorithms.

The types of iterative solvers are:

• stationary methods: Jacobi method, Gauss-Seidel method, SOR, etc.

• instationary methods: conjugate gradient method, GMRES, etc.

• multigrid methods.

An introduction to iterative methods for solving linear systems can be found
in J. Stoer, R. Bulirsch: Introduction to Numerical Analysis. (2nd ed.)
Springer, New York, 1993. (Chapter 8)
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2.3 Sobolev Spaces and Variational Formulation

In this section, we introduce weak solutions of elliptic PDEs. Finite element
methods represent convergent techniques for weak solutions, whereas finite
difference methods fail.

Classical solutions

Classical solutions of a PDE are sufficiently smooth in some sense.

Definition 7 (classical solution) Let Ω ⊂ Rn be open and bounded. For
an elliptic PDE Lu = f , a function u : Ω̄ → R is called a classical solution,
if it holds

• for Dirichlet problems: u ∈ C2(Ω) ∩ C0(Ω̄),

• for von-Neumann problems: u ∈ C2(Ω) ∩ C1(Ω̄).

As an example for n = 2, we consider the Laplace equation on three quarter
of the unit disc as domain

Ω := {(x, y) ∈ R2 : x2 + y2 < 1, x < 0 or y > 0}.
We identify Ω ⊂ C via x = Re(z), y = Im(z). The function w : Ω → C,
w(z) := z2/3 is analytic. The imaginary part u := Im(w) satisfies

∆u = 0 in Ω,

u(eiϕ) = sin(2
3ϕ) for 0 ≤ ϕ ≤ 3π

2 ,
u = 0 elsewhere on ∂Ω.

We obtain the representation

u(x, y) = 3
√

x2 + y2 sin(2
3 arctan(y

x)) for x > 0.

It holds u ∈ C2(Ω) ∩ C0(Ω̄), i.e., u is a classical solution of the Dirichlet
problem. However, due to w′(z) = 2

3z
−1/3 and w′′(z) = −2

9z
−4/3, both the

first and the second derivative of u is not bounded in a neighbourhood

36



of z = 0. It follows that u /∈ C2(Ω̄). Hence we cannot guarantee the
convergence of the finite difference method constructed in Sect. 2.2. An
alternative numerical method is required.

Weak Derivatives and Sobolev Spaces

We consider an open domain Ω ⊆ Rn. We define the space of test functions

C∞
0 (Ω) := {φ ∈ C∞(Ω) : supp(φ) ⊂ Ω, supp(φ) is compact},

where supp(φ) := {x ∈ Ω : φ(x) 6= 0}. If Ω is bounded, it follows that
φ(x) = 0 for x ∈ ∂Ω. Furthermore, we apply the Hilbert space L2(Ω),
which has the inner product

〈f, g〉L2 :=

∫

Ω
f(x) · g(x) dx

for each f, g ∈ L2(Ω). The corresponding norm reads

‖f‖L2 =

√∫

Ω
f(x)2 dx .

The set C∞
0 (Ω) ⊂ L2(Ω) is dense. A multi-index is given by

α := (α1, . . . , αn) ∈ Nn
0 , |α| :=

n∑
i=1

αi.

For u ∈ Ck(Ω) with k = |α|, an elementary differential operator can be
defined via

Dαu :=
∂|α|u

∂xα1
1 · · · ∂xαn

n
.

For u ∈ Ck(Ω), Dαu represents a usual (strong) derivative.

Definition 8 (weak derivative) Given a function f ∈ L2(Ω), a function
g ∈ L2(Ω) is called the weak derivative Dαf of f , if it holds

∫

Ω
g(x) · φ(x) dx = (−1)|α|

∫

Ω
f(x) ·Dαφ(x) dx

for all φ ∈ C∞
0 (Ω). We write Dαf = g.
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The property of this definition can also be written as

〈g, φ〉L2 = (−1)|α|〈f, Dαφ〉L2 for all φ ∈ C∞
0 (Ω).

It can be shown that a weak derivative of a function is unique, since the
space C∞

0 (Ω) is dense in L2(Ω).

Example: In the special case n = 1, a function f ∈ C1(a, b) leads to

∫ b

a

f ′(x)φ(x) dx = [f(x)φ(x)]x=b
x=a −

∫ b

a

f(x)φ′(x) dx = −
∫ b

a

f(x)φ′(x) dx

for each φ ∈ C∞
0 (a, b). Hence f ′ is a weak derivative of f .

In case of n ≥ 2, we apply Green’s formula
∫

Ω
v · ∂w

∂xi
dx =

∫

∂Ω
v · w · νi ds−

∫

Ω

∂v

∂xi
· w dx (2.16)

for i ∈ {1, . . . , n} and v, w ∈ C1(Ω̄), where νi is the ith component of the
outer normal vector on the boundary ∂Ω. The formula (2.16) does not hold
for arbitrary domains Ω. A domain with a (so-called) smooth boundary is
sufficient for the application of the formula. For simplicity, we restrict to
domains, where the formula (2.16) holds.

The concept of the weak derivative is used to define the Sobolev spaces.

Definition 9 (Sobolev space) For m ≥ 0, Hm(Ω) is the set of all func-
tions u ∈ L2(Ω), where a weak derivative Dαu ∈ L2(Ω) exists for all
|α| ≤ m. The space Hm(Ω) exhibits an inner product

〈u, v〉Hm :=
∑

|α|≤m

〈Dαu, Dαv〉L2.

The set Hm(Ω) is called a Sobolev space. ‖ · ‖Hm is a Sobolev norm.

Hence Hm(Ω) can be interpreted as a generalisation of the space Cm(Ω),
which is not a Hilbert space. The spaces (Hm(Ω), ‖·‖Hm) are Hilbert spaces,
i.e., they are complete. Remark that it holds Hm(Ω) ⊂ L2(Ω) for m ≥ 1
and H0(Ω) = L2(Ω).
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To investigate PDE problems with homogeneous Dirichlet boundary condi-
tions (Ω is bounded), we define the subsets Hm

0 (Ω) :≡ C∞
0 (Ω) as the closure

of C∞
0 (Ω) ⊂ Hm(Ω) with respect to the norm ‖ · ‖Hm. More precisely, it

holds

Hm
0 (Ω) =

{
u ∈ Hm(Ω) : ∃(vi)i∈N ⊂ C∞

0 (Ω) with lim
i→∞

‖u− vi‖Hm = 0
}

.

It follows that the subspace (Hm
0 , ‖ · ‖Hm) is also a Hilbert space.

Furthermore, we obtain a semi-norm on Hm(Ω) via

|u|Hm :=


 ∑

|α|=m

‖Dαu‖2
L2




1/2

.

If Ω is inside a cube of edge length s, then it holds the equivalence

|u|Hm ≤ ‖u‖Hm ≤ (1 + s)m|u|Hm for all u ∈ Hm
0 (Ω). (2.17)

The above construction can also be done using the spaces Lp(Ω) instead of
L2(Ω) with 1 ≤ p ≤ ∞. It follows the Sobolev spaces Wm

p (Ω), where it
holds Wm

2 (Ω) = Hm(Ω).

Symmetric operators and bilinear forms

In the following, we assume homogeneous Dirichlet boundary conditions.
Given an elliptic PDE Lu = f in Ω and u = g on ∂Ω. Let u0 be a sufficiently
smooth function with u0 = g on ∂Ω. The function w := u − u0 satisfies
Lw = f̃ in Ω with f̃ := f − Lu0 and w = 0 on ∂Ω. Hence we have
transformed the problem to homogeneous boundary conditions.

We consider a general linear differential operator of the form

Lu := −
(

n∑
i,j=1

aij
∂2u

∂xi∂xj

)
+

(
n∑

j=1

aj
∂u

∂xj

)
+ a0u. (2.18)

Thereby, we assume aij ∈ C2(Ω̄), aj ∈ C1(Ω̄), a0 ∈ C0(Ω̄). The correspond-
ing adjoint operator L∗ is defined by the property

〈Lu, v〉L2 = 〈u, L∗v〉L2
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for u, v ∈ C2(Ω̄) with u = 0, v = 0 on ∂Ω. It follows

L∗v = −
(

n∑
i,j=1

∂2(aijv)

∂xi∂xj

)
−

(
n∑

j=1

∂(ajv)

∂xj

)
+ a0v.

A symmetric (also: self-adjoint) operator satisfies L = L∗. It can be shown
that a symmetric operator exhibits the form

Lu := −
(

n∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

))
+ a0u. (2.19)

In particular, each operator (2.18) is self-adjoint in case of constant coef-
ficients aij and a1 = · · · = an = 0, for example. Green’s formula (2.16)
implies

〈Lu, v〉 =

(
n∑

i,j=1

∫

Ω
aij

∂u

∂xj

∂v

∂xi
dx

)
+

∫

Ω
a0uv dx. (2.20)

We recognise that the right-hand side is symmetric in u and v. Hence it
holds 〈Lu, v〉 = 〈u, Lv〉. Furthermore, just derivatives of first order appear.

Definition 10 Let H be a Hilbert space. A bilinear form a : H ×H → R
is symmetric, if a(u, v) = a(v, u) holds for all u, v ∈ H. A bilinear form a

is continuous , if a constant C > 0 exists such that

|a(u, v)| ≤ C · ‖u‖ · ‖v‖ for all u, v ∈ H.

A symmetric, continuous bilinear form a is called H-elliptic (also: coercive),
if a constant β > 0 exists with

a(u, u) ≥ β · ‖u‖2 for all u ∈ H.

In particular, each H-elliptic bilinear form is positive, i.e., a(u, u) > 0 for
u 6= 0.

Each H-elliptic bilinear form a induces a norm

‖u‖a :=
√

a(u, u) for u ∈ H,
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which is called the energy norm. The energy norm is equivalent to the norm
of the Hilbert space.

The relation (2.20) motivates the definition of a symmetric bilinear form
corresponding to a uniformly elliptic differential operator.

Theorem 6 The bilinear form a : H1
0(Ω)×H1

0(Ω) → R given by

a(u, v) :=

(
n∑

i,j=1

∫

Ω
aij

∂u

∂xj

∂v

∂xi
dx

)
+

∫

Ω
a0uv dx (2.21)

with aij, a0 ∈ C0(Ω̄), A = (aij) symmetric and positive definite, a0 ≥ 0
is continuous and H1

0(Ω)-elliptic provided that the underlying differential
operator is uniformly elliptic.

Proof:

We define c := sup{|aij(x)| : x ∈ Ω, 1 ≤ i, j ≤ n}. It follows using the
Cauchy-Schwarz inequality

∣∣∣∣∣
n∑

i,j=1

∫

Ω
aijuxi

vxj
dx

∣∣∣∣∣ ≤ c

n∑
i,j=1

∫

Ω
|uxi

vxj
| dx

≤ c
n∑

i,j=1

‖uxi
‖L2 · ‖vxj

‖L2

≤ c

n∑
i,j=1

|u|H1 · |v|H1

= cn2 · |u|H1 · |v|H1.

We arrange b := sup{|a0(x)| : x ∈ Ω}. It follows
∣∣∣∣
∫

Ω
a0uv dx

∣∣∣∣ ≤ b

∫

Ω
|uv| dx ≤ b · ‖u‖L2 · ‖v‖L2.

We obtain applying ‖u‖L2 ≤ ‖u‖H1 and |u|H1 ≤ ‖u‖H1 with C := b + cn2

|a(u, v)| ≤ C · ‖u‖H1 · ‖v‖H1.
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Since the differential operator is uniformly elliptic, see (2.6), it holds using
the monotonicity of the integral

∫

Ω

n∑
i,j=1

aijvxi
vxj

dx ≥ α

∫

Ω

n∑
i=1

(vxi
)2 dx

for v ∈ H1
0(Ω). It follows due to a0 ≥ 0

a(v, v) ≥ α

n∑
i=1

∫

Ω
(vxi

)2 dx = α|v|2H1

for each v ∈ H1
0(Ω). The equivalence (2.17) implies a(v, v) ≥ αK‖v‖2

H1

for v ∈ H1
0(Ω) with some constant K > 0 depending just on Ω. Thus the

bilinear form a is H1
0(Ω)-elliptic with β := αK. ¤

Variational formulation

Now we consider the PDE Lu = f with a uniformly elliptic operator L. Let
u be a classical solution and Lu, f ∈ L2(Ω). It follows

Lu− f = 0

(Lu− f)v = 0

〈Lu− f, v〉L2 = 0

〈Lu, v〉L2 − 〈f, v〉L2 = 0

for each v ∈ L2(Ω). We define the linear mapping

`(v) := 〈f, v〉L2 (2.22)

for v ∈ L2(Ω) or a corresponding subspace. The Cauchy-Schwarz inequality
yields |`(v)| ≤ ‖f‖L2‖v‖L2. Hence ` is bounded on L2(Ω) with ‖`‖ ≤ ‖f‖L2.
It follows that ` is also bounded on H1(Ω).

Let ` ∈ V ′, i.e., ` : V → R be an arbitrary linear mapping. We apply the
notation 〈`, v〉 := `(v), which refers to the bilinear form 〈·, ·〉 : V ′×V → R.

The right-hand side f yields the linear mapping (2.22), whereas the left-
hand side Lu corresponds to the bilinear form (2.21). It follows the concept
of a weak solution.
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Definition 11 (weak solution) A function u ∈ H1
0(Ω) is called a weak

solution of the elliptic PDE problem

Lu = f in Ω

u = 0 on ∂Ω,

if the corresponding bilinear form (2.21) and linear mapping (2.22) satisfy

a(u, v) = 〈`, v〉 for all v ∈ H1
0(Ω). (2.23)

Now we show that a classical solution represents also a weak solution of
the problem. For simplicity, we demand the property u ∈ C2(Ω̄) for the
classical solution.

Theorem 7 Let u be a classical solution of

−
n∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ a0u = f in Ω

u = 0 on ∂Ω

with u ∈ C2(Ω̄) and aij ∈ C1(Ω̄), a0, f ∈ C0(Ω)∩L2(Ω). Then u represents
also a weak solution of the problem.

Proof:

We apply Green’s formula
∫

Ω
v · ∂w

∂xi
dx =

∫

∂Ω
v · w · νi ds−

∫

Ω

∂v

∂xi
· w dx,

where we choose w := aijuxj
∈ C1(Ω̄) and v ∈ C∞

0 (Ω). It follows
∫

Ω
v

∂

∂xi

(
aij

∂u

∂xj

)
dx = −

∫

Ω
aij

∂v

∂xi

∂u

∂xj
dx.

We apply the bilinear and linear form, respectively,

a(u, v) :=

∫

Ω

n∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+ a0uv dx, 〈`, v〉 :=

∫

Ω
fv dx.
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It follows

a(u, v)− 〈`, v〉 =

∫

Ω
v

[
−

n∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ a0u− f

]
dx

=

∫

Ω
v[Lu− f ] dx = 0

for all v ∈ C∞
0 (Ω) due to Lu = f . The bilinear form a as well as the linear

form `(v) = 〈f, v〉L2 are continuous on H1
0(Ω). Since C∞

0 (Ω) ⊂ H1
0(Ω) is

dense, it follows a(u, v)−〈`, v〉 = 0 for all v ∈ H1
0(Ω). Furthermore, it holds

u ∈ H1
0(Ω) due to u ∈ C0(Ω̄) ∩H1(Ω) and u = 0 on ∂Ω. ¤

Solutions satifying the assumptions of Theorem 7 can be computed by finite
difference methods due to u ∈ C2(Ω̄).

Now we show an important equivalence of our problem.

Theorem 8 Let V be a linear space and a : V × V → R a symmetric,
positive bilinear form and ` : V → R a linear mapping. The function

J(v) := 1
2a(v, v)− 〈`, v〉 (2.24)

exhibits a minimum in V at u if and only if

a(u, v) = 〈`, v〉 for all v ∈ V. (2.25)

There exists at most one minimum.

Proof:

A positive bilinear form fulfills a(u, u) > 0 for all u 6= 0. For u, v ∈ V and
t ∈ R, we calculate

J(u + tv) = 1
2a(u + tv, u + tv)− 〈`, u + tv〉

= J(u) + t [a(u, v)− 〈`, v〉] + 1
2t

2a(v, v).

If u ∈ V satisfies the condition (2.25), then it follows using t = 1

J(u + v) = J(u) + 1
2a(v, v) > J(u)
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for v ∈ V with v 6= 0. Hence u is the unique minimum.

Vice versa, let u ∈ V be a minimum of the function (2.24). For each v ∈ V ,
it holds

d

dt
J(u + tv)

∣∣∣∣
t=0

= 0.

Due to
d

dt
J(u + tv) = a(u, v)− 〈`, v〉+ ta(v, v),

it follows the condition (2.25). ¤

Theorem 8 yields the uniqueness of a weak solution. If a classical solution
exists satisfying additional properties (like u ∈ C2(Ω̄)), then this function
also represents the unique weak solution.

We obtain an additional characterisation of the weak solution by Theorem 8:
The weak solution of the PDE also represents a solution of a minimisation
problem

J(v) := 1
2a(v, v)− 〈`, v〉 −→ min. (2.26)

and vice versa. The task (2.26) is called a variational formulation (of the
problem) or a variational problem.

Theorem 9 (Lax-Milgram) Let H be a Hilbert space and V ⊆ H be a
closed convex set. For an H-elliptic bilinear form a : H × H → R and
` ∈ H ′, the variational problem (2.26) exhibits a unique solution in V .

Proof:

The mapping J is bounded from below, sice it holds

J(v) ≥ 1
2α‖v‖2 − ‖`‖ · ‖v‖ = 1

2α(α‖v‖ − ‖`‖)2 − 1
2α‖`‖2 ≥ − 1

2α‖`‖2.

We define c := inf{J(v) : v ∈ V }. Let (vn)n∈N ⊂ V be a sequence satisfying

lim
n→∞

J(vn) = c.
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It follows

α‖vn − vm‖2 ≤ a(vn − vm, vn − vm)

= 2a(vn, vn) + 2a(vm, vm)− a(vn + vm, vn + vm)

= 4J(vn) + 4J(vm)− 8J(1
2(vn + vm))

≤ 4J(vn) + 4J(vm)− 8c,

since 1
2(vn + vm) ∈ V holds due to V convex. The upper bound converges

to zero for n,m → ∞. Thus ‖vn − vm‖ → 0 for n,m → ∞, i.e., (vn)n∈N is
a Cauchy sequence. Since V is a closed set, a limit u ∈ V exists. It follows

J(u) = J
(

lim
n→∞

vn

)
= lim

n→∞
J(vn) = inf{J(v) : v ∈ V }

due to the continuity of J . Hence u represents a minimum.

Concerning the uniqueness, let u1, u2 ∈ V be two solutions of the variational
problem (2.26). Then it holds J = c for each component of the sequence
(u1, u2, u1, u2, . . .). Due to the above calculations, a Cauchy sequence is
given. It follows ‖u1− u2‖ < ε for each ε > 0. Hence it holds ‖u1− u2‖ = 0
and u1 = u2. ¤

We apply Theorem 9 in the special case V = H = H1
0(Ω), since H1

0(Ω)
is a Hilbert space. It follows that the variational problem (2.26) has a
unique solution u ∈ H1

0(Ω). Due to Theorem 8, the solution u of the
variational problem is also a weak solution of the PDE problem according
to Definition 11. We obtain directly the following result.

Theorem 10 Let L be a uniformly elliptic, symmetric differential operator.
Then the homogeneous Dirichlet boundary value problem for Lu = f exhibits
a unique weak solution in H1

0(Ω).

Remark: Not all open and bounded domains Ω ⊂ Rn are feasible, since
Green’s formula has to be applicable. Nevertheless, Green’s formula is valid
for nearly all domains in practice.
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In the one-dimensional case (n = 1), we obtain a homogeneous boundary
value problem of a second-order ordinary differential equation

−(p(x)u′(x))′ + q(x)u(x) = f(x) for x ∈ (a, b)

with u(a) = u(b) = 0. Assuming p(x) ≥ p0 > 0 and q(x) ≥ 0, the involved
differential operator is uniformly elliptic. A corresponding variational for-
mulation can be constructed as above. The detailed derivation for this
special case can be found in, for example, Stoer/Bulirsch: Introduction to
Numerical Analysis, Springer (Section 7.5).

Von-Neumann boundary conditions

For the Poisson equation −∆u = f , we demand ∂u
∂ν = g on ∂Ω in case

of von-Neumann boundary conditions. Weak solutions are considered in
the space H1(Ω) now. For a broad class of domains Ω, a bounded linear
mapping

γ : H1(Ω) → L2(∂Ω), ‖γ(v)‖L2(∂Ω) ≤ C‖v‖H1(Ω) (2.27)

exists satisfying γ(v) = v|∂Ω for all v ∈ C0(Ω̄) ∩ H1(Ω). The linear map-
ping γ is called the trace operator.

The trace operator allows for an alternative characterisation of the Hilbert space H1
0 (Ω).

We defined H1
0 (Ω) :≡ C∞

0 (Ω), i.e., the closure of the test functions with respect to the
Sobolev norm ‖ · ‖H1 . It can be shown that it holds

H1
0 (Ω) = {u ∈ H1(Ω) : γ(u) = 0}.

This property has already been used in the proof of Theorem 7, since u ∈ C0(Ω̄) ∩H1(Ω)
and u = 0 on ∂Ω implies u ∈ H1

0 (Ω) now.

A variational formulation can be derived also in the case of von-Neumann
boundary conditions. For simplicity, let u ∈ C2(Ω̄), v ∈ C1(Ω̄). Green’s
formula yields for 〈∆u, v〉L2

∫

Ω
v

n∑
i=1

∂2u

∂x2
i

dx =
n∑

i=1

∫

Ω
v
∂2u

∂x2
i

dx =
n∑

i=1

∫

∂Ω
v

∂u

∂xi
νi ds−

∫

Ω

∂v

∂xi

∂u

∂xi
dx.

The second term implies the definition of the bilinear form

a(u, v) =

∫

Ω

n∑
i=1

∂u

∂xi

∂v

∂xi
dx (2.28)
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as in the case of Dirichlet boundary conditions. The first terms are not
identical to zero now. It follows

n∑

i=1

∫

∂Ω
v

∂u

∂xi
νi ds =

∫

∂Ω
v

(
n∑

i=1

∂u

∂xi
νi

)
ds =

∫

∂Ω
v(∇u · ν︸ ︷︷ ︸

=∂u
∂ν

) ds =

∫

∂Ω
vg ds.

Hence the corresponding linear mapping ` reads

〈`, v〉 :=

∫

Ω
fv dx +

∫

∂Ω
gv ds (2.29)

assuming f ∈ L2(Ω) and g ∈ L2(∂Ω). Now functions v ∈ H1(Ω) can
be considered by applying the operator (2.27). More precisely, the linear
mapping (2.29) changes into

〈`, v〉 :=

∫

Ω
fv dx +

∫

∂Ω
gγ(v) ds

for v ∈ H1(Ω). Nevertheless, the notation (2.29) is applied in general.

The linear mapping (2.29) includes both the information of the right-hand
side f and the boundary conditions g. Numerical methods can be con-
structed for solving the variational problem or its equivalent conditions.
Recall again that a solution of a pure von-Neumann boundary value prob-
lem is not unique (u solution implies u + c solution for arbitrary c ∈ R).
Hence an additional condition has to be included.

More details can be found in Braess: Finite Elements. (Chapter 3)
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2.4 Finite Element Methods

Now we apply the theory of the previous section to construct numerical
methods for the determination of weak solutions.

Ritz-Galerkin approach

We consider a homogeneous Dirichlet boundary value problem including
a uniformly elliptic, symmetric differential operator (2.19). It follows the
existence of a unique weak solution. Theorem 8 shows two properties, which
characterise the weak solution. Numerical methods can be based on each
of these properties. Typically, finite-dimensional subspaces Sh ⊂ H1

0(Ω) are
chosen, where h > 0 represents a discretisation step size to be defined later.
Typically, it holds dim(Sh) →∞ for h → 0.

We obtain three classes of numerical techniques:

• Galerkin method: The definition (2.23) is used. The approximation of
the weak solution is determined in a finite dimensional subspace Sh.
The condition (2.23) shall be satisfied for all v ∈ Sh.

• Petrov-Galerkin method (or: method of weighted residuals): The defi-
nition (2.23) is applied again. The approximation is situated in some
space Sh. The condition (2.23) shall be satisfied for all v ∈ Th with
another subspace Th of the same dimension. The special case Sh = Th

yields the Galerkin method.

• Rayleigh-Ritz method (or: Ritz method): The solution of the variational
problem (2.26) is computed approximately. Thereby, a minimum of J
is determined in a finite-dimensional subspace Sh.

We discuss the Galerkin method first. For some subspace Sh, we choose a
basis {φ1, . . . , φN}. The approximation is inside this space, i.e.,

uh(x) =
N∑

j=1

αjφj(x) (2.30)
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with unknown coefficients α1, . . . , αN ∈ R. Replacing the exact solution u

by the approximation uh, the condition (2.23) demands that

a(uh, v) = 〈`, v〉 (2.31)

for all v ∈ H1
0(Ω). Since uh 6= u in general, this condition cannot be satisfied

for all v ∈ H1
0(Ω). Alternatively, we demand that the property (2.23) holds

for all v ∈ Sh. Using the basis functions, this condition is equivalent to

a(uh, φi) = 〈`, φi〉 for i = 1, . . . , N.

Inserting (2.30), it follows a linear system

N∑
j=1

αja(φj, φi) = 〈`, φi〉 for i = 1, . . . , N

with the unknown coefficients α1, . . . , αN . The matrix of this linear system
reads A := (a(φj, φi)) ∈ RN×N , which is obviously symmetric. Since the
bilinear form is positive, it holds for ξ = (ξ1, . . . , ξN)> 6= 0

ξ>Aξ =
N∑

i,j=1

a(φj, φi)ξjξi = a

(
N∑

j=1

ξjφj,

N∑
i=1

ξiφi

)
> 0.

Hence the matrix A is positive definite. It follows that a unique solution
exists, which yields the approximation (2.30).

In the Petrov-Galerkin method, we demand that the condition (2.31) is
satisfied for all v ∈ Th for some other subspace Th ⊂ H1

0(Ω) satisfying
dim(Sh) = dim(Th). The elements of Th are often called test functions.
(However, they do not belong to the set C∞

0 in general.) We select a basis
{ψ1, . . . , ψN} of Th. Now the condition (2.31) for all v ∈ Th is equivalent to

a

(
N∑

j=1

αjφj, ψi

)
= 〈`, ψi〉 for i = 1, . . . , N.

It follows the linear system

N∑

j=1

αja(φj, ψi) = 〈`, ψi〉 for i = 1, . . . , N
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with the matrix A := (a(φj, ψi)). This matrix is not symmetric in general.
It depends on the choice of the subspaces and the bases if the matrix is
regular. In the special case Sh = Th and using the same basis, the approach
coincides with the Galerkin method due to φi = ψi for all i.

For the Rayleigh-Ritz method, we insert the approximation (2.30) into the
function J from (2.26). It follows (α = (α1, . . . , αN)>)

J

(
N∑

j=1

αjφj

)
= 1

2

N∑
i,j=1

αjαia(φj, φi)−
N∑

j=1

αj〈`, φj〉 = 1
2α

>Aα− α>b

with the same matrix A and right-hand side b as in the Galerkin method.
The minimisation in Sh only demands

∂J

∂αk
= 0 for k = 1, . . . , N.

The gradient of J is∇J = Aα−b. It follows the linear system Aα = b. Thus
the technique coincides with the Galerkin method in this case. Different
approaches may appear if the underlying bilinear form a is not symmetric
or not positive. For problems, where the Rayleigh-Ritz method and the
Galerkin method are the same, the technique is called the Ritz-Galerkin
method. The involved matrix Ah is also calles stiffness matrix.

The method of weighted residuals can be motivated also in case of smooth solutions. Let
uh ∈ Sh ⊂ C2(Ω) ∩ C0(Ω̄) be an approximation of a classical solution. For a finite-
dimensional space Sh, we choose a basis φ1, . . . , φN (of ansatz functions) and consider an
approximation (2.30). It follows the residual ρ : Ω → R

ρ := Luh − f =

(
N∑

i=1

αiLφi

)
− f.

We want to determine the coefficients α1, . . . , αN ∈ R such that the residual ρ becomes
small in some sense. In the method of weighted residuals, a space Th of test functions with
dimension N is chosen. We demand that the residual ρ is orthogonal to the space Th with
respect to the inner product of L2, i.e.,

〈Luh − f, v〉L2 = 0 for all v ∈ Th.

Selecting a basis {ψ1, . . . , ψN} of Th, this property can be written as
∫

Ω

ψj(x) · ρ(x) dx = 0 or 〈ρ, ψj〉L2 = 0 for j = 1, . . . , N.
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This expression can be seen as weighted integrals of the residual ρ, where the functions ψj

represent the weights. It follows the linear system

N∑
i=1

αi〈Lφi, ψj〉L2 = 〈f, ψj〉L2 for j = 1, . . . , N

for the unknown coefficients. In the special case Sh = Th and choosing the same basis in

each space, it follows the Galerkin method.

Remark: A significant advantage of the Galerkin method is that the matrix
of the linear system is symmetric and positive definite for an arbitrary
domain Ω. Hence iterative solvers can be applied efficiently. In the finite
difference method, see Sect. 2.2, the matrix of the linear system is symmetric
and positive definite in case of the unit square (Ω = (0, 1)2). The matrix
becomes unsymmetric for other domains like the unit disc, for example.

Concerning the stability of the Ritz-Galerkin method, we obtain the follow-
ing result.

Theorem 11 (stability) Let a : Hm
0 (Ω) × Hm

0 (Ω) → R be a symmetric,
continuous and Hm

0 (Ω)-elliptic bilinear form. Let ` : Hm
0 (Ω) → R be a

linear, continuous mapping. Then the solution of the Ritz-Galerkin method
satisfies

‖uh‖Hm ≤ 1
α‖`‖. (2.32)

independent of the choice Sh ⊂ Hm
0 (Ω).

Proof:

Since ` is continuous, it holds |`(v)| ≤ ‖`‖ · ‖v‖Hm. The Hm
0 (Ω)-ellipticity

yields
0 ≤ α‖uh‖2

Hm ≤ a(uh, uh) = 〈`, uh〉 ≤ ‖`‖ · ‖uh‖Hm.

For uh = 0, the inequality (2.32) is trivial. For uh 6= 0, we divide by ‖uh‖Hm

and obtain (2.32). ¤
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The stability implies the Lipschitz-continuous dependence of the approximation on the
input data. For example, we consider a perturbation in the right-hand side f . It holds
‖`‖ ≤ ‖f‖L2 . Consider two right-hand sides f1, f2 with corresponding weak solutions u1, u2.
The difference u1−u2 is a weak solution for the right-hand side f1−f2. The approximations
following from the Galerkin method satisfy according to (2.32)

‖u1
h − u2

h‖Hm ≤ 1

α
‖f1 − f2‖L2

due to the linearity. This estimate is independent of the choice of Sh, i.e., it is uniform

in h > 0 for a discretisation step size to be defined later.

Concerning the quality of the approximation resulting from the Ritz-Galer-
kin method, the following important theorem holds.

Theorem 12 (Lemma of Céa) Let H be a Hilbert space, l : H → R be
a linear continuous form and a : H × H → R be a bilinear form, which
is symmetric, continuous and H-elliptic. Then the function u defined by
a(u, v) = 〈l, v〉 for all v ∈ H and the approximation uh of the corresponding
Ritz-Galerkin method using some Sh ⊂ H satisfy the estimate

‖u− uh‖ ≤ C

α
inf

vh∈Sh

‖u− vh‖. (2.33)

Proof:

It holds

a(u, v) = 〈`, v〉 for v ∈ H, a(uh, v) = 〈`, v〉 for v ∈ Sh ⊂ H.

By subtraction, we obtain

a(u− uh, v) = 0 for all v ∈ Sh.

For an arbitrary vh ∈ Sh, we conclude

α‖u− uh‖2 ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh)

= a(u− uh, u− vh)

≤ C · ‖u− uh‖ · ‖u− vh‖
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due to vh − uh ∈ Sh. Dividing this inequality by ‖u− uh‖ 6= 0 yields

‖u− uh‖ ≤ C

α
‖u− vh‖.

Since vh ∈ Sh is arbitrary, it follows the relation (2.33). ¤

Theorem 12 implies already the convergence of the Galerkin method pro-
vided that

lim
h→0

inf
vh∈Sh

‖u− vh‖ = 0.

Hence the subspaces have to be chosen such that the distance to the ex-
act solution decreases. However, this is more a question in approximation
theory in our case H = H1

0(Ω). We apply the Ritz-Galerkin method in the
following. It remains to choose the spaces Sh appropriately.

In a finite difference method, the matrix of a linear system is typically sparse
or even a band matrix. Thus the computational effort is significantly lower
than in case of a dense matrix with the same size. We want to achieve also
a sparse matrix or a band matrix in the Ritz-Galerkin method. We apply
spaces Sh consisting of piecewise polynomial functions. However, it turns
out that the matrix will be sparse just for specific choices of basis functions.

Let supp(φ) := {x ∈ Ω : φ(x) 6= 0}. The bilinear form (2.21) satifies

a(φ, ψ) = 0 if µ(supp(φ) ∩ supp(ψ)) = 0

with the Lebesgue measure µ, since the bilinear form represents an integral
in Ω. Hence we will construct a basis such that the supports of the basis
functions overlap only rarely. Of course, it should still hold

N⋃
j=1

supp(φj) = Ω̄

for a basis {φ1, . . . , φN}. The domain Ω will be decomposed into smaller
subdomains for the construction of the space Sh as well as the choice of the
basis functions.

54



Triangulations

We consider the two-dimensional case (n = 2). Let Ω ⊂ R2 be an open
polygonal domain. Hence we can divide the domain Ω into triangles.

Definition 12 (triangulation) Let Ω ⊂ R2 be a domain with a polygonal
boundary. A set T = {T1, . . . , TQ}, where the Tj are non-empty closed
triangles, is an admissible triangulation if it holds

(i) Ω̄ =

Q⋃
j=1

Tj,

(ii) int(Ti) ∩ int(Tj) = ∅ for i 6= j (int: interior),

(iii) Ti ∩ Tj for i 6= j is either an empty set or a corner of both triangles or
a complete edge of both triangles.

For each T ∈ T , we define

hT := 1
2diam(T ) = 1

2 max{‖x− y‖2 : x, y ∈ T}
(diam: diameter). For a triangulation T , the (global) step size reads

h := max{hT : T ∈ Th}.
Each triangle T contains a (maximal) circle of radius ρT . Given a family Th

of triangulations for 0 < h < h0, we assume max{hT : T ∈ Th} ≤ h. A
family Th of triangulations is called uniform, if a constant κ > 0 exists such
that ρT ≥ h

κ for all T . The family Th is called quasi-uniform, if ρT ≥ hT

κ

for each T . Remark that it always holds ρT ≤ hT ≤ h. Both properties ex-
clude that the angles of the triangles become arbitrarily small. For uniform
triangulations, the size of the triangles is similar for fixed h.

Given an arbitray open and bounded domain Ω ⊂ R2, the boundary is
approximated by a polygon first. Then the triangulation is applied to the
polygonal domain. For Ω ⊂ R2, also quadrangles can be used to decompose
the domain. However, triangulations allow for more flexibility.
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Basis functions

We consider an admissible triangulation Th of an open and polygonal do-
main Ω ⊂ R2. We define finite-dimensional function spaces Sh consisting of
all functions v : Ω̄ → R satisfying the properties

(i) v ∈ Ck(Ω̄) for some k ≥ 0,

(ii) v|∂Ω = 0,

(iii) v|T is a polynomial of degree (at most) l ≥ 1 for each T ∈ Th.

Thereby, the choice of the integers k, l is independent of h > 0.

Hence piecewise polynomial functions appear. We apply the case k = 0
(globally continuous functions) and l = 1 (piecewise linear functions). It
holds

v|T = αT + βTx + γTy for each T ∈ Th

with coefficients αT , βT , γT ∈ R.

Let R = {(xi, yi) : i = 1, . . . , N} be the set of inner nodes, i.e., the corners
of the triangles inside Ω. Let ∂R = {(xi, yi) : i = N + 1, . . . , N + K} be the
set of boundary nodes, i.e., the corners of the triangles on ∂Ω. We define
piecewise linear basis function φi via

φi(xj, yj) =

{
1 if i = j
0 if i 6= j

(2.34)

for i = 1, . . . , N and j = 1, . . . , N + K. It holds dim(Sh) = N .

We have to evaluate the bilinear form (2.21), which can be decomposed into

a(φi, φj) =

∫

Ω

2∑

k,l=1

akl
∂φi

∂xk

∂φj

∂xl
+ a0φiφj dx

=
∑

T∈Th

∫

T

2∑

k,l=1

akl
∂φi

∂xk

∂φj

∂xl
+ a0φiφj dx
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for i, j = 1, . . . , N . Likewise, the information of the right-hand side is
evaluated via

〈`, φi〉 =

∫

Ω
f(x)φi(x) dx =

∑

T∈Th

∫

T

f(x)φi(x) dx

for i = 1, . . . , N .

In the case Ω ⊂ Rn, the general definition of finite elements following Ciarlet
is given now.

Definition 13 (finite elements)
A finite element is a triple (T, Π, Σ) with the properties:

(i) T ⊂ Rn is a polyhedron (it follows that T is bounded),

(ii) Π ⊂ C0(T ) is a linear space of finite dimension s,

(iii) Σ is a set of s linear independent mappings σ : Π → R, which define
each π ∈ Π uniquely (generalised interpolation).

Sometimes, just the subdomains T ⊂ Ω are called the finite elements. In
case of Ω ⊂ R2, a triangulation implies a corresponding set of finite ele-
ments, where T is a triangle.

Benchmark problem

Given a uniform grid in the square Ω = (0, 1) × (0, 1), cf. Figure 2, it is
straightforward to generate a triangulation, see Figure 6. The defined step
size h is not half of the diameter in this case. We consider the Poisson
equation −∆u = f with homogeneous Dirichlet boundary conditions. The
corresponding bilinear form is given in (2.28).

We apply the piecewise linear basis functions (2.34). For φi, let Z = (xi, yi)
be the central node. The neighbouring nodes are labelled as shown in
Figure 7 (left). We calculate the stiffness matrix Ah = (a(φi, φj)) in the
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Figure 6: Uniform grid with corresponding triangulation.

Ritz-Galerkin method. Considering (2.28), it follows

a(φZ , φZ) =

∫

Ω
(∇φZ)2 dxdy = 2

∫

I,III,IV

(
∂φZ

∂x

)2

+

(
∂φZ

∂y

)2

dxdy

= 2

∫

I,III

(
∂φZ

∂x

)2

dxdy + 2

∫

I,IV

(
∂φZ

∂y

)2

dxdy

=
2

h2

∫

I,III
dxdy +

2

h2

∫

I,IV
dxdy =

2

h2 · 4 ·
h2

2
= 4

due to the values of the first derivative, see Figure 7 (right). Furthoremore,
we obtain

a(φZ , φN) =

∫

Ω
(∇φZ) · (∇φN) dxdy

=

∫

I,IV

∂φZ

∂x

∂φN

∂x
+

∂φZ

∂y

∂φN

∂y
dxdy

=

∫

I,IV

(
−1

h

)
1

h
dxdy = − 1

h2

∫

I,IV
dxdy

= − 1

h2 · 2 ·
h2

2
= −1
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Figure 7: Basic cell in benchmark problem.

and due to a symmetry also a(φZ , φS) = a(φZ , φW ) = a(φZ , φE) = −1. It is
straightforward to verify

a(φZ , φNW ) = a(φZ , φNE) = a(φZ , φSW ) = a(φZ , φSE) = 0

by observing the supports of the basis functions.

For the right-hand side, we apply an approximation

〈`, φi〉 =

∫

Ω
f(x, y)φi(x, y) dxdy

.
= h2f(xi, yi),

since it holds f(xj, yj)φi(xj, yj) = f(xi, yi)δij for all j and
∫

Ω
φi(x, y) dxdy = h2.

It follows just the five-point star from the finite difference method, cf. (2.9).
Each finite difference method corresponds to some finite element method.
However, not each finite element method is equivalent to a finite difference
method. Hence finite element techniques allow for more flexibility.

Computation of stiffness matrix

We outline the efficient computation of the stiffness matrix in the Ritz-
Galerkin method, where a general admissible triangulation is considered,
see Def. 12. The structure of Ah = (a(φi, φj)) ∈ RN×N suggests to use
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a loop over the inner nodes i = 1, . . . , N to evaluate the bilinear form
(node-oriented form). However, it can be shown that this procedure is
inefficient. Alternatively, the loop is arranged over the triangles (element-
oriented form).

We consider a polygonal domain Ω ⊂ R2 with an arbitrary admissible
triangulation Th = {T1, . . . , TQ}. The Poisson equation −∆u = f with
homogeneous Dirichlet boundary conditions is used as benchmark again.
The corresponding bilinear form, cf. (2.28),

aµν := a(φµ, φν) =

∫

Ω

∂φµ

∂x

∂φν

∂x
+

∂φµ

∂y

∂φν

∂y
dxdy

=

Q∑
q=1

∫

Tq

∂φµ

∂x

∂φν

∂x
+

∂φµ

∂y

∂φν

∂y
dxdy

has to be evaluated for µ, ν = 1, . . . , N . We define

aq
µν :=

∫

Tq

∂φµ

∂x

∂φν

∂x
+

∂φµ

∂y

∂φν

∂y
dxdy. (2.35)

It follows for Ah ∈ RN×N .

aµν =

Q∑
q=1

aq
µν and Ah =

Q∑
q=1

Aq
h with Aq

h := (aq
µν).

Let i, j, k be the index of the corners of the triangle Tq. Hence just φi, φj, φk

are non-zero in Tq and give a contribution to the integral over Tq. We obtain
the structure

Aq
h =




...
...

...
· · · aq

ii · · · aq
ij · · · aq

ik · · ·
...

...
...

· · · aq
ji · · · aq

jj · · · aq
jk · · ·

...
...

...
· · · aq

ki · · · aq
kj · · · aq

kk · · ·
...

...
...




∈ RM×M ,
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Figure 8: Transformation to reference triangle.

where (at most) nine entries are non-zero. The matrix can be written in
condensed form

Ãq
h =




aq
ii aq

ij aq
ik

aq
ji aq

jj aq
jk

aq
ki aq

kj aq
kk


 ∈ R3×3. (2.36)

To compute (2.35), we transform each triangle Tq to a reference triangle
T̂ = {(ξ, η) ∈ R2 : 0 ≤ ξ, η, ξ + η ≤ 1}, see Figure 8. It follows the formula

Ãq
h =

1

4|Tq|EqE
>
q with Eq :=




yj − yk xk − xj

yk − yi xi − xk

yi − yj xj − xi


 ,

where |Tq| represents the area of the triangle. Recall that the indices i, j, k

depend on q. Thus the entries of Ah follow directly from the coordinates of
the corners of the triangles.

If one corner of Tq does not belong to the inner nodes but to the boundary,
say index i, then a corresponding basis function φi is not defined. It follows
that the first row as well as the first column in (2.36) are omitted. Accord-
ingly, two rows and two columns are deleted if two corners are situated on
the boundary. This strategy is in agreement to the homogeneous boundary
conditions.

The matrix Ah ∈ RN×N includes N 2 entries. Since Ah is the sum of Aq
h for

q = 1, . . . , Q, we obtain a rough estimate of the non-zero entries in Ah: at
most 9Q entries are non-zero.

61



Approximations of higher order

In the previous subsections, we applied piecewise linear polynomials corre-
sponding to a triangulation Th = {T1, . . . , TQ} of a polygonal domain Ω.
We are able to construct piecewise polynomials of higher degrees. Let Pl

be the set of all polynomials up to degree l, i.e.,

Pl :=



p(x, y) =

∑

i,j≥0,i+j≤l

cijx
iyj



 .

It holds dim(Pl) = (l+1)(l+2)
2 , which is also the number of coefficients cij.

On each triangle T ∈ Th, we choose (l+1)(l+2)
2 points zs = (xs, ys) for an

interpolation. Figure 9 illustrates the construction of the points within the
reference triangle T̂ . It follows a unique interpolation operator

IT : C0(T ) → Pl, (ITu)(zs) = u(zs) for s = 1, . . . , (l+1)(l+2)
2 .

We obtain a global interpolation operator

Ih : C0(Ω̄) → C0(Ω̄), Ih|T = IT .

Hence Ihu is a piecewise polynomial of degree up to l for u ∈ C0(Ω̄). More-
over, Ihu is a globally continuous function. The restiction of the polyno-
mial ITu to the edge of the triangle T represents a univariate polynomial
of (at most) degree l. Since each edge includes l + 1 nodes, the univariate
polynomials on the boundary of two neighbouring triangles coincide.

We want to apply the Sobolev spaces Hm(Ω). The theorem of Sobolev
implies Hm(Ω) ⊂ C0(Ω) for m ≥ 2, i.e., each u ∈ Hm(Ω) exhibits a con-
tinuous representative. It follows that the interpolation operator can be
extended to an operator Ih : Hm

0 (Ω) → C0(Ω̄) provided that m ≥ 2. We
demand (Ihu)(zs) = 0 for a node zs ∈ ∂Ω due to the homogeneous boundary
conditions.

If the degree l of the piecewise polynomial functions is sufficiently large,
then also global interpolants Ihu ∈ Ck(Ω̄) for k ≥ 1 can be defined. How-
ever, the construction becomes much more complicated. The choice of the
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Figure 9: Nodes for linear (left), quadratic (center) and cubic (right) polynomial interpo-
lation in the reference triangle.

interpolation is related to the selection of the finite-dimensional spaces Sh

in the Ritz-Galerkin method.

Remark: On a triangulation, we already obtain functions globally Ck(Ω̄)
for arbitrary k ≥ 0 provided that the degree l of the local polynomials is
sufficiently large. Thus we do not require more complicated subdomains
of Ω to achieve an approximation of higher order.

Convergence of finite element method

We consider the finite element method for the general problem Lu = f

with a uniformly elliptic differential operator and homogeneous Dirichlet
boundary conditions in a polygonal domain Ω ⊂ R2. Let an admissible
triangulation Th = {T1, . . . , TQ} be given. The convergence of the method
follows from Theorem 12, where we have to discuss approximations resulting
from interpolation schemes.

A finite element method based on the triangulation Th applies a space

Sh :=
{
v ∈ C0(Ω̄) : v|∂Ω = 0, v|T ∈ Pl for each T ∈ Th

}
. (2.37)

We apply the global interpolation operator

Ih : Hm
0 (Ω) → C0(Ω̄), Ihu|T ∈ Pl for each T ∈ Th

assuming m ≥ 2, which has been introduced in the previous subsection. It
holds Ihu ∈ Sh for u ∈ Hm

0 (Ω).
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We define the norm

‖v‖m,h :=

√∑

T∈Th

‖v‖2
Hm(T )

for functions v : Ω → R satisfying v|T ∈ Hm(T ) for each T ∈ Th. The
functions vh ∈ Sh from (2.37) exhibit this property. Remark that v ∈ Ck(Ω̄)
implies just v ∈ Hk+1(Ω) even for piecewise polynomial functions v. It holds
‖v‖m,h = ‖v‖Hm for v ∈ Hm(Ω). However, the subspace (2.37) fulfills just
Sh ⊂ H1

0(Ω).

The following theorem holds for general functions, i.e., they are not neces-
sarily the solution of some PDE.

Theorem 13 Let t ≥ 2 and Th be a quasi-uniform triangulation of Ω. The
corresponding interpolation by piecewise polynomials of degree t−1 satisfies

‖u− Ihu‖m,h ≤ c · ht−m · |u|Ht for u ∈ H t(Ω)

and 0 ≤ m ≤ t. The constant c ≥ 0 depends on Ω, the constant κ of the
quasi-uniform triangulation Th and the integer t.

For the proof, see D. Braess: Finite Elements.

Since the weak solution of our elliptic PDE is defined in H1
0(Ω), we apply

the case m = 1 only. Thereby, Ihu ∈ H1
0(Ω) is guaranteed. We assume that

the unique weak solution satisfies u ∈ H t
0(Ω) ⊂ H1

0(Ω) for some t ≥ 2. Now
we achieve the convergence by means of Theorem 12. Due to Ihu ∈ Sh, it
holds

inf
vh∈Sh

‖u− vh‖H1 ≤ ‖u− Ihu‖H1 ≤ c · ht−1 · |u|Ht.

We conclude the convergence of order p ≥ 1 for the approximation uh ∈ Sh

resulting from the Ritz-Galerkin approach in the norm of H1(Ω) due to

‖u− uh‖H1 ≤ K · hp · |u|Hp+1 for u ∈ Hp+1(Ω) (2.38)

with K := Cc
α depending on p. For t = 2, piecewise linear polynomials

are applied. For t > 2, we can achieve higher orders of convergence just by
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choosing polynomials of higher degrees in each triangle. The approximation
uh is still just continuous globally.

Due to (2.38), we require at least u ∈ H2(Ω) to obtain convergence of order
p ≥ 1. It can be shown that the weak solution satisfies u ∈ H2(Ω) provided
that f ∈ L2(Ω) holds and the domain Ω satisfies some basic assumptions.

Theorem 13 also yields an estimate corresponding to the norm of L2(Ω),
i.e., in the case of m = 0. We expect a convergence of order t in the
norm of L2(Ω). Unfortunately, Theorem 12 cannot be applied in this case,
since the underlying bilinear form is not continuous with respect to the
norm of L2(Ω). Nevertheless, the strategy of Aubin and Nitsche yields the
estimates

‖u− uh‖L2 ≤ K̃ · hp+1 · |u|Hp+1 for u ∈ Hp+1(Ω)

with constants K̃ > 0 depending on p.

For some problems, a uniform convergence can be shown like

sup
x∈Ω

|u(x)− uh(x)| ≤ c · h · ‖f‖L2

with a constant c > 0. Such estimates correspond to the space L∞(Ω).

We have shown the convergence in a Sobolev norm or the L2-norm, respec-
tively. Further estimates can be construced in the energy norm ‖ · ‖a.
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Chapter 3

Parabolic PDEs

3

Now we consider parabolic PDEs, which are time-dependent problems. The
heat equation represents the benchmark for this class of PDEs. Numerical
methods for initial-boundary value problems of parabolic PDEs will be de-
rived and analysed.

3.1 Initial-boundary value problems

Time-dependent parabolic PDEs often exhibit the form

∂u

∂t
+ Lu = f(x1, . . . , xn)

with solution u : D × [t0, tend] → R using some domain D ⊆ Rn in space.
The linear differential operator L includes second-order derivatives of u with
respect to space (no derivatives in time) and is often of elliptic type. We
restrict to one space dimension (n = 1) in this chapter.

The heat equation reads
∂v

∂t
= λ(x)

∂2v

∂x2 (3.1)

with a coefficient function λ : D → R (D ⊆ R) and λ(x) > 0 for each x.
Without loss of generality, we choose λ(x) ≡ 1, i.e.,

∂u

∂t
=

∂2u

∂x2 . (3.2)
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Figure 10: Initial-boundary value problem.

Given a solution u of (3.2), we obtain a solution of (3.1) for constant λ via
the transformation v(x, t) = u(x, λt).

We choose a finite interval [a, b] in space (a < b). Boundary conditions
(BCs) will be specified at x = a and x = b. Initial conditions (ICs) will be
given in the form

u(x, t0) = u0(x) for x ∈ [a, b] (3.3)

with a predetermined function u0 : [a, b] → R. Without loss of generality, we
define t0 := 0. The initial-boundary value problem is sketched in Figure 10.

We distinguish three different types of boundary value problems:

(i) Boundary conditions of Dirichlet type read

u(a, t) = α(t), u(b, t) = β(t) for all t ≥ 0 (3.4)

with predetermined functions α, β : [0,∞) → R.

(ii) Boundary conditions of von-Neumann type demand

∂u

∂x

∣∣∣∣
x=a

= α(t),
∂u

∂x

∣∣∣∣
x=b

= β(t) for all t ≥ 0 (3.5)

with predetermined functions α, β : [0,∞) → R.
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(iii) Boundary problems of Robin type, i.e., a mixed problem of the types (i)
and (ii), namely

γa(t)u(a, t) + δa(t)
∂u

∂x

∣∣∣∣
x=a

= α(t), γb(t)u(b, t) + δb(t)
∂u

∂x

∣∣∣∣
x=b

= β(t)

for all t ≥ 0 with predetermined functions α, β, γa, γb, δa, δb.

The initial values (3.3) have to be compatible with the boundary conditions.
For example, u0(a) = α(0) and u0(b) = β(0) is required in case of Dirichlet
boundary conditions.

Let u be a solution of (3.2) according to homogeneous Dirichlet boundary
conditions (α, β ≡ 0). The function

û(x) := b−x
b−aα + x−a

b−aβ

satisfies the inhomogeneous boundary conditions (3.4) for constant values
α, β 6= 0. It follows that v := u + û is a solution of (3.2), which fulfills
the inhomogeneous Dirichlet problem. Hence we consider homogeneous
Dirichlet conditions without loss of generality.

We solve the heat equation (3.2) with homogeneous Dirichlet boundary
conditions analytically for a = 0, b = 1. We assume a separation

u(x, t) = φ(t)ψ(x).

Inserting this relation into (3.2) gives

φ′(t)ψ(x) = φ(t)ψ′′(x) ⇔ φ′(t)
φ(t)

=
ψ′′(x)

ψ(x)
=: κ.

Thereby, κ ∈ R represents the separation constant. Solving the two ordi-
nary differential equations

φ′(t) = κφ(t), ψ′′(x) = κψ(x)

yields
φ(t) = Ceκt, ψ(x) = Ae

√
κx + Be−

√
κx.

68



We obtain the general solution

u(x, t) = eκt
[
Ãe

√
κx + B̃e−

√
κx

]

with arbitrary constants Ã, B̃ ∈ C. The homogeneous boundary conditions
are satisfied if and only if

κ = −k2π2 for k = 1, 2, 3, . . . .

It follows the family of solutions

vk(x, t) = Ãke
−k2π2t sin(kπx)

for k ∈ N with new coefficients Ãk ∈ R. We use these solutions to construct
a single solution satisfying the predetermined initial conditions (3.3). It
holds u0(0) = u0(1) = 0 due to the homogeneous boundary conditions. We
can extend the function u0 to an odd function û : [−1, 1] → R by the
definition û(x) = u0(x) for x ≥ 0 and û(x) = −u0(−x) for x < 0. Assuming
u0 ∈ L2([0, 1]), it exists the Fourier expansion

u0(x) =
∞∑

k=1

ak sin(kπx).

It follows Ãk = ak. Thus the solution of the initial-boundary value problem
reads

u(x, t) =
∞∑

k=1

ake
−k2π2t sin(kπx). (3.6)

However, to evaluate the formula (3.6), the series has to be truncated and
the Fourier coefficients ak have to be computed numerically.

The formula (3.6) also characterises the condition of the initial-boundary
value problem. Let u0, ũ0 ∈ L2([0, 1]) be two initial conditions with corre-
sponding Fourier coefficients ak and ãk, respectively. The resulting solutions
satisfy

u(x, t)− ũ(x, t) =
∞∑

k=1

(ak − ãk)e
−k2π2t sin(kπx).
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Hence we obtain

|u(x, t)− ũ(x, t)| ≤
∞∑

k=1

|ak − ãk| · e−k2π2t.

The Cauchy-Schwarz inequality in `2 and Parseval’s theorem yield

∞∑

k=1

|ak − ãk| · e−k2π2t ≤
√√√√

∞∑

k=1

|ak − ãk|2
√√√√

∞∑

k=1

|e−k2π2t|2

= ‖u0 − ũ0‖L2([0,1])

√√√√
∞∑

k=1

e−2k2π2t.

Thereby, we employ that the extensions û, ˆ̃u of u0, ũ0 exhibit the period 2
in Parseval’s theorem and that ‖û − ˆ̃u‖2

L2([−1,1]) = 2‖u0 − ũ0‖2
L2([0,1]) due to

the symmetry.

We apply the formula of the limit of a geometric series
∞∑

k=1

e−2k2π2t =
∞∑

k=1

(
e−2π2t

)k2

<
1

1− e−2π2t
− 1 =

e−2π2t

1− e−2π2t
.

It follows

|u(x, t)− ũ(x, t)| ≤ ‖u0 − ũ0‖L2([0,1])
e−π2t

√
1− e−2π2t

for all x ∈ [0, 1] and t > 0. Hence differences in the initial values are damped
out exponentially in time. The condition of this initial-boundary value prob-
lem is excellent. Vice versa, an initial-boundary value problem backwards
in time (from t0 = 0 to some tend < 0) is drastically ill-conditioned, since
small differences are amplified exponentially.

For the heat equation (3.1), the condition of initial-boundary value problems
depends on the constant λ ∈ R\{0} as follows:

forward in time backward in time

λ > 0: well-conditioned ill-conditioned
λ < 0: ill-conditioned well-conditioned
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Initial value problems backwards in time are also called final value problems
(the values at the earlier time tend < 0 are unknown, whereas the state at
the final time t0 = 0 is given).

We achieve a solution of an initial value problem in the case x ∈ (−∞, +∞),
where no boundary appears. It follows

u(x, t) =
1

2
√

πt

∫ +∞

−∞
e−

(x−y)2

4t u0(y) dy. (3.7)

The integrals exist for a bounded measurable function u0 or in the case
of u0 ∈ L2(R), for example. Otherwise, integrability conditions have to
be imposed. The formula (3.7) cannot be evaluated at t = 0. The initial
conditions are satisfied in the sense

lim
t→0+

u(x, t) = u0(x) for each x ∈ R.

Moreover, this convergence is uniform in compact domains D ⊂ R.

Let u0 be continuous, u0 ≥ 0 and u0 6≡ 0. Even if u0 exhibits a compact
support, it follows u(x, t) > 0 for all x ∈ R and each t > 0. Hence the
transport of information proceeds with infinite speed. This also holds in
case of initial-boundary value problems within a finite domain x ∈ [a, b].
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Figure 11: Grid in finite difference method.

3.2 Finite difference methods

We want to apply a finite difference method to solve the initial-boundary
value problem of the heat equation (3.2) introduced in Sect. 3.1. A grid is
constructed in the (x, t)-domain for x ∈ [a, b] and t ∈ [0, T ], see Figure 11.
Without loss of generality, we assume x ∈ [0, 1]. The grid points are defined
by

xj := jh for j = 0, 1, . . . , M − 1,M, h := 1
M ,

tn := nk for n = 0, 1, . . . , N − 1, N, k := T
N .

The corresponding step sizes are h = ∆x and k = ∆t in space and time,
respectively. Let un

j := u(xj, tn) be the values of the exact solution and Un
j

the corresponding approximations in the grid points. We replace the partial
derivatives in the heat equation (3.2) by difference formulas now.
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Classical explicit method

We substitute the time derivative by the common difference formula of first
order and the space derivative by the symmetric difference formula of second
order, i.e.,

ut(xj, tn) = 1
k(u(xj, tn+1)− u(xj, tn)) + k

2utt(xj, tn + ϑk)

uxx(xj, tn) = 1
h2 (u(xj−1, tn)− 2u(xj, tn) + u(xj+1, tn))

+ h2

12uxxxx(xj + θh, tn)

with intermediate values ϑ ∈ (0, 1), θ ∈ (−1, 1). Thereby, we assume that
u is sufficiently smooth. The heat equation yields ut(xj, tn) = uxx(xj, tn).
It follows

1
k(un+1

j − un
j ) +O(k) = 1

h2 (u
n
j−1 − 2un

j + un
j+1) +O(h2).

Thus the finite difference method reads
1
k(Un

j+1 − Un
j ) = 1

h2 (U
n
j−1 − 2Un

j + Un
j+1),

Un+1
j = Un

j + k
h2 (U

n
j−1 − 2Un

j + Un
j+1).

We define the ratio r := k
h2 . The formula of the technique becomes

Un+1
j = rUn

j−1 + (1− 2r)Un
j + rUn

j+1 (3.8)

for j = 1, . . . ,M − 1. The scheme is an explicit (one-stage) method.
The time layers can be calculated subsequently. The initial values follow
from (3.3), i.e.,

U0
j = u0(xj) for j = 0, 1, . . . , M.

In the subsequent layers, the boundary conditions have to be included.
Dirichlet boundary conditions yield

Un
0 = α(tn), Un

M = β(tn) for each n.

Von-Neumann boundary conditions will be discussed later.

The local discretisation error reads

τ(k, h) := k
2utt(xj, tn + ϑk)− h2

12uxxxx(xj + θh, tn).
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We assume that utt and uxxxx exist and are continuous on [0, 1]× [0, T ]. Let

C1 := max
x∈[0,1],t∈[0,T ]

|utt(x, t)| , C2 := max
x∈[0,1],t∈[0,T ]

|uxxxx(x, t)| .

It follows

|τ(k, h)| ≤ (k + h2)(max{1
2C1,

1
12C2}) =: C(k + h2) (3.9)

uniformly for all grid points (xj, tn) in [0, 1] × [0, T ]. Hence the finite dif-
ference method is consistent. For k, h → 0, the local discretisation error
converges uniformly to zero. We obtain consistency of order one in time
and consistency of order two in space.

Classical implicit method

Now the same difference formulas are applied with respect to the point
(xj, tn+1) and the discretisation in time is done backwards, i.e.,

ut(xj, tn+1) = 1
k(u(xj, tn+1)− u(xj, tn)) + k

2utt(xj, tn + ϑk)

uxx(xj, tn+1) = 1
h2 (u(xj−1, tn+1)− 2u(xj, tn+1) + u(xj+1, tn+1))

+ h2

12uxxxx(xj + θh, tn+1)

with intermediate values ϑ ∈ (−1, 0), θ ∈ (−1, 1). The heat equation yields
ut(xj, tn+1) = uxx(xj, tn+1). We obtain

1
k(Un+1

j − Un
j ) = 1

h2 (U
n+1
j−1 − 2Un+1

j + Un+1
j+1 ).

It follows the method (using r := k
h2 again)

−rUn+1
j−1 + (1 + 2r)Un+1

j − rUn+1
j+1 = Un

j (3.10)

for j = 1, . . . , M−1. The scheme represents an implicit (one-stage) method.
To compute the approximations, a linear system has to be solved in each
time step. The corresponding matrix reads

B := r




2 + 1
r −1

−1 2 + 1
r −1

. . . . . . . . .

−1 2 + 1
r −1

−1 2 + 1
r



∈ R(M−1)×(M−1). (3.11)
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The matrix is symmetric and tridiagonal. Moreover, the matrix is strict
diagonal dominant. An LU -decomposition can be done without pivoting,
where the computational effort is ∼ M .

We arrange the approximations in the vector

Un := (Un
1 , Un

2 , . . . , Un
M−2, U

n
M−1)

> ∈ RM−1.

Inhomogeneous Dirichlet boundary conditions have to be included in the
right-hand side via

bn :=
(
rUn+1

0 , 0, . . . , 0, rUn+1
M

)> ∈ RM−1.

It follows the linear system BUn+1 = Un + bn. For homogeneous Dirichlet
boundary conditions, we obtain simply BUn+1 = Un.

Leapfrog method

We want to achieve methods of higher order in time now. We apply the sym-
metric difference formula of second order for the first-order time derivative,
i.e.,

ut(xj, tn) = 1
2k(u(xj, tn+1)− u(xj, tn−1)) +O(k2)

uxx(xj, tn) = 1
h2 (u(xj−1, tn)− 2u(xj, tn) + u(xj+1, tn)) +O(h2).

Due to ut(xj, tn) = uxx(xj, tn), it follows the scheme

Un+1
j = Un−1

j + 2k
h2 (U

n
j−1 − 2Un

j + Un
j+1)

and with r := k
h2

Un+1
j = Un−1

j + 2r(Un
j−1 + Un

j+1)− 4rUn
j (3.12)

for j = 1, . . . , M − 1. We obtain an explicit (two-stage) method, which is
called the leapfrog method. The scheme is consistent of order two in both
time and space. However, the leapfrog method is unstable for all r > 0 as
we will show in the next section. Thus this technique is useless in practice.
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Crank-Nicolson method

We achieve a one-stage scheme of second order in both time and space via
the following construction using tn+ 1

2
:= tn + k

2

ut(xj, tn+ 1
2
) = 1

k(u(xj, tn+1)− u(xj, tn)) +O(k2)

uxx(xj, tn+ 1
2
) = 1

2(uxx(xj, tn) + uxx(xj, tn+1)) +O(k2)

= 1
2h2 (u(xj−1, tn)− 2u(xj, tn) + u(xj+1, tn)) +O(h2)

+ 1
2h2 (u(xj−1, tn+1)− 2u(xj, tn+1) + u(xj+1, tn+1)) +O(h2)

+O(k2).

We can see this discretisation as an averaging of the symmetric difference
formula in space. The heat equation ut(xj, tn+ 1

2
) = uxx(xj, tn+ 1

2
) implies

with r := k
h2

−rUn+1
j−1 + 2(1 + r)Un+1

j − rUn+1
j+1 = rUn

j−1 + 2(1− r)Un
j + rUn

j+1 (3.13)

for j = 1, . . . , M − 1. The technique represents an implicit (one-stage)
method called the Crank-Nicolson method. In each step, a linear system
has to be solved with the matrix

B := r




−2(1 + 1
r) 1

1 −2(1 + 1
r) 1

. . . . . . . . .

1 −2(1 + 1
r) 1

1 −2(1 + 1
r)




.

The matrix is again symmetric and strict diagonal dominant.

Although the Crank-Nicolson method is consistent of order two in space
and time, the computational effort is nearly the same as in the classical
implicit method (3.10), which is just of order one in time.
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Von-Neumann boundary conditions

In case of von-Neumann boundary conditions (3.5), the values Un
j are un-

known for j = 0,M a priori. Thus we have to add two equations in each
step of the finite difference method. For example, we apply simply the com-
mon difference formula of first order to discretise the derivatives in (3.5). It
follows

α(tn) = ∂u
∂x(x0, tn) = 1

h(u(x1, tn)− u(x0, tn)) +O(h)

β(tn) = ∂u
∂x(xM , tn) = 1

h(u(xM , tn)− u(xM−1, tn)) +O(h)

for each n. We obtain the two equations

Un
0 = Un

1 − α(tn)h, Un
M = Un

M−1 + β(tn)h,

which can be used to eliminate the unknowns Un
0 , Un

M in each time layer.
Consequently, the finite difference methods are applied as described above.

Source terms

The finite difference methods can be generalised directly to a heat equation

∂u

∂t
=

∂2u

∂x2 + f(x, t, u)

including a source term f . For example, the classical explicit method (3.8)
becomes

Un+1
j = rUn

j−1 + (1− 2r)Un
j + rUn

j+1 + kf(jh, nk, Un
j )

for j = 1, . . . ,M −1. Just a function evaluation of f is necessary to achieve
the approximation. In case of the classical implicit method (3.10), we obtain

−rUn+1
j−1 + (1 + 2r)Un+1

j − rUn+1
j+1 − kf(jh, (n + 1)k, Un+1

j ) = Un
j

for j = 1, . . . , M − 1. If the source term f depends nonlinearly on u, then
a nonlinear system has to be solved to obtain the approximations in each
time layer.
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3.3 Stability analysis

Now we investigate the stability of the finite difference methods. We analyse
the amplification (or damping) of errors in the initial values.

Direct estimation

Let un
j := u(xj, tn) be the values of the exact solution of the heat equa-

tion (3.2) and Un
j the approximations in the finite difference method. We

define the global errors
zn
j := un

j − Un
j .

Assuming that the boundary conditions are given exactly, it holds zn
j = 0

for j = 0,M . For the classical explicit method (3.8), we obtain

zn+1
j = rzn

j−1 + (1− 2r)zn
j + rzn

j+1 +O(k2 + kh2).

We assume r ≤ 1
2 now. It follows the estimate

|zn+1
j | ≤ r|zn

j−1|+ (1− 2r)|zn
j |+ r|zn

j+1|+ C(k2 + kh2)

with a constant C ≥ 0, see (3.9). We define

‖zn‖ := max
j=0,...,M

|zn
j |,

which represents the maximum error in each time step. It follows

‖zn+1‖ ≤ r‖zn‖+ (1− 2r)‖zn‖+ r‖zn‖+ C(k2 + kh2)

and thus
‖zn+1‖ ≤ ‖zn‖+ C(k2 + kh2).

We obtain successively due to nk ≤ T

‖zn‖ ≤ ‖z0‖+ nC(k2 + kh2) ≤ ‖z0‖+ CT (k + h2)

for all n = 1, . . . , N . If k, h → 0 and ‖z0‖ → 0, then the global error
converges to zero provided that r ≤ 1

2 holds.
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Matrix stability analysis

We analyse the classical implicit method (3.10) now. Let

Un := (Un
1 , . . . , Un

M−1)
>, zn := (zn

1 , . . . , zn
M−1)

>

be the approximations and the corresponding global errors, respectively.
We assume exact boundary conditions in the finite difference method again.
The global error satisfies the linear system

Bzn+1 = zn + kτn

with the matrix (3.11) and the local discretisation errors

τn := (τn
1 , . . . , τn

M−1)
>.

It holds τn
j = O(k + h2). Subsequently, we obtain

zn = (B−1)nz0 + k

n∑

i=1

(B−1)iτn−i. (3.14)

It holds B = I + rB̂ with the tridiagonal matrix

B̂ :=




2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2



∈ R(M−1)×(M−1).

Let λi for i = 1, . . . , M − 1 be the eigenvalues of B̂. The theorem of
Gerschgorin implies 0 ≤ λi ≤ 4. For the inverse matrix, it holds

B−1 =
(
I + rB̂

)−1
.

Let µi be the eigenvalues of the matrix B−1. It follows

µi =
1

1 + rλi
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for all i. Hence we obtain 0 < µi ≤ 1 for all i and all r > 0. Since the
matrix B−1 is symmetric, it follows ‖B−1‖2 = ρ(B−1) ≤ 1 (ρ: spectral
radius).

The formula (3.14) yields an estimate in the Euclidean norm, where we use
‖(B−1)n‖2 ≤ ‖B−1‖n

2

‖zn‖2 ≤ ‖B−1‖n
2 · ‖z0‖2 + k

n∑

i=1

‖B−1‖i
2 · ‖τn−i‖2

≤ ‖z0‖2 + k

n∑
i=1

‖τn−i‖2 ≤ ‖z0‖2 + nMC(k2 + kh2)

≤ ‖z0‖2 + CT (k
h + h) = ‖z0‖2 + CT (r + 1)h.

Hence the method is convergent for each constant r > 0 in case of h → 0.
Thereby, we assume ‖z0‖2 = O(h). Remark that it holds

‖z0‖2 ≤ M max
j=0,...,M

|z0
j | = 1

h max
j=0,...,M

|z0
j |.

The above derivation just implies convergence of order one in space and of
order 1

2 in time for constant ratio r. Nevertheless, estimates in other norms
can also be achieved, which confirm the convergence of order two in space
and of order one in time.

The case C = 0 (for example, choose u(x, t) ≡ 0) yields ‖zn‖2 ≤ ‖z0‖2 for
all n, which demonstrates that errors in the initial values do not increase
in time. It follows the stability of the finite difference method, since this
estimate is independent of the choice of k and h.

The stability alone can also be obtained as follows. Let initial values U0, V 0 be given. In the
classical implicit method, the corresponding approximations are defined by BUn+1 = Un

and BV n+1 = V n for homogeneous boundary conditions. Defining Zn := Un − V n, it
follows BZn+1 = Zn. We obtain

Zn = (B−1)nZ0 ⇒ ‖Zn‖2 ≤ ‖(B−1)n‖2 · ‖Z0‖2 ≤ ‖Z0‖2.

Thereby, the estimate is independent of the used step sizes, which determine the dimension

of the vectors. This relation indicates the stability of the finite difference method.
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Von-Neumann stability

Let λ ∈ R be an arbitrary constant. The functions

u(x, t) = eαteiλx (3.15)

satisfy the heat equation (3.2) provided that α = −λ2. In particular, it
holds α ≤ 0 for all λ, which corresponds to the stability of initial value
problems of the PDE. For initial values u0 ≡ 0, the solution of (3.2) is
just u ≡ 0. For perturbed initial values ũ0(x) = eiλx, the solution (3.15)
converges to original solution u ≡ 0. We consider pure initial value problems
with x ∈ (−∞, +∞) now, i.e., no boundaries appear.

Given a grid (xj, tn) = (jh, nk), we make an ansatz for the approximation
resulting from a finite difference method via

Un
j = eαtneiλxj = eαnkeiλjh (3.16)

with λ ∈ R and α ∈ C. At tn = 0, the initial values

U 0
j = eiλjh

represent harmonic oscillations, where the frequency is determined by the
constant λ ∈ R. We see these initial values as a perturbation of the initial
values u0(x) ≡ 0 again.

If λ ∈ R is given, then the corresponding α ∈ C satisfying (3.16) is deter-
mined by the finite difference method. We distinguish the following cases:

• Re(α) > 0 (⇔ |eαk| > 1): The initial perturbation U 0
j is amplified for

increasing time t > 0.

• Re(α) < 0 (⇔ |eαk| < 1): The initial perturbation U 0
j is damped for

increasing time t > 0.

• Re(α) = 0 (⇔ |eαk| = 1): The magnitude of the initial perturbation
U0

j remains constant in time.

The growth of the perturbations in dependence on the coefficients α moti-
vates the following definition.
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Definition 14 (von-Neumann stability) A finite difference method is
called stable with respect to the concept of von-Neumann, if Re(α) ≤ 0
holds for each λ ∈ R. The method is unstable, if Re(α) > 0 appears for
some λ ∈ R.

If the method is stable with respect to the criterion of von-Neumann, then
initial errors are not amplified in time. To analyse the von-Neumann sta-
bility, it is sufficient to check the term |eαk|.
For the classical explicit method (3.8), the ansatz (3.16) yields

eα(n+1)keiλjh = reαnkeiλ(j−1)h + (1− 2r)eαnkeiλjh + reαnkeiλ(j+1)h

Dividing by eαnkeiλjh implies

eαk = reiλ(−h) + 1− 2r + reiλh = 1− 2r + 2r cos(λh)

= 1 + 2r(cos(λh)− 1) ∈ [1− 4r, 1].

For r ≤ 1
2 , it holds −1 ≤ eαk ≤ 1 for all λ ∈ R. Hence the method is stable

for r ≤ 1
2 . For each r > 1

2 , a constant λ ∈ R exists such that |eαk| > 1. Thus
the method is unstable for r > 1

2 . Furthermore, it holds 0 ≤ eαk ≤ 1 for
r ≤ 1

4 . The criterion of von-Neumann is in agreement to the direct estimate
for the classical explicit method, where r ≤ 1

2 was assumed. Moreover,
instability is proved for r > 1

2 , which we were not able to show by direct
estimation.

For the classical implicit method (3.10), we apply the ansatz (3.16) and
obtain

−reα(n+1)keiλ(j−1)h + (1 + 2r)eα(n+1)keiλjh − reα(n+1)keiλ(j+1)h = eαnkeiλjh.

Dividing by eα(n+1)keiλjh yields

e−αk = −reiλ(−h) + 1 + 2r − reiλh = 1 + 2r(1− cos(λh))

and thus (using 1− cos(γ) = 2 sin2(γ
2))

eαk =
1

1 + 4r sin2 (
λh
2

) ∈ [0, 1].
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It follows that the classical implicit method is stable for all r > 0. This
criterion is in agreement to the matrix stability analysis applied to the
classical implicit method.

The leapfrog method (3.12) implies the equation

eα(n+1)keiλjh = eα(n−1)keiλjh + 2r(eαnkeiλ(j−1)h + eαnkeiλ(j+1)h)− 4reαnkeiλjh.

Dividing by eαnkeiλjh results in

eαk = e−αk + 2r(eiλ(−h) + eiλh)− 4r = e−αk + 4r(cos(λh)− 1).

It follows the quadratic equation (using 1− cos(γ) = 2 sin2(γ
2))

(
eαk

)2
+ 8r sin2 (

λh
2

)
eαk − 1 = 0. (3.17)

Let ξ := eαk and b := 8r sin2 (
λh
2

)
. The roots of the quadratic equation are

ξ1/2 = 1
2

[
−b±

√
b2 + 4

]
∈ R.

We deduce
ξ1 · ξ2 = 1

4

(
(−b)2 −

√
b2 + 4

2)
= −1.

It follows ξ1 6= ξ2, ξ1, ξ2 6= 0 and

|ξ1| = 1

|ξ2| , |ξ2| = 1

|ξ1| .

If |ξ1| < 1, then |ξ2| > 1 and vice versa. The case ξ1 = 1, ξ2 = −1 can be
excluded by inserting ξ1/2 in (3.17). Hence one root satisfies |eαk| > 1. The
leapfrog method is unstable for all r > 0.

Furthermore, it can be shown that the Crank-Nicolson method (3.13) is
stable for each r > 0. This criterion is in agreement to the matrix stability
analysis applied to the Crank-Nicolson scheme.

Remark: It can be shown again that the stability is necessary and sufficient
for the convergence in case of a consistent finite difference method.

83



Heat equation with coefficient

For the heat equation vt = λvxx with a constant λ > 0, the linear trans-
formation v(x, t) = u(x, λt) yields the standardised heat equation ut = uxx,
which has been discussed above. We consider a finite difference method.
Let r := k

h2 . If the stability implies a restriction like r ≤ c for some con-
stant c > 0 in case of ut = uxx, then it follows the condition r ≤ c

λ in case
of vt = λvxx. Hence a disadvantageous restriction occurs on the time step
size (k ≤ c

λh2) in case of large constants λ.

3.4 Semidiscretisation

The idea of semidiscretisation is to replace just one partial derivative in the
PDE by a difference formula. It follows a system of ordinary differential
equations (ODEs). Consequently, the system of ODEs can be solved by
standard numerical algorithms.

Method of lines

Let the heat equation
∂u

∂t
=

∂2u

∂x2 + f(x, t, u) (3.18)

be given including a source term f . We consider initial-boundary value
problems in the space domain x ∈ [0, 1]. Let Dirichlet boundary condi-
tions (3.4) be specified. We apply a discretisation in space using the grid
points xj = jh for j = 0, 1, . . . , M with h := 1

M . In the domain of de-
pendence, the sets {(xj, t) ∈ R2 : t ≥ 0} are called the lines. We de-
fine as approximations the time-dependent functions Uj(t)

.
= u(xj, t) for

j = 1, . . . , M − 1. Figure 12 illustrates this construction.

Now the derivative with respect to space in (3.18) is substituted by the
symmetric difference formula of second order. It follows

∂u
∂t (xj, t) = 1

h2

[
u(xj−1, t)− 2u(xj, t) + u(xj+1, t)

]
+ f(xj, t, u(xj, t)) +O(h2)

84



x0

t

BC BC

IC0 1

Figure 12: Method of lines.

for j = 1, . . . , M − 1. We rewrite these equations as a system of ODEs

U ′
j(t) = 1

h2

[
Uj−1(t)− 2Uj(t) + Uj+1(t)

]
+ f(xj, t, Uj(t)) (3.19)

for j = 1, . . . , M − 1. We define the abbreviations

B :=
1

h2




−2 1
1 −2 1

. . . . . . . . .

1 −2 1
1 −2



∈ R(M−1)×(M−1),

U(t) :=




U1(t)
...

UM−1(t)


, F (t, U) :=




f(x1, t, U1)
...

f(xM−1, t, UM−1)


, b(t) :=




α(t)/h2

0
...
0

β(t)/h2




.

Now the system of ODEs exhibits the compact form

U ′(t) = BU(t) + F (t, U(t)) + b(t). (3.20)
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The initial values follow from (3.3), i.e.,

U(0) = (U1(0), . . . , UM−1(0))> = (u0(x1), . . . , u0(xM−1))
>. (3.21)

If no source term appears in (3.18), then it follows F ≡ 0 and the system of
ODEs (3.20) is linear. The eigenvalues µl of the matrix B can be calculated
explicitly and it holds

µl = − 4
h2 sin2 (

π
2 lh

)
< 0 for l = 1, 2, . . . , M − 1.

The magnitude of the eigenvalues is

µmax ≈ −π2 (l = 1), µmin ≈ − 4

h2 (l = M − 1).

If h is small, then we obtain µmin ¿ µmax < 0. Hence the system of
ODEs (3.20) becomes stiff. Implicit methods are required to solve the initial
value problem of ODEs.

Now software packages for solving systems of ODEs can be applied for the
initial value problem (3.20),(3.21). The explicit Euler scheme and the im-
plicit Euler scheme yield the classical explicit method (3.8) and the classical
implicit method (3.10), respectively. More sophisticated integrators can be
applied like Runge-Kutta methods or multistep schemes.

Let Ũj(τi) be approximations of the exact solutions Uj(t) of the ODE prob-
lem (3.20),(3.21), which are computed by an ODE method with order p of
convergence. The error can be estimated as

∣∣Ũj(τi)− u(xj, τi)
∣∣ ≤

∣∣Ũj(τi)− Uj(τi)
∣∣ +

∣∣Uj(τi)− u(xj, τi)
∣∣.

Since the space discretisation is consistent of order two, we expect an error
∣∣Ũj(τi)− u(xj, τi)

∣∣ ≤ C(∆t)p + D(∆x)2 (3.22)

with ∆x = h and τi+1 − τi ≤ ∆t for all i. The error consists of two
parts: the error of the space discretisation and the error of the following
time discretisation. Unfortunately, the constant C of the time discretisation
depends on the system of ODEs (3.20) and thus on the step size h in space,
i.e., C = C(h) In particular, the dimension M − 1 of the system (3.20)
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Figure 13: Rothe method.

depends on the step size h = 1
M . The convergence cannot be concluded

directly, since the case C = O( 1
h) is given in general. The two terms in the

estimate (3.22) are not independent of each other.

Von-Neumann boundary conditions (3.5) can be included in the method of
lines by the same strategy as in the finite difference methods, see Sect. 3.2.

Rothe method

We consider the heat equation (3.18) including a source term again. Let
Dirichlet boundary conditions (3.4) be given. In the method of Rothe,
we discretise the time derivative first using the time points tn = kn for
n = 0, 1, . . . , N with k := T

N . It follows

1
k [u(x, tn+1)− u(x, tn)] =

∂2u

∂x2 (x, tn+1) + f(x, tn+1, u(x, tn+1))

for n = 1, . . . , N . Figure 13 demonstrates this semidiscretisation.

We define the approximations zn(x) := u(x, tn) for n = 1, . . . , N . It follows
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a two-point boundary value problem of an ODE of second order

z′′n+1(x) = 1
k [zn+1(x)− zn(x)]− f(x, tn+1, zn+1(x)),

zn+1(0) = α(tn+1), zn+1(1) = β(tn+1).
(3.23)

The initial conditions (3.3) yield z0(x) = u0(x). Hence the unknown func-
tions zn can be calculated subsequently. Thereby, numerical methods for
boundary value problems of ODEs are applied. Often the equivalent system
of first order corresponding to (3.23) is applied. Using vj := zj and wj := z′j,
the two-point boundary value problem reads

v′n+1(x) = wn+1(x),

w′
n+1(x) = 1

k [vn+1(x)− vn(x)]− f(x, tn+1, vn+1(x)),

vn+1(0) = α(tn+1),

vn+1(1) = β(tn+1).

Typically, the method for solving the ODE problem yields approximations
zn(xj) in grid points 0 < x1 < · · · < xR < 1. Hence an interpolation scheme
has to be applied to evaluate the right-hand side of the ODE (3.23) for
arbitrary x ∈ [0, 1].

Let z̃n(xj) be the approximations obtained from an ODE solver. We achieve
again an error estimate

|z̃n(xj)− u(xj, tn)| ≤ |z̃n(xj)− zn(xj)|+ |zn(xj)− u(xj, tn)|.
If the method for solving the ODEs is convergent of order q, then we expect
an error

|z̃n(xj)− u(xj, tn)| ≤ C∆t + D(∆x)q (3.24)

with xj+1 − xj ≤ ∆x. Now the two terms in the estimate (3.24) are inde-
pendent of each other, since the ODEs (3.23) are qualitatively the same for
each k = ∆t (just the right-hand sides differ slightly). Hence we achieve
good convergence properties in the Rothe method. Furthermore, it is easy
to apply adaptivity with respect to the time step size ∆t as well as the space
step size ∆x in the Rothe method. In contrast, changing the step size ∆x

yields an ODE system of a different dimension in the method of lines.
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In the method of lines, an initial value problem of a (relatively large) stiff
system of ODEs has to be solved. In the Rothe method, boundary value
problems of just a single ODE of second order (or system of first order with
two equations) have to be resolved subsequently. However, the computa-
tional effort for solving a boundary value problem is much higher than for
an initial value problem (say about 20 times for same dimensions).

Multidimensional space domain

We outline the application of a method of lines in case of the heat equation

∂u

∂t
= ∆u =

∂2u

∂x2 +
∂2u

∂y2 (3.25)

with two dimensions in space. We consider the domain Ω = (0, 1)2 and
homogeneous Dirichlet boundary conditions on ∂Ω. We apply a discretisa-
tion in space according to the finite difference method from Sect. 2.2. Let
xi := ih and yj := jh for i, j = 0, 1, . . . , M + 1 with the step size h = 1

M+1 .
The approximations are Ui,j(t)

.
= u(xi, yj, t). It follows the system of ODEs

U ′
i,j(t) = 1

h2 [Ui−1,j(t) + Ui+1,j(t) + Ui,j−1(t) + Ui,j+1(t)− 4Ui,j(t)]

for i, j = 1, . . . , M . The homogeneous boundary conditions imply

Ui,j(t) = 0 for i = 0,M + 1 or j = 0,M + 1

and all t ≥ 0. The initial conditions u0 : Ω → R yield

Ui,j(0) = u0(xi, yj) for i, j = 1, . . . , M.

Again an initial value problem of a system of ODEs is achieved in the
method of lines. The case of three space dimensions can be handled in the
same form.

Likewise, we can apply finite element methods for the discretisation in space,
see Sect. 2.4. According to the Ritz-Galerkin approach, the approximation
reads

uh(x, y, t) =
N∑

j=1

αj(t)φj(x, y)
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with time-dependent coefficients αj and space-dependent basis functions φj.
We obtain the equations

N∑
i=1

α′i(t)〈φi, φj〉L2(Ω) = −
N∑

i=1

α(t)a(φi, φj) for j = 1, . . . , N

with the bilinear form a. Hence an implicit system of ODEs

Mα′(t) = Aα(t) (3.26)

for the coefficients α := (α1, . . . , αN)> is achieved. The entries M = (mij),
A = (aij) of the constant matrices are

mij = 〈φi, φj〉L2(Ω), aij = −a(φi, φj).

In particular, both matrices are symmetric. Again standard methods for
systems of ODEs can be used to solve initial value problems of (3.26).

Methods of Rothe type can also be constructed. Given the PDE (3.25)
on Ω = (0, 1)2, we discretise the time derivative simply via the first-order
difference formula, i.e.,

1
k [u(x, y, tn+1)− u(x, y, tn)] +O(k) = ∆u|t=tn+1

.

Let zn(x, y)
.
= u(x, y, tn). It follows the appraoch

∆zn+1 = 1
k [zn+1 − zn] (3.27)

with zn given and zn+1 unknown. The semidiscretisation (3.27) represents
a Poisson equation with source term. The corresponding boundary value
problems can be solved by standard numerical algorithms.
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Chapter 4

Hyperbolic PDEs of Second Order

4

We discuss numerical methods for hyperbolic PDEs of second order now.
The benchmark is the wave equation. The speed of the transport of infor-
mation is finite in hyperbolic models.

4.1 Wave equation

The wave equation for one space dimension is given by

∂2u

∂t2
= c2 ∂2u

∂x2 (4.1)

with the wave speed c > 0. Using an arbitrary function Φ : R → R with
Φ ∈ C2, the functions

u(x, t) := Φ(x + ct) and u(x, t) := Φ(x− ct)

are both solutions of (4.1).

A pure initial value problem is called Cauchy problem, which reads

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x) (4.2)

with predetermined functions u0, u1 : R→ R at time t0 = 0 without loss of
generality. We assume u0 ∈ C2 and u1 ∈ C1. The solution of the Cauchy
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Figure 14: Domain of dependence and transport of information in case of the wave equation
utt = c2uxx with one space dimension.

problem (4.1),(4.2) is given by, cf. (1.3),

u(x, t) =
1

2

(
u0(x + ct) + u0(x− ct) +

1

c

∫ x+ct

x−ct

u1(s) ds

)
. (4.3)

It is straightforward to verify this formula by differentiation. We recognise
the finite speed of the information transport from the initial values. The
solution u in a point (x̄, t̄) depends on the initial values in the interval
x ∈ [x̄− ct̄, x̄ + ct̄] at time t0 = 0 only, see Figure 14.

The wave equation for three space dimensions reads

∂2u

∂t2
= c2∆u = c2

(
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2

)
(4.4)

with the wave speed c > 0. Let r := (x, y, z). Particular solutions of (4.4)
are given by

u(x, y, z, t) = ei(r·k−ωt) = ei(kxx+kyy+kzz−ωt)

with the frequency ω > 0 and the wave vector k := (kx, ky, kz) provided
that

ω2 = c2(k2
x + k2

y + k2
z) ⇒ ω = c‖k‖2.

The Cauchy problem is given by (4.2) with initial functions u0, u1 : R3 → R.
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Theorem 14 The solution of the Cauchy problem (4.4), (4.2) is given by

u(x, t) =
1

4πc2t2

∫∫

‖y−x‖2=ct

u0(y) + tu1(y) + (y − x)>∇u0(y) dy (4.5)

for x ∈ R3.

Proof:

We define the spherical means

w(x, θ, t) :=
1

4π

∫∫

‖z‖2=1

u(x + θz, t) dz.

For each continuous function u, it holds

lim
θ→0

w(x, θ, t) = u(x, t).

We show that the spherical means satisfy the wave equation (θw)tt = c2(θw)rr of the
one-dimensional case. It holds

∆xw =
1

4π

∫∫

‖z‖2=1

∆xu(x + θz, t) dz =

∫∫

‖z‖2=1

1

c2

∂2u

∂t2
(x + θz, t) dz =

1

c2
wtt.

The formula of Darboux for the spherical means yields (θ2wθ)θ = ∆x(θ
2w). It follows

θwtt = θc2∆xw = 1
θ
c2(∆x(θ

2w)) = 1
θ
c2(θ2wθ)θ = c2(θw)θθ.

For the one-dimensional wave equation, we obtain the solution (4.3), i.e.,

θw(x, θ, t) = 1
2

(
(θ + ct)w(x, θ + ct, 0) + (θ − ct)w(x, θ − ct, 0) +

1

c

∫ θ+ct

θ−ct

swt(x, s, 0) ds

)
.

Applying the symmetry w(x, θ − ct, 0) = w(x, ct− θ), it follows

w(x, θ, t) = 1
2θ

[(ct + θ)w(x, θ + ct, 0)− (ct− θ)w(x, ct− θ, 0)] + 1
2cθ

∫ θ+ct

θ−ct

swt(x, s, 0) ds.

For a general function f ∈ C1, it holds

lim
θ→0

1
2θ

[f(ct + θ)− f(ct− θ)] = f ′(ct) = 1
c
· d

dt
f(ct).

It follows

lim
θ→0

1
2θ

[(ct + θ)w(x, θ + ct, 0)− (ct− θ)w(x, ct− θ, 0)] = 1
c
· d

dt
[ct · w(x, ct, 0)] =: A.
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The function w and thus wt are symmetric with respect to θ. It follows

∫ θ+ct

θ−ct

swt(x, s, 0) ds =

∫ ct+θ

ct−θ

swt(x, s, 0) ds +

∫ ct−θ

θ−ct

swt(x, s, 0) ds

=

∫ ct+θ

ct−θ

swt(x, s, 0) ds.

We obtain

lim
θ→0

1

2cθ

∫ ct+θ

ct−θ

swt(x, s, 0) ds = twt(x, ct, 0) =: B.

It follows

u(x, t) = A + B =
d

dt

(
t

4π

∫∫

‖z‖2=1

u0(x + ctz) dz

)
+

t

4π

∫∫

‖z‖2=1

u1(x + ctz) dz.

We calculate using the product rule of differentiation

d

dt

(
t

4π

∫∫

‖z‖2=1

u0(x + ctz) dz

)

=
1

4π

∫∫

‖z‖2=1

u0(x + ctz) dz +
t

4π

∫∫

‖z‖2=1

(cz)>∇u0(x + ctz) dz.

The substitution
y := x + ctz, dy = (ct)2dz

yields the formula (4.5). The area of the surface of the sphere {y : ‖y − x‖2 = ct} is just
4π(ct)2. Thus it holds y − x = O(t). For t ≈ 0, the formula (4.5) implies

u(x, t) ≈ u0(x) + tu1(x).

Hence the initial conditions are satisfied. ¤

We encounter again the finite speed c for the transport of information.
Given a point (x̄, t̄) with x̄ ∈ R3 and t̄ > 0, the solution u(x̄, t̄) depends on
the initial values in the set {x ∈ R3 : ‖x− x̄‖2 = ct̄}.

94



4.2 Finite difference methods

Firstly, we discuss finite difference methods in the case of one space dimen-
sion. Secondly, we generalise the strategy to the multidimensional case.

One space dimension

We apply finite difference methods to a wave equation with source term

∂2u

∂t2
= c2 ∂2u

∂x2 + f(x, t, u) (4.6)

including a single space dimension. The step sizes k, h > 0 are introduced
in time and space, respectively. Let the grid points be xj = jh and tn = nh.
Typically, the partial derivatives are replaced by the difference formulas

∂2u

∂x2 (x, t) =
u(x + h, t)− 2u(x, t) + u(x− h, t)

h2 +
h2

12

∂4u

∂x4 (x + ϑh, t)

∂2u

∂t2
(x, t) =

u(x, t + k)− 2u(x, t) + u(x, t− k)

k2 +
k2

12

∂4u

∂t4
(x, t + ηk)

with −1 < ϑ, η < 1. It follows the finite difference method

1
k2

[
Un+1

j − 2Un
j + Un−1

j

]
= c2 1

h2

[
Un

j−1 − 2Un
j + Un

j+1
]
+ f(xj, tn, U

n
j )

or, equivalently,

Un+1
j = −Un−1

j + 2
(
1− c2 k2

h2

)
Un

j + c2 k2

h2

[
Un

j−1 + Un
j+1

]

+ k2f(xj, tn, U
n
j ).

(4.7)

Hence we achieve an explicit two-stage method. The discretisation applies
a five-point star. The local discretisation error of this scheme reads

τ(k, h) := k2

12
∂4u
∂t4 (x, t + ηk)− c2 h2

12
∂4u
∂x4 (x + ϑh, t).

For u ∈ C4, the consistency of order two follows from the uniform estimate

|τ(k, h)| ≤ k2 1
12 max

x∈[a,b],t∈[0,T ]

∣∣∣∂4u
∂t4

∣∣∣ + h2 c2

12 max
x∈[a,b],t∈[0,T ]

∣∣∣∂4u
∂x4

∣∣∣
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for x ∈ (a, b) and t ∈ (0, T ) for arbitrary a, b ∈ R and T > 0.

We consider the Cauchy problem (4.2). For the given finite difference
method (4.7), we require the initial values U0

j and U 1
j for each j. The

predetermined initial values imply

U0
j = u0(xj), U 1

j = u0(xj) + ku1(xj).

However, this discretisation is just consistent of order one. To achieve an
overall method of second order, we apply the discretisation

1
2k [u(xj, t1)− u(xj, t−1)] = ut(xj, t0) +O(k2)

using the auxiliary time layer t−1 = −k. It follows

U 1
j = U−1

j + 2ku1(xj).

The finite difference method (4.7) yields for n = 0

U 1
j = −U−1

j + 2(1− c2 k2

h2 )U
0
j + c2 k2

h2

[
Un

j−1 + Un
j+1

]
+ k2f(xj, 0, U

0
j ).

and thus

U 1
j = −U−1

j + 2(1− c2 k2

h2 )u0(xj) + c2 k2

h2 [u0(xj−1) + u0(xj+1)]

+ k2f(xj, 0, u0(xj)).

It follows the approximation

U1
j = ku1(xj) + (1− c2 k2

h2 )u0(xj) + c2 k2

2h2 [u0(xj−1) + u0(xj+1)]

+ k2

2 f(xj, 0, u0(xj)),

where all terms on the right-hand side are predetermined.

We discuss the Cauchy problem (4.1), (4.2), i.e., no boundary conditions
appear. The finite difference method (4.7) is applied (with f ≡ 0). Let
r := k

h be constant. We choose a finite interval x ∈ [a, b] and h = b−a
2M for

some integer M . Let xj = a + jh. If R grid points are given in the time
layer tn, then just R − 2 new grid points can be used in the calculations
within the time layer tn+1. This proceeding is sketched in Figure 15. It
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x0

t

ba

t

x

Figure 15: Grid in finite difference method for pure initial value problem.

follows that M time steps can be done. We achieve an approximation in
the final point

x̂ := a+b
2 , t̂ := Mk = Mrh = r b−a

2 ,

which is independent of M assuming constant r > 0. The interval [a, b]
represents the domain of dependence for the numerical method (dependence
on initial values).

According to (4.3), the exact solution u(x̂, t̂) depends on the initial values for
x ∈ [x̂− ct̂, x̂+ ct̂], cf. Figure 14. Hence the method can only be convergent
if it holds

D(x̂, t̂) := [x̂− ct̂, x̂ + ct̂] ⊆ [a, b] =: D0(x̂, t̂).

Otherwise, we can change the initial values for x /∈ [a, b] such that u(x̂, t̂) be-
comes different, whereas the numerical approximation remains the same. In
this context, D and D0 are called the analytical domain of dependence and
the numerical domain of dependence, respectively. It follows the necessary
condition

ct̂ ≤ b−a
2 ⇒ r ≤ 1

c .

If the step size h is given in space, then we obtain a restriction on the step
size k in time due to r = k

h . However, this restriction is not as severe as in
explicit methods for parabolic problems, where r = k

h2 holds.

Furthermore, boundary conditions can be applied at x = a and/or x = b
for t ≥ 0, see (3.4) and (3.5).
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We analyse the stability of the method via the concept of von-Neumann.
Typical solutions of utt = c2uxx read

u(x, t) = ei(λx−ωt) = e−iωteiλx for λ, ω ∈ R.

We obtain the factor α := −iω in this exact solution. It holds Re(α) = 0
and thus |eαt| = 1. Perturbations in initial values are neither amplified nor
damped, since they are transported in time. In contrast, the heat equation
ut = uxx with solution u = eαteiλx yields α = −λ2 ≤ 0. It follows |eαk| < 1
for each λ 6= 0.

Now we apply the ansatz Un
j = eαnkeiλjh in the finite difference method (4.7)

without source term (f ≡ 0). It follows

eα(n+1)keiλjh = −eα(n−1)keiλjh + 2
(
1− c2r2

)
eαnkeiλjh

+ c2r2
[
eαnkeiλ(j−1)h + eαnkeiλ(j+1)h

]
.

We divide by eαnkeiλjh and obtain

eαk = −e−αk + 2
(
1− c2r2) + c2r2

[
eiλ(−h) + eiλh

]
.

For ξ := eαk, it follows the quadratic equation

ξ2 +
(
4r2c2 sin2 (

λh
2

)− 2
)
ξ + 1 = 0.

We use the abbreviation b := 4r2c2 sin2 (
λh
2

)−2. It holds b ∈ [−2, 4r2c2−2].
The roots are

ξ1/2 = 1
2

[
−b±

√
b2 − 4

]
.

We assume the necessary condition r ≤ 1
c . It follows b ∈ [−2, 2] due to

r2c2 ≤ 1. Thus the roots become

ξ1/2 = 1
2

[
−b± i

√
4− b2

]

with 4− b2 ≥ 0. It follows

|ξ1/2|2 = 1
4

[
(−b)2 +

√
4− b2

2]
= 1.

Since |ξ1| = 1 and |ξ2| = 1 holds, the finite difference method (4.7) is
stable with respect to the criterion of von-Neumann provided that r ≤ 1

c
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is satisfied. Moreover, the magnitude of the terms ξ = eαk agrees to the
structure of the exact solutions of utt = c2uxx. Due to the consistency
of the method, it follows the convergence of order two for r ≤ 1

c . The
technique (4.7) is not convergent in case of r > 1

c .

Furthermore, the speed of the transport of information is finite in an explicit
method – both for parabolic and hyperbolic PDEs. In contrast, the speed
of the transport of information is unbounded in an implicit technique –
both for parabolic and hyperbolic PDEs. Thus explicit methods fit better
to the structure of hyperbolic PDEs, whereas implicit methods are more
appropriate for parabolic PDEs.

Multidimensional space

We consider the Cauchy problem (4.2) of the three-dimensional wave equa-
tion

∂2u

∂t2
= c2

(
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2

)
+ f(x, y, z, t, u) (4.8)

including a source term f . The derivative in time is discretised by the sym-
metric difference formula using the step size k again. We use identical step
sizes h for the discretisations in the space variables. However, the difference
formulas may be different. Let the grid points be xj = jh, yp = ph, zq = qh,
tn = nk and Un

j,p,q
.
= u(xj, yp, zq, tn) the corresponding approximations. We

apply discretisations of the form

∂2u

∂x2 (xj, yp, zq, tn)
.
=

1

h2

N∑

ν=−N

wx
νU

n
j+ν,p,q

∂2u

∂y2 (xj, yp, zq, tn)
.
=

1

h2

N∑

ν=−N

wy
νU

n
j,p+ν,q

∂2u

∂z2 (xj, yp, zq, tn)
.
=

1

h2

N∑

ν=−N

wz
νU

n
j,p,q+ν

with the coefficients wx
ν , w

y
ν , w

z
ν ∈ R. The symmetric difference formula

of second order exhibits the coefficients w0 = −2, w1 = w−1 = 1. The
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symmetric difference formula of fourth order yields the set of coefficients
w0 = −30

12 , w1 = w−1 = 16
12 , w2 = w−2 = − 1

12 .

The resulting finite difference method reads

Un+1
j,p,q − 2Un

j,p,q + Un−1
j,p,q

= c2r2

(
N∑

ν=−N

wx
νU

n
j+ν,p,q +

N∑

ν=−N

wy
νU

n
j,p+ν,q +

N∑

ν=−N

wz
νU

n
j,p,q+ν

)

+ k2f(xj, yp, zq, tn, U
n
j,p,q)

with r := k
h

We analyse the stability criterion of von-Neumann in case of the wave equa-
tion (4.8) without source term (f ≡ 0). The ansatz

Un
j,p,q = eαnkei(λxjh+λyph+λzqh)

with arbitrary constants λx, λy, λz ∈ R is inserted in the formula of the
finite difference method. A division by Un

j,p,q yields with the abbreviation
ξ := eαk

ξ − 2 + ξ−1 = c2r2

(
N∑

ν=−N

wx
νe

iλxνh + wy
νe

iλyνh + wz
νe

iλzνh

)
.

We obtain the quadratic equation ξ2 + bξ +1 = 0 with b := −2− c2r2A and

A :=
N∑

ν=−N

wx
νe

iλxνh + wy
νe

iλyνh + wz
νe

iλzνh.

We assume A ∈ R and A < 0 in the following, which is satisfied by the
symmetric difference formulas. The roots ξ1, ξ2 of the quadratic equation
satisfy |ξ1/2| = 1 in case of b2 − 4 ≤ 0. It follows the demand

(−2− c2r2A)2 ≤ 4 ⇔ 4A + c2r2A2 ≤ 0 ⇔ 4 + c2r2A ≥ 0

and thus (using A = −|A| due to A < 0)

r ≤ 2

c
√
|A| .
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We determine an upper bound for |A|. The triangle inequality yields suc-
cessively

|A| ≤
N∑

ν=−N

|wx
ν |+ |wy

ν |+ |wz
ν| =: B. (4.9)

Thus the stability criterion of von-Neumann is satisfied in the case

r ≤ 2

c
√

B
≤ 2

c
√
|A| .

We recover the one-dimensional and two-dimensional case of the wave equa-
tion by omitting the coefficients wy

ν or wz
ν. Assuming c = 1, the following

table illustrates the restrictions 2√
B

on the step sizes in the symmetric finite

difference schemes of order 2 and order 4 (in space):

one-dim. two-dim. three-dim.

order 2 1 1√
2

.
= 0.707 1√

3
.
= 0.577

order 4
√

3
2

.
= 0.866

√
3
8

.
= 0.612 1

2 = 0.5

A more detailed analysis shows that these bounds on r are also necessary
for the stability concept of von-Neumann. It follows a restriction on the
selection of the step size k in time for given step size h in space.
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4.3 Methods of Characteristics

We introduce the characteristic curves of a general PDE of second order
now. In case of hyperbolic PDEs, we construct a corresponding numerical
method.

Motivation

We consider a semi-linear PDE of second order

Auxx + 2Buxy + Cuyy = f(x, y, u, ux, uy) (4.10)

with solution u : R2 → R and constant coefficients A,B, C ∈ R. According
to the classification given in Chapter 1, the PDE (4.10) is

elliptic for AC −B2 > 0,

parabolic for AC −B2 = 0,

hyperbolic for AC −B2 < 0.

We are looking for a coordinate transformation ξ = ξ(x, y), η = η(x, y) with
w(ξ, η) = u(x, y) such that the tranformed equation

A∗wξξ + 2B∗wξη + C∗wηη = f̃(ξ, η, w, wξ, wη)

satisfies A∗ = C∗ = 0. Consequently, we assume A 6= 0 or C 6= 0 in (4.10).
Without loss of generality, let A 6= 0. The transformation is bijective, if
and only if it holds

det

(
ξx ξy

ηx ηy

)
= ξxηy − ξyηx 6= 0. (4.11)

We obtain

ux = wξξx + wηηx

uxx = (wξξξx + wξηηx)ξx + wξξxx + (wηξξx + wηηηx)ηx + wηηxx

= wξξξ
2
x + 2wηξξxηx + wηηη

2
x + wξξxx + wηηxx

etc.
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It follows the transformed system
(
Aξ2

x + 2Bξxξy + Cξ2
y

)
wξξ

+ 2 (Aξxηx + B(ξxηy + ξyηx) + Cξyηy) wξη

+
(
Aη2

x + 2Bηxηy + Cη2
y

)
wηη = f̃(ξ, η, w, wξ, wη).

We want to achieve

A∗ := Aξ2
x + 2Bξxξy + Cξ2

y = 0,

C∗ := Aη2
x + 2Bηxηy + Cη2

y = 0.

We obtain two quadratic equations for ξx

ξy
and ηx

ηy
, respectively. However,

the two quadratic equations are identical. To ensure that the coordinate
transformation is bijective, we need ξx

ξy
6= ηx

ηy
due to (4.11), i.e., two differ-

ent solutions of the quadratic equation. For A 6= 0, the solutions of the
quadratic equation Aµ2 + 2Bµ + C = 0 are

µ1/2 =
−B ±√B2 − AC

A
.

The condition B2 − AC > 0 is equivalent to the existence of two different
solutions µ1, µ2 ∈ R. Only for hyperbolic PDEs, we achieve a transformed
equation

2B∗wξη = f̃(ξ, η, w, wξ, wη).

The involved coefficient satisfies

B∗ = Aξxηx + B(ξxηy + ξyηx) + Cξyηy = · · · = − 2
A(B2 − AC)ξyηy 6= 0

for ξy, ηy 6= 0.

Since A,B,C are constant, the relations ξx = µ1ξy and ηx = µ2ηy yield the
transformation

ξ = µ1x + y, η = µ2x + y.

For ξ = const. or η = const., we obtain straight lines in the domain of
dependence (x, y). These straight lines are the characterisitic curves. Due
to µ1 6= µ2, we obtain two families of characteristic curves.

103



Characteristic curves

We consider the semi-linear PDE

A(x, y)uxx + 2B(x, y)uxy + C(x, y)uyy = f(x, y, u, ux, uy) (4.12)

with non-constant coefficients A,B, C. We want to obtain a well-posed
initial value problem. In the domain of dependence, let a curve

K := {(x(τ), y(τ)) : τ ∈ [τ0, τend]}
be given with x, y ∈ C1 and ẋ(τ)2 + ẏ(τ)2 > 0 for all τ . In a Cauchy
problem, initial values are specified on the curve, i.e.,

u(x(τ), y(τ)) = u0(τ), ∂u
∂n

∣∣
x=x(τ),y=y(τ) = u1(τ) (4.13)

with predetermined functions u0, u1 : [τ0, τend] → R. Thereby, n = (n1, n2) is
a vector perpendicular to the curve K with ‖n‖2 = 1. Let u0 ∈ C1. The
derivative of u in tangential direction s = (s1, s2) is given by

∂u
∂s

∣∣
x=x(τ),y=y(τ) = ux(x(τ), y(τ))ẋ(τ) + uy(x(τ), y(τ))ẏ(τ) = u̇0(τ).

Since s and n are linearly independent, the Cauchy problem specifies all
first-order derivatives ux, uy along the curve K. A further differentiation
yields second-order derivatives

u̇x = d
dτ ux = uxxẋ + uxyẏ, u̇y = d

dτ uy = uyxẋ + uyyẏ. (4.14)

For u ∈ C2, it holds uxy = uyx. Let f̃(τ) := f(x(τ), y(τ), u(τ), ux(τ), uy(τ)).
We write the relations (4.14) together with the PDE (4.12) as a linear system




A 2B C
ẋ ẏ 0
0 ẋ ẏ







uxx

uxy

uyy


 =




f̃

u̇x

u̇y


 . (4.15)

We want that the data u, ux, uy on K specifies a unique solution of the
PDE (4.12). It can be shown that each Cauchy problem (4.13) has a unique
solution if and only if the linear system (4.15) is uniquely solvable. Equiva-
lently, we demand that the determinant of the matrix in (4.15) is non-zero,
i.e.,

Aẏ2 − 2Bẋẏ + Cẋ2 6= 0.
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For simplicity, we assume ẋ 6= 0. Due to y′ = dy
dx = ẏ

ẋ , the opposite condition
yields the quadratic equation

A(y′)2 − 2By′ + C = 0.

It follows the definition of characteristic curves.

Definition 15 (characteristics) The characteristic curves (or: charac-
teristics) of a second-order PDE (4.12) are the real-valued solutions y(x) of
the ordinary differential equation

y′(x) =
B(x, y)±

√
B(x, y)2 − A(x, y)C(x, y)

A(x, y)
(4.16)

assuming A(x, y) 6= 0.

It follows that the existence and uniqueness of a solution of the PDE (4.12) is
not fulfilled in the Cauchy problem (4.13), if the initial curve K is tangential
to a characteristic curve in some point. Vice versa, a unique solution exists,
if the initial curve K is never tangential to a characterstic curve. The
ODE (4.16) describes a family of characteristic curves.

For an elliptic PDE, it holds B2 − AC < 0. Consequently, characteristic
curves do not exist. A unique solution of the Cauchy problem exists for an
arbitrary curve K. However, the initial value problem of an elliptic PDE is
not well-posed, since the solutions do not depend continuously on the initial
data.

For a parabolic PDE, it holds B2 − AC = 0 and thus y′ = B
A . A family of

characteristic curves exists. However, Cauchy problems of the form (4.13)
are often not considered. For example, a pure initial value problem of the
heat equation demands just the specification of the initial values u at t = 0
and not of the normal derivative ut.

For a hyperbolic PDE, it holds B2−AC > 0. Hence two families of charac-
tersistic curves exist. The initial curve K must never be tangential to one
of these characteristics. For example, this demand is satisfied for the wave
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equation utt = c2uxx in case of initial values u, ut specified at t = 0. Char-
acterisitic curves are only interesting in case of hyperbolic PDEs, since the
Cauchy problems (4.13) are irrelevant for elliptic PDEs or parabolic PDEs.

Definition 15 remains the same in the quasi-linear case A = A(x, y, u, ux, uy),
B = B(x, y, u, ux, uy), C = C(x, y, u, ux, uy). However, the characteristic
curves depend on the a priori unknown solution in this case.

Numerical method

We consider a Cauchy problem (4.13) for a hyperbolic PDE (4.12). Two
families of characteristic curves exist, see Definition 15. The transport of
information proceeds along the characteristic curves. We can use this prop-
erty to construct a numerical method for the determination of the solution.

Along a characteristic curve, the linear system (4.15) does not exhibit a
unique solution, since the involved matrix is singular. In particular, it holds

rank




A 2B C

ẋ ẏ 0
0 ẋ ẏ


 = 2

for ẋ 6= 0. Nevertheless, we assume that a unique solution of some Cauchy
problem exists, where the initial curve K is not tangential to some charac-
teristic curve. It follows that the linear system (4.15) has a solution along
the characteristic curve, which implies

rank




A 2B C f̃

ẋ ẏ 0 u̇x

0 ẋ ẏ u̇y


 = 2.

If we choose three out of the four column vectors, the corresponding deter-
minant is zero. In particular, it holds

det




A C f̃

ẋ 0 u̇x

0 ẏ u̇y


 = 0,

which is equivalent to

Au̇xẏ + Cu̇yẋ− f̃ ẋẏ = 0. (4.17)
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Another equivalent formulation is

A
u̇x

ẋ
+ C

u̇y

ẏ
= f̃ for ẏ, ẋ 6= 0. (4.18)

Hence we obtain an information on the change of ux, uy along the charac-
teristic curves. We introduce the abbreviations

α :=
B +

√
B2 − AC

A
, β :=

B −√B2 − AC

A
, (4.19)

where α and β depend on x, y. It holds α 6= β for hyperbolic PDEs. The
relation (4.16) implies ẏ = αẋ and ẏ = βẋ. The two families of characteristic
curves can be written as

Kα = {(x(τ), y(τ)) : ẏ = αẋ}, Kβ = {(x(τ), y(τ)) : ẏ = βẋ}.
The equation (4.17) yields

Aαu̇x + Cu̇y = f̃ ẏ = αf̃ ẋ,

Aβu̇x + Cu̇y = f̃ ẏ = βf̃ ẋ.
(4.20)

These two equations can be used to determine ux and uy.

Example: For the hyperbolic PDE uxx − uyy = 2(y2 − x2), we solve the initial value
problem u(0, y) = y2, ux(0, y) = 0 analytically using the characteristic curves.

It holds A = 1, B = 0, C = −1. It follows y′ = ±1 in (4.16), i.e., α = 1, β = −1. The
characteristic curves can be written as

Kα : y = Cα + x, Kβ : y = Cβ − x

with constants Cα, Cβ ∈ R. The equation (4.18) yields

u̇x

ẋ
(x,Cα + x)− u̇y

ẏ
(x,Cα + x) = 2((Cα + x)2 − x2) = 4Cαx + 2C2

α,

u̇x

ẋ
(x,Cβ − x)− u̇y

ẏ
(x,Cβ − x) = 2((Cβ − x)2 − x2) = −4Cβx + 2C2

β.

The initial values imply ux(0, y) = 0, uy(0, y) = 2y. It holds

u̇

ẋ
=

dux

dx
,

u̇

ẏ
=

duy

dy
=

duy

dx
· dx

dy
=

duy

dx
· 1

y′
.
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Integration with respect to x yields

ux(x,Cα + x)− uy(x,Cα + x) = 2Cαx2 + 2C2
αx− 2Cα,

ux(x,Cβ − x) + uy(x, Cβ − x) = −2Cβx2 + 2C2
βx + 2Cβ.

Two characteristic curves (for fixed Cα, Cβ) intersect in a point with the coordinates

x̄ = 1
2
(Cβ − Cα), ȳ = 1

2
(Cα + Cβ).

We obtain the equations

ux(x̄, ȳ)− uy(x̄, ȳ) = 2(ȳ − x̄)x̄2 + 2(ȳ − x̄)2x̄− 2(ȳ − x̄),

ux(x̄, ȳ) + uy(x̄, ȳ) = −2(ȳ + x̄)x̄2 + 2(ȳ + x̄)2x̄ + 2(ȳ + x̄).

We can solve this linear system for ux, uy directly and obtain

ux(x, y) = 2x(1 + y2), uy(x, y) = 2y(1 + x2).

We achieve the solution u via the integration

u(x, y) = u(x0, y0) +

∫

J
ux dx + uy dy

along an arbitrary curve J interconnecting (x0, y0) and (x, y). We apply

u(x, y) = u(0, y) +

∫ x

0

ux(s, y) ds

= y2 +

∫ x

0

2s(1 + y2) ds

= y2 + x2(1 + y2).

We have chosen a particular curve J , which yields simple calculation. Remark that also a

curve Kα or Kβ can be applied. It is straightforward to verify that the function u satisfies

the Cauchy problem of the PDE.

Now we construct a numerical method to achieve an approximative solution
automatically. We consider a curve K, where a Cauchy problem (4.13) is
specified. We assume that the curve K is never tangential to a character-
istic curve of the PDE (4.12). On the initial curve, we choose the points
P1, . . . , Pn. Let x(Pj), y(Pj) be the coordinates of the points. The values
u(Pj), ux(Pj), uy(Pj) are also predetermined for all j = 1, . . . , n.
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Figure 16: Grid in method of characteristics for PDE with constant coefficients.

In case of constant coefficients A,B, C, each family of characteristic curves
is a continuum of parallel straight lines, see Figure 16. For non-constant co-
efficients A,B, C, the characteristics represent general curves, see Figure 17.
Let K(j)

α be the characteristic curve of the first family and K(j)
β be the char-

acteristic curve of the second family, which are both running through the
point Pj. The intersection of K(j)

α through Pj and K(j+1)
β through Pj+1

yields a new point Qj for j = 1, . . . , n−1. We describe how the data x(Q1),
y(Q1), u(Q1), ux(Q1), uy(Q1) can be computed by the corresponding data
in P1 and P2. Successively, the other points of the characteristic grid are
determined.

We discretise the corresponding ODEs ẏ = αẋ and ẏ = βẋ of the two
families of the characteristic curves, see (4.19). According to the explicit
Euler method, it follows

y(Q1)− y(P1) = α(P1)(x(Q1)− x(P1)),

y(Q1)− y(P2) = β(P2)(x(Q1)− x(P2)).
(4.21)
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Figure 17: Grid in method of characteristics for PDE with non-constant coefficients.

Due to α = α(A,B,C), it holds

α(P1) = α(A(x(P1), y(P1)), B(x(P1), y(P1)), C(x(P1), y(P1)))

or, in a shorter form, α(P1) = α(x(P1), y(P1)) and likewise for β. Hence
we can evaluate α(P1), β(P2) directly. We obtain a linear system (4.21) for
x(Q1), y(Q1), which can be solved directly

x(Q1) = y(P2)−y(P1)+α(P1)x(P1)−β(P2)x(P2)
α(P1)−β(P2)

,

y(Q1) = α(P1)y(P2)−β(P2)y(P1)+α(P1)β(P2)(x(P1)−x(P2))
α(P1)−β(P2)

.

It holds α(Pj) 6= β(Pj) for all j. Hence α(P1) 6= β(P2) is satisfied for P2 suf-
ficiently close to P1 due to the continuity of the functions. We achieve u(Q1)
by a first-order approximation according to a Taylor expansion

u(Q1) = u(P1) + ux(P1)(x(Q1)− x(P1)) + uy(P1)(y(Q1)− y(P1)).

To be able to continue the method in other grid points, we also require
approximations of ux(Q1), uy(Q1). The equations (4.20) allow for the de-
termination of ux, yy. We apply a discretisation like in the explicit Euler
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scheme again

A(P1)α(P1)(ux(Q1)− ux(P1)) + C(P1)(uy(Q1)− uy(P1))
= f(P1)(y(Q1)− y(P1)),

A(P2)β(P2)(ux(Q1)− ux(P2)) + C(P2)(uy(Q1)− uy(P2))
= f(P2)(y(Q1)− y(P2)),

(4.22)

where
f(Pj) := f(x(Pj), y(Pj), u(Pj), ux(Pj), uy(Pj)).

A linear system appears for the unknowns ux(Q1), uy(Q1), whose coefficient
matrix is

G :=

(
A(P1)α(P1) C(P1)
A(P2)β(P2) C(P2)

)
.

If holds
det G = A(P1)C(P2)α(P1)− A(P2)C(P1)β(P2).

Thus det G 6= 0 is guaranteed for P1, P2 sufficiently close to each other.
Hence we obtain ux(Q1), uy(Q1) from the linear system (4.22).

In the quasi-linear case A = A(x, y, u, ux, uy), B = · · · , C = · · · , this
method is feasible using the same formulas, since the data

A(Pj) = A(x(Pj), y(Pj), u(Pj), ux(Pj), uy(Pj)), etc.

is directly available.

Now we want to achieve a method of characteristics, which is consistent of
order two. Therefore we discretise the ODEs via trapezoidal rule, i.e., an
implicit scheme. For the family of characteristic curves given by ẏ = αẋ, it
holds

y(Q1)− y(P1) =

∫ τ(Q1)

τ(P1)
ẏ dτ =

∫ τ(Q1)

τ(P1)
α(τ)ẋ dτ =

∫ x(Q1)

x(P1)
α(x) dx

and for ẏ = βẋ analogously. A discretisation by trapezoidal rule yields

y(Q1)− y(P1) = 1
2(α(P1) + α(Q1))(x(Q1)− x(P1)),

y(Q1)− y(P2) = 1
2(β(P2) + β(Q1))(x(Q1)− x(P2)).

(4.23)
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Since α(Q1) = α(x(Q1), y(Q1)) and β(Q1) = β(x(Q1), y(Q1)), we obtain a
nonlinear system (4.23) for the unknowns x(Q1), y(Q1). Newton’s method
yields an approximative solution. Given the solution x(Q1), y(Q1) of the
system (4.23), the terms α(Q1), β(Q1) can be evaluated.

We apply the equations (4.20) to determine ux, yy again. The discretisation
of second order yields

(A(P1)α(P1) + A(Q1)α(Q1))(ux(Q1)− ux(P1))
+ (C(P1) + C(Q1))(uy(Q1)− uy(P1))
= (f(P1) + f(Q1))(y(Q1)− y(P1)),

(A(P2)β(P2) + A(Q1)β(Q1))(ux(Q1)− ux(P2))
+ (C(P2) + C(Q1))(uy(Q1)− uy(P2))
= (f(P2) + f(Q1))(y(Q1)− y(P2)).

(4.24)

For f = f(x, y), the evaluation f(Q1) can be obtained from the solu-
tion x(Q1), y(Q1) of nonlinear system (4.23). Accordingly, α(Q1), β(Q1)
are also known from x(Q1), y(Q1). We obtain a linear system (4.24) for
the unknowns ux(Q1), uy(Q1) again. It can be shown that the coefficient
matrix is regular for P2 sufficiently close to P1. A formula for the unknowns
ux(Q1), uy(Q1) can be derived by Cramer’s rule. Finally, the exact solution
satisfies

u(Q1) = u(P1) +

∫

K(1)
α

u̇ dτ = u(P1) +

∫

K(1)
α

ux dx + uy dy

using the part of the characteristic curve K(1)
α from P1 to Q1, since it holds

u̇ = uxẋ + uyẏ. Trapezoidal rule yields the approximation

u(Q1) = u(P1) + 1
2(ux(P1) + ux(Q1))(x(Q1)− x(P1))

+ 1
2(uy(P1) + uy(Q1))(y(Q1)− y(P1)),

(4.25)

which is consistent of second order.

In the semi-linear case f = f(x, y, u, ux, uy), we solve the equations (4.24)
together with (4.25) for the unknowns u(Q1), ux(Q1), uy(Q1), which repre-
sents a nonlinear system in general.
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In the quasi-linear case A = A(x, y, u, ux, uy), B = · · · , C = · · · , we solve
a nonlinear system consisting of (4.23), (4.24), (4.25) for the five unknowns
x(Q1), y(Q1), u(Q1), ux(Q1), uy(Q1).

In the linear case (also with non-constant coefficients), all grid points can
be calculated a priori without the determination of u, ux, uy. However, this
is not a significant advantage. In the quasi-linear case, the grid points have
to be computed successively together with u, ux, uy.
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Chapter 5

Hyperbolic Systems of First Order

5

We consider systems of PDEs of first order now. Hyperbolic systems exhibit
similar properties as hyperbolic PDEs of second order. For example, the
speed of the transport of information is finite again.

5.1 Systems of two equations

A semi-linear PDE of second order

A(x, y)wxx + 2B(x, y)wxy + C(x, y)wyy = f(x, y, wx, wy)

can be transformed into a system of two PDEs of first order via u := wx,
v := wy using the compatibility condition wxy = wyx

A(x, y)ux + 2B(x, y)uy + C(x, y)vy = f(x, y, u, v),

vx − uy = 0.
(5.1)

More general, we discuss a system of PDEs of first order in the form

a1ux + b1uy + c1vx + d1vy = f1(x, y, u, v)

a2ux + b2uy + c2vx + d2vy = f2(x, y, u, v)

with coefficients depending on x and y. Equivalently, we write the system
as (

a1 c1

a2 c2

)
∂

∂x

(
u

v

)
+

(
b1 d1

b2 d2

)
∂

∂y

(
u

v

)
=

(
f1(x, y, u, v)
f2(x, y, u, v)

)
. (5.2)
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We consider a curve K := {(x(τ), y(τ) : τ ∈ [τ0, τend]} again. A Cauchy
problem is specified by initial conditions

u(x(τ), y(τ)) = u0(τ), v(x(τ), y(τ)) = v0(τ) (5.3)

with predetermined functions u0, v0 : [τ0, τend] → R. Thereby, we also obtain
the information u̇ = u̇0, v̇ = v̇0 along the curve K. Furthermore, it holds

u̇ :=
du

dτ
= uxẋ + uyẏ, v̇ :=

dv

dτ
= vxẋ + vyẏ.

Together with the PDEs (5.2), we obtain the linear system



a1 b1 c1 d1

a2 b2 c2 d2

ẋ ẏ 0 0
0 0 ẋ ẏ







ux

uy

vx

vy


 =




f1

f2

u̇

v̇


 . (5.4)

The determinant D of the involved coefficient matrix reads

D := ẏ2(a1c2 − c1a2)− ẋẏ(a1d2 − d1a2 + b1c2 − c1b2) + ẋ2(b1d2 − d1b2).

We introduce the abbreviations

Ā := det

(
a1 c1

a2 c2

)
, C̄ := det

(
b1 d1

b2 d2

)
,

B̄ :=
1

2

[
det

(
a1 d1

a2 d2

)
+ det

(
b1 c1

b2 c2

)]
.

(5.5)

It follows D = Āẏ − 2B̄ẋẏ + C̄ẋ2. Again characteristic curves are defined
by the property D = 0, i.e., the linear system is not uniquely solvable.

Definition 16 (characteristics) The characteristic curves (or: charac-
teristics) of a system (5.2) of PDEs of first order are the real-valued solu-
tions y(x) of the ordinary differential equation

y′(x) =
B̄(x, y)±

√
B̄(x, y)2 − Ā(x, y)C̄(x, y)

Ā(x, y)
(5.6)

with the functions from (5.5) assuming Ā(x, y) 6= 0.
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A curve including initial conditions (5.3) of a Cauchy problem must not
be tangential to a characteristic curve. We use the definition of the char-
acteristic curves to classify the systems (5.2) according to PDEs of second
order.

Definition 17 The system (5.2) of first order is called

elliptic if ĀC̄ − B̄2 > 0 ,

parabolic if ĀC̄ − B̄2 = 0 ,

hyperbolic if ĀC̄ − B̄2 < 0 .

A hyperbolic system exhibits two different families of characteristics, a
parabolic system has one family of characteristics and an elliptic system
does not include characteristics at all.

For the system (5.1), it holds a1 = A, b1 = 2B, d1 = C, b2 = −1, c2 = 1
and the other coefficients are zero. It follows Ā = A, B̄ = B and C̄ = C.
Hence Definition 17 is in agreement to the classification of PDEs of second
order.

We can apply the characteristic curves to construct a numerical method for
solving the systems (5.2). Along a characteristic curve, it holds

rank




a1 b1 c1 d1

a2 b2 c2 d2

ẋ ẏ 0 0
0 0 ẋ ẏ


 ≤ 3,

since the matrix is singular. Nevertheless, we assume that the PDE system
has a solution of a Cauchy problem, where the initial curve is not a char-
acteristics. Consequently, the solution satisfies the linear system (5.4) also
along the characteristics. It follows

rank




a1 b1 c1 d1 f1

a2 b2 c2 d2 f2

ẋ ẏ 0 0 u̇

0 0 ẋ ẏ v̇


 ≤ 3.
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If we choose four columns of this extended matrix, then the corresponding
determinant results to zero. For example, it holds

det




a1 b1 c1 f1

a2 b2 c2 f2

ẋ ẏ 0 u̇

0 0 ẋ v̇




= − ẋ(a1b2u̇ + b2f2ẋ + a2f1ẏ − b2f1ẋ− a1f2ẏ − a2b1u̇)

+ v̇(b1c2ẋ + a2c1ẏ − c1b2ẋ− a1c2ẏ) = 0.

This relation can be used in a method of characteristics to determine the
solution of a Cauchy problem.

We consider the special case of a system (5.2)

∂

∂x

(
u

v

)
+

(
b1 d1

b2 d2

)
∂

∂y

(
u

v

)
=

(
f1(x, y, u, v)
f2(x, y, u, v)

)
, (5.7)

i.e., a1 = c2 = 1, a2 = c1 = 0. The system (5.2) is equivalent to a PDE of
the form (5.7) provided that the first matrix is regular. It follows Ā = 1,
B̄ = 1

2(b1+d2), C̄ = b1d2−b2d1. The characteristic curves of the system (5.2)
are defined by

y′(x) = −1
2(b1 + d2)±

√
1
4(b1 + d2)2 − (b1d2 − b2d1).

The system (5.7) is hyperbolic if and only if

1
4(b1 + d2)

2 > b1d2 − b2d1. (5.8)

We investigate the eigenvalues λ of the matrix in (5.7). The characteristic
polynomial reads

det

(
b1 − λ d1

b2 d2 − λ

)
= λ2 − λ(b1 + d2) + b1d2 − b2d1

and thus

λ1/2 = 1
2(b1 + d2)±

√
(b1 + d2)2 − 4(b1d2 − b2d1).
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Hence two different eigenvalues λ1 and λ2 exist if the condition (5.8) holds.
Consequently, the matrix in (5.7) is real diagonalisable (matrix is diagonal-
isable and all eigenvalues are real).

This property motivates the definition of hyperbolic systems of PDEs in-
cluding n ≥ 2 unknowns.

Definition 18 (linear hyperbolic systems) A linear system of PDEs

∂u

∂t
+ A

∂u

∂x
= f(x, t, u) (5.9)

with solution u : (x0, x1) × (t0, t1) → Rn and a constant matrix A ∈ Rn×n

is called hyperbolic if and only if the matrix A is real diagonalisable.

In the case n = 2, a hyperbolic system (5.9) w.r.t. Definition 17 is also
hyperbolic w.r.t. Definition 18. Vice versa, a hyperbolic system (5.9) w.r.t.
Definition 18 is hyperbolic or parabolic w.r.t. Definition 17 for n = 2. A cor-
responding definition of elliptic and parabolic PDEs with n > 2 unknowns
does not exist. The special case n = 1 is always hyperbolic.

A hyperbolic system (5.9) can be decoupled in the following sense. Let
A = SDS−1 with a regular matrix S ∈ Rn×n and a diagonal matrix
D = diag(λ1, . . . , λn) ∈ Rn×n. Using v := S−1u, it follows

∂u
∂t + A ∂u

∂x = f(x, t, u)

∂u
∂t + SDS−1 ∂u

∂x = f(x, t, u)

S−1 ∂u
∂t + DS−1 ∂u

∂x = S−1f(x, t, u)

∂S−1u
∂t + D ∂S−1u

∂x = S−1f(x, t, u)

∂v
∂t + D ∂v

∂x = S−1f(x, t, Sv).

Defining g := S−1f , we obtain the equations

∂vj

∂t
+ λj

∂vj

∂x
= gj(x, t, v1, . . . , vn) for j = 1, . . . , n ,

where the left-hand side is decoupled. In case of f ≡ 0 (no source term),
the system (5.9) can be decoupled completely into n separate PDEs.
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5.2 Conservation laws

We introduce an example of a conservation law based on the conservation
of mass. Assume that a long tube is given, which is filled with gas. The
(mass) density ρ and the velocity v of the molecules shall be the same in
each cross section of the tube. Consequently, these values depend just on a
single space dimension along the tube and on the time. Let the velocity v
be a predetermined function, whereas the density is unknown a priori.

The mass of the gas within the space domain [x1, x2] (x1 < x2) in the tube
at time t is

M(x1, x2, t) :=

∫ x2

x1

ρ(x, t) dx.

The flux of mass across a point x at time t reads

f̃(ρ(x, t), v(x, t)) := ρ(x, t) · v(x, t).

In contrast to the density ρ > 0, the velocity v ∈ R can be negative. The
conservation of mass implies that the amount of gas in [x1, x2] can change
only by the inflow or the outflow of gas at the boundaries. It follows a first
formulation of a conservation law

d

dt

∫ x2

x1

ρ(x, t) dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t), (5.10)

where an integral in space and a time derivative is involved. We obtain a
pure integral form of the conservation law by an integration of (5.10) in the
time interval [t1, t2] (0 ≤ t1 < t2)

∫ x2

x1

ρ(x, t2) dx =

∫ x2

x1

ρ(x, t1) dx +

∫ t2

t1

ρ(x1, t)v(x1, t) dt

−
∫ t2

t1

ρ(x2, t)v(x2, t) dt.

(5.11)

Assuming ρ, v ∈ C1, an equivalent partial differential equation can be ob-
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tained. It holds

ρ(x, t2)− ρ(x, t1) =

∫ t2

t1

∂

∂t
ρ(x, t) dt,

ρ(x2, t)v(x2, t)− ρ(x1, t)v(x1, t) =

∫ x2

x1

∂

∂x
(ρ(x, t)v(x, t)) dx.

Inserting these equalities in (5.11) yields
∫ t2

t1

∫ x2

x1

[
∂

∂t
ρ(x, t) +

∂

∂x
(ρ(x, t)v(x, t))

]
dx dt = 0. (5.12)

The integrand is continuous due to the assumption ρ, v ∈ C1. Since the
equation (5.12) holds for arbitrary intervals [x1, x2] and [t1, t2], the funda-
mental theorem of variational calculus implies

ρt + (ρv)x = 0. (5.13)

We have achieved a pure differential equation of the conservation law. Re-
mark that (5.11) and (5.13) are equivalent for smooth solutions only. The
integral form (5.11) may have non-smooth or even discontinuous solutions,
which cannot satisfy the differential equation (5.13).

If the velocity v is not predetermined but a function in dependence on the
density v = g(ρ), then the PDE (5.13) exhibits the more general form of a
scalar nonlinear conservation law

ρt + f(ρ)x = 0, (5.14)

where f is a given flux function. If v does not depend on the (mass) density
only, then other conserved quantities have to be added to obtain a system
with as many unknowns as equations. For example, we arrange

(ρv)t + (ρv2 + p)x = 0 conservation of momentum
Et + (v(E + p))x = 0 conservation of energy

with the momentum density ρv, the energy E and the pressure p. The
pressure has to be specified as a function of ρ, ρv, E according to the physical
laws of gas dynamics. For example, an ideal gas satisfies

p = (γ − 1)(E − 1
2ρv2) (5.15)
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with a constant γ ∈ R like γ = 5
3 .

We obtain the Euler equations of gas dynamics, which represent a system
of three conservation laws. The conserved quantities are

u(x, t) =




u1(x, t)
u2(x, t)
u3(x, t)


 =




ρ(x, t)
ρ(x, t)v(x, t)

E(x, t)




and the corresponding flux function reads

f(u) =




ρv

ρv2 + p
v(E + p)


 =




u2

u2
2/u1 + p(u1, u2, u3)

(u2/u1)(u3 + p(u1, u2, u3))


 .

For the pressure, it holds p(u1, u2, u3) = (γ−1)(u3− 1
2u

2
2/u1) in case of (5.15).

In general, a system of conservation laws for m quantities u : R×R+
0 → Rm

with corresponding flux function f : Rm → Rm exhibits the differential
equations

ut + f(u)x = 0. (5.16)

An integral form like (5.10) is given by

d

dt

∫ x2

x1

u(x, t) dx = f(u(x1, t))− f(u(x2, t)). (5.17)

A (pure) integral form of the conservation law (5.16) like (5.11) reads
∫ x2

x1

u(x, t2) dx =

∫ x2

x1

u(x, t1) dx

+

∫ t2

t1

f(u(x1, t)) dt−
∫ t2

t1

f(u(x2, t)) dt,
(5.18)

where the integration is done in each component separately.

121



Hyperbolic systems

In the following, we assume that the flux function satisfies f ∈ C1. This
assumption is given in most of the practical cases.

Definition 19 (hyperbolic system) A conservation law (5.16) is called
hyperbolic, if the Jacobian matrix ∂f

∂u is real diagonalisable for all (rele-
vant) u. The conservation law (5.16) is called strictly hyperbolic, if the
system is hyperbolic and all eigenvalues of ∂f

∂u are pairwise different.

In the linear case f(u) = Au, this definition is in agreement with Defini-
tion 18. In particular, each linearisation of a nonlinear system (5.16) is a
hyperbolic system, which can be decoupled. Most of the conservation laws
applied in practice are hyperbolic.

In case of several space dimensions, each space coordinate requires an own
flux function. Given three space dimensions (x, y, z), the conserved quanti-
ties u : R3 ×R+

0 → Rm satisfy the system

ut + f(u)x + g(u)y + h(u)z = 0 (5.19)

with the flux functions f, g, h : Rm → Rm. The system (5.19) is called
hyperbolic, if all linear combinations α∂f

∂u + β ∂g
∂u + γ ∂h

∂u of the Jacobian ma-
trices are real diagonalisable for each α, β, γ ∈ R and all (relevant) values u.
Furthermore, a general conservation law with source term reads

ut + f(u)x + g(u)y + h(u)z = q(x, y, z, t, u)

with a function q : R3 ×R+
0 ×Rm → Rm.

Example: Shallow water equations

We consider a single space dimension first. Let h(x, t) be the water level (height) of a river
and u(x, t) the mean velocity. Let the bottom of the river be planar. The one-dimensional
shallow water equations are given by the conservation law

∂

∂t

(
h
uh

)
+

∂

∂x

(
uh

u2h + 1
2
gh2

)
=

(
0
0

)
,
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where g is the gravitation constant. This system reflects the conservation of mass and
momentum written in dependence on the water level. If the bottom of the river exhibits
a profile given by a smooth function S(x), then it follows a conservation law with source
term

∂

∂t

(
h
uh

)
+

∂

∂x

(
uh

u2h + 1
2
gh2

)
=

(
0

−ghS ′(x)

)
.

For a planar river bottom, it holds S(x) ≡ const. and thus the above conservation law is
recovered.

In case of two space dimensions, the river bottom is specified by a profile S(x, y) and
h(x, y, t) represents the water level. Let u(x, y, t) and v(x, y, t) be the mean velocities in
the directions x and y, respectively. We obtain a conservation law with source term

∂

∂t




h
uh
vh


 +

∂

∂x




uh
u2h + 1

2
gh2

uvh


 +

∂

∂y




vh
uvh

v2h + 1
2
gh2


 =




0
−gh∂S

∂x
(x, y)

−gh∂S
∂y

(x, y)


 ,

where two flux functions are included. The system is symmetric in x and y. For a planar
river bottom S(x, y) ≡ const., it follows a system of conservation laws. It can be shown
that the systems are hyperbolic. Remark that no three-dimensional shallow water equations
exist, since the third space dimension is given by the dependent variable h(x, y, t).

Weak solutions

Given a conservation law in the PDE form (5.16), a corresponding solution u

has to be smooth to satisfy the system per definition. However, non-smooth
or even discontinuous solutions are often physically reasonable. Hence we
will define weak solutions of conservation laws now.

We consider the initial value problem

ut + f(u)x = 0

u(x, t) = u0(x) for x ∈ R
with solution u : R×R+

0 → R. If u ∈ C1 holds, then u is called a classical
solution. We always assume f ∈ C1. We define the set of test functions

C1
0 := {φ : R2 → R, φ ∈ C1, supp(φ) is compact}.

The equation ut + f(u)x = 0 implies that it holds

φut + φf(u)x = 0 for each φ ∈ C1
0
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in each point (x, t) ∈ R×R+
0 . It follows

∫ ∞

0

∫ +∞

−∞
[φut + φf(u)x] dx dt = 0 for each φ ∈ C1

0 . (5.20)

Remark that the integrand is continuous due to the above assumptions.
Integration by parts yields

∫ ∞

0
φut dt = [φu]t→∞t=0 −

∫ ∞

0
φtu dt = −φ(x, 0)u(x, 0)−

∫ ∞

0
φtu dt,

∫ +∞

−∞
φf(u)x dx = [φf(u)]x→+∞

x→−∞ −
∫ +∞

−∞
φxf(u) dx = −

∫ +∞

−∞
φxf(u) dx,

since the support of φ is bounded. Inserting these equations in (5.20) results
in

∫ ∞

0

∫ +∞

−∞
[φtu + φxf(u)] dx dt = −

∫ +∞

−∞
φ(x, 0)u(x, 0) dx (5.21)

for each φ ∈ C1
0 . The partial derivatives have been shifted to the smooth

test functions. Now we can define a broader class of solutions.

Definition 20 (weak solution) Given a conservation law ut +f(u)x = 0,
a locally integrable function u : R × R+

0 → R is a weak solution if the
condition (5.21) holds for all test functions φ ∈ C1

0 .

On the one hand, a weak solution u satisfying u ∈ C1 is also a classical
solution. On the other hand, weak solutions may exist with u /∈ C1. Remark
that the condition (5.21) can be verified for locally integrable functions.
Whereas classical solutions of initial value problems are unique, many weak
solutions of a conservation law often exist. The generalisation to systems
of conservation laws is straightforward by components.

Moreover, the integral form (5.18) represents the conservation law, where
also just integrable functions are required. The condition (5.18) can be
evaluated for functions u ∈ U with

U := {u : R×R+
0 → R : u(·, t) piecewise continuous for each t ≥ 0,

f(u(x, ·)) piecewise continuous for each x ∈ R},
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for example. The condition (5.21) requires functions from the space

V := {u : R×R+
0 → R : u locally integrable in R×R+

0 }.
Assuming u ∈ U ∩ V , it can be shown that u satisfies (5.21) for all test
functions φ ∈ C1

0 if and only if u fulfills (5.18) for arbitrary boundaries
x1 < x2, 0 ≤ t1 < t2.

Characteristic curves

As a motivation, we consider an initial value problem of the linear advection
equation

ut + aux = 0 (a constant)

u(x, t) = u0(x) for x ∈ R.

The corresponding solution is

u(x, t) = u0(x− at).

For u0 ∈ C1 a classical solution results, whereas u0 /∈ C1 yields a weak
solution provided that u0 is integrable. We define the characteristic curves
of the advection equation as a family of parallel straight lines

x(t) := ξ + at

with the parameter ξ ∈ R. In particular, it holds

d
dtx(t) = a.

We obtain

u(x(t), t) = u0(x(t)− at) = u0(ξ + at− at) = u0(ξ),

i.e., the solution u is constant along each characteristic curve.

Now we investigate a scalar nonlinear conservation law. Assuming u ∈ C1,
it holds the equivalence

ut + f(u)x = 0 ⇔ ut + f ′(u)ux = 0,

where the right-hand equation represents the quasilinear form of the con-
servation law. Let initial conditions u(x, 0) = u0(x) be given. According to
the linear advection, we define characteristic curves.
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Definition 21 Considering a scalar conservation law ut + f(u)x = 0, the
corresponding characteristic curves are the solutions of the ordinary differ-
ential equation

d
dtx(t) = f ′(u(x(t), t)) (5.22)

for a given classical or weak solution u.

Assuming a classical solution u ∈ C1, we conclude

d
dtu(x(t), t) = ∂

∂tu(x(t), t) + ( ∂
∂xu(x(t), t)) d

dtx(t)

= ∂
∂tu(x(t), t) + ( ∂

∂xu(x(t), t))f ′(u(x(t), t))

= ∂
∂tu(x(t), t) + ∂

∂xf(u(x(t), t)) = 0.

It follows that the solution is constant along each characteristic curve, i.e.,

u(x(t), t) = u(x(0), 0) = u0(x(0)) for all t ≥ 0.

Consequently, the ODE (5.22) can be written as

d
dtx(t) = f ′(u(x(0), 0)) = f ′(u0(x(0))).

Since the right-hand side of the ODE is constant, the characteristic curves
are straight lines again. However, the straight lines are not parallel in gen-
eral. The information from the initial values u(x, 0) = u0(x) is transported
along the characteristic curves with finite speed.

In case of linear hyperbolic systems ut + Aux = 0, it holds A = SDS−1.
Thus system can be decoupled into the the separate scalar equations

∂vj

∂t + λj
∂vj

∂x = 0 for j = 1, . . . , m

with v := S−1u. Hence m families of characteristic curves exist, i.e.,

d
dtx(t) = λj ⇒ x(t) = ξ + λjt for j = 1, . . . ,m

with parameters ξ ∈ R. The transport of information proceeds along these
m families of characteristic curves in case of hyperbolic systems.
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Burgers’ equation

The Burgers’ equation represents a benchmark problem for scalar nonlinear
conservation laws, namely

ut +
(1

2u
2
)
x

= 0 (5.23)

Thus the flux function f(u) = 1
2u

2 is chosen relatively simple. The equiva-
lent quasilinear formulation for u ∈ C1 reads

ut + uux = 0.

Hence the corresponding characteristic curves are

x(t) = ξ + u(x(0), 0)t for ξ ∈ R
We investigate a Cauchy problem u(x, 0) = u0(x). If u0 ∈ C1 holds, then
a classical solution u (u ∈ C1) exists in each space interval I := [a, b] for
0 < t < TI . However, the final time TI may be small.

For example, we consider ξ1 < ξ2 and the corresponding characteristic curves

x1(t) = ξ1 + u0(ξ1)t, x2(t) = ξ2 + u0(ξ2)t.

Assuming u0(ξ1) 6= u0(ξ2), these straight lines intersect at the time

T =
ξ1 − ξ2

u0(ξ2)− u0(ξ1)
. (5.24)

If u0(ξ1) > u0(ξ2) holds, then it follows T > 0. A classical solution is
constant along each characteristic curve, which implies u(x1(T ), T ) = u0(ξ1)
and u(x2(T ), T ) = u0(ξ2) in contrast to u0(ξ1) 6= u0(ξ2) Consequently, a
classical solution of (5.23) does not exist for t ≥ T or earlier. Nevertheless,
weak solutions of the Cauchy problem exist, see Definition 20.

Since weak solutions typically exhibit discontinuities, we consider a corre-
sponding benchmark problem: the Riemann problem. A Riemann problem
consists of some conservation law together with initial conditions

u(x, t = 0) =

{
ul, x < 0
ur, x > 0

(5.25)
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Figure 18: Shock wave for Burgers’ equation with ul > ur.

for constants ul, ur ∈ R satisfying ul 6= ur. Hence a single discontinuity
appears at x = 0. Depending on the choice of the constants, two cases have
to be discussed.

Case 1: ul > ur

A unique weak solution exists given by

u(x, t) =

{
ul, x < st

ur, x > st
with s = 1

2(ul + ur). (5.26)

Solutions of this type a called shock waves. The discontinuity from the initial
values at x = 0 is transported in time with the shock speed s. The value of
the shock speed will be derived in the next subsection. The corresponding
characteristic curves are illustrated in Fig. 18. The characteristics enter the
shock, which indicates a physically reasonable solution.

Case 2: ul < ur

The shock wave (5.26) represents a weak solution of (5.23) again. The char-
acteristic curves are shown in Fig. 19. This weak solution is not physically
reasonable, since the characteristics leave the shock now. Nevertheless, an
infinite number of weak solutions exists in this case. The physically reason-
able solution is a rarefaction wave given by

u(x, t) =





ul, x < ult,
x
t , ult ≤ x ≤ urt,

ur, x > urt.
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Figure 19: Shock wave for Burgers’ equation with ul < ur.

0 0

ul

ur

u t

xx

Figure 20: Rarefaction wave for Burgers’ equation with ul < ur.

Moreover, this weak solution is not smooth but continuous. Fig. 20 illus-
trates the corresponding characteristic curves.

In case of nonlinear systems of conservation laws, a Riemann problem (5.25)
typically implies shock waves as well as rarefaction waves in each component.

Shock speed

For systems of conservation laws ut + f(u)x = 0, shock waves

u(x, t) =

{
ul, x < st

ur, x > st
(5.27)

with ul, ur ∈ Rm often represent a weak solution. The corresponding shock
speed s ∈ R has to be determined appropriately. For fixed t > 0, we can
choose M > 0 sufficiently large such that u(x, t) = ul holds for all x ≤ −M
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and u(x, t) = ur holds for all x ≥ M , since the transport of information is
finite in hyperbolic equations. On the one hand, the general relation (5.17)
yields

d

dt

∫ M

−M

u(x, t) dx = f(u(−M, t))− f(u(M, t)) = f(ul)− f(ur).

On the other hand, the specific solution (5.27) implies
∫ M

−M

u(x, t) dx = (M + st)ul + (M − st)ur

and thus
d

dt

∫ M

−M

u(x, t) dx = s(ul − ur).

It follows the Rankine-Hugoniot condition

f(ul)− f(ur) = s(ul − ur). (5.28)

For systems of conservation laws, the condition (5.28) represents m equa-
tions for the scalar shock speed s. Hence this condition will not be satisfied
for arbitrary ul, ur in general. For linear systems with f(u) = Au with
A ∈ Rm×m, the condition (5.28) is equivalent to

A(ul − ur) = s(ul − ur).

Thus ul− ur has to be an eigenvector of A and the shock speed s results to
the corresponding eigenvalue.

In case of the Riemann problem (5.25) for scalar conservation laws, the
shock wave (5.27) always represents a weak solution provided that

s =
f(ul)− f(ur)

ul − ur
.

Strictly speaking, we have just shown that the criterion (5.28) of Rankine-
Hugoniot represents a necessary condition. It can be shown that the con-
dition is also sufficient. In case of the Burgers’ equation (5.23), the shock
speed reads

s =
1
2u

2
l − 1

2u
2
r

ul − ur
=

1
2(ul + ur)(ul − ur)

ul − ur
= 1

2(ul + ur),

which has been already used in (5.26).
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5.3 Numerical methods for linear systems

In this section, we discuss finite difference methods for linear hyperbolic
systems. The linear case illustrates the typical behaviour of the numerical
techniques, which are generalised to the nonlinear case in Section 5.4. The
solution of initial value problems of linear hyperbolic systems can be de-
termined exactly by decoupling the equations, i.e., without using numerical
methods.

Preliminaries

We consider a linear system of conservation laws

∂u

∂t
+ A

∂u

∂x
= 0 (5.29)

with solution u : R × R+
0 → Rm and a constant matrix A ∈ Rm×m. As

initial conditions, let a Cauchy problem

u(x, t = 0) = u0(x) for x ∈ R (5.30)

be given with a predetermined function u0 : R→ Rm.

To construct finite difference methods, we introduce a grid in the domain
of dependence. Let h = ∆x and k = ∆t be the step sizes in space and time,
respectively. We consider the grid points

(xj, tn) := (jh, nk) for j ∈ Z, n ∈ N0.

We also apply the intermediate points

xj+ 1
2

:= xj + h
2 =

(
j + 1

2

)
h.

Let un
j := u(xj, tn) be the evaluations of a classical solution in the grid

points. We want to determine approximations Un
j ∈ Rm for un

j . In case of
a weak solution, the pointwise evaluation un

j is not well-defined in general.
Alternatively, the value Un

j can be seen as an approximation of the cell
average

ūn
j :=

1

h

∫ x
j+1

2

x
j− 1

2

u(x, tn) dx. (5.31)
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The integral form of the conservation law describes the evolution of the
cell averages in time. The initial values U0

j are defined either pointwise by
u0(xj) or as cell averages ū0

j . A comparison to the exact solution is feasible
by using the function

Uk(x, t) := Un
j for (x, t) ∈ [xj− 1

2
, xj+ 1

2
)× [tn, tn+1). (5.32)

This piecewise constant function exhibits just the subscript k, since the ratio
k
h of the step sizes is assumed to be constant. Thus k → 0 is equivalent to
h → 0.

A finite difference method determines the approximation U 1
j in the first time

layer by using the initial values U 0
j . Successively, a one-stage method applies

the data Un
j to obtain the approximations Un+1

j . In a multi-stage method

with l+1 stages, the data Un−l
j , . . . , Un−1

j , Un
j yield the approximations Un+1

j .
However, we consider only one-stage methods in the following, since multi-
stage methods are not used in practice for conservation laws.

The Cauchy problem (5.29), (5.30) defines a solution in the complete domain
of dependenceR×R+. In a numerical method, we have to choose a bounded
domain. Let the interval a ≤ x ≤ b be given in space. Boundary conditions
are required at the boundaries of this finite interval. In case of periodic
initial conditions u0 with period b− a, periodic boundary conditions

u(a, t) = u(b, t) for all t ≥ 0

are reasonable. However, this situation is rather seldom in practice. Alter-
natively, a Riemann problem (5.25) implies the conditions

u(a, t) = ul, u(b, t) = ur for 0 ≤ t ≤ T (5.33)

provided that the boundaries are sufficiently far away from the initial dis-
continuity at x = 0, since the information travels with finite speed. In
particular, the boundary conditions (5.33) are feasible with ul = ur = 0 in
case of initial data u0 with compact support.
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Construction of finite difference methods

Many finite difference methods are feasible for solving linear hyperbolic sys-
tems (5.29). Often the methods result from replacing the partial derivatives
by difference formulas. For example, using the explicit Euler scheme in time
and a symmetric discretisation in space yields

1
k

(
Un+1

j − Un
j

)
+ A 1

2h

(
Un

j+1 − Un
j−1

)
= 0 (5.34)

and thus
Un+1

j = Un
j − k

2hA
(
Un

j+1 − Un
j−1

)
. (5.35)

However, the method (5.35) is unstable, which can be shown by the concept
of von-Neumann. In contrast, a discretisation via the implicit Euler scheme
results in a stable method, i.e.,

1
k

(
Un+1

j − Un
j

)
+ A 1

2h

(
Un+1

j+1 − Un+1
j−1

)
= 0. (5.36)

If N grid points are given in space, it follows a linear system with mN alge-
braic equations for the unknown approximations. Thus a significant com-
putational effort appears in comparison to an explicit method like (5.34).

For parabolic PDEs (like the heat equation), we obtain significant restric-
tions on the step sizes in explicit methods by the stability. In case of implicit
methods, these restrictions are not given. For hyperbolic systems, the same
situation appears qualitatively. However, the conditions on the step sizes
are less strong in the explicit techniques. It follows that explicit methods are
more efficient than implicit methods in case of hyperbolic PDEs. Moreover,
explicit methods mimic the finite speed of the transport of information in
hyperbolic systems. Consequently, we consider just explicit techniques in
the following.

The explicit finite difference method (5.35) can be modified into a stable
method via a substitution of the central approximation Un

j by the arithmetic
mean of the neighbouring approximations. It follows the Lax-Friedrichs
method

Un+1
j = 1

2

(
Un

j−1 + Un
j+1

)− k
2hA

(
Un

j+1 − Un
j−1

)
. (5.37)

A simpler choice of the difference formula for the space derivative yields

1
k

(
Un+1

j − Un
j

)
+ A 1

h

(
Un

j − Un
j−1

)
= 0
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and thus
Un+1

j = Un
j − k

hA
(
Un

j − Un
j−1

)
. (5.38)

Alternatively, a similar scheme is obtained by

1
k

(
Un+1

j − Un
j

)
+ A 1

h

(
Un

j+1 − Un
j

)
= 0

and thus
Un+1

j = Un
j − k

hA
(
Un

j+1 − Un
j

)
. (5.39)

The methods (5.38) and (5.39) are called the upwind methods due to the ap-
plications in gas dynamics. However, a necessary condition for the stability
of the technique (5.38) is that all eigenvalues of A are non-negative. Like-
wise, the scheme (5.39) requires that all eigenvalues of A are non-positive.

Furthermore, methods of higher order can be constructed via a Taylor ex-
pansion. Assuming a classical solution u ∈ C3 in time, we obtain

u(x, t + k) = u(x, t) + kut(x, t) + 1
2k

2utt(x, t) +O(k3). (5.40)

The linear conservation law (5.29) allows for the substitutions

ut = −Aux, utt = −Auxt = −Autx = −A(−Aux)x = A2uxx. (5.41)

It follows

u(x, t + k) = u(x, t)− kAux(x, t) + 1
2k

2A2uxx(x, t) +O(k3).

We replace the derivatives in space by symmetric difference formulas of
second order, which results in the Lax-Wendroff method

Un+1
j = Un

j − k
2hA(Un

j+1 − Un
j−1) + k2

2h2A
2(Un

j+1 − 2Un
j + Un

j−1). (5.42)

A one-sided discretisation of the space derivatives yields the Beam-Warming
method

Un+1
j = Un

j − k
2hA(3Un

j − 4Un
j−1 +Un

j−2)+ k2

2h2A
2(Un

j − 2Un
j−1 +Un

j−2). (5.43)

Likewise, methods of higher order can be derived.
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Table 1: Finite difference methods for linear systems ut + Aux = 0.

name formula

expl. Euler Un+1
j = Un

j − k
2h

A(Un
j+1 − Un

j−1)

impl. Euler Un+1
j = Un

j − k
2h

A(Un+1
j+1 − Un+1

j−1 )

upwind (left-hand) Un+1
j = Un

j − k
h
A(Un

j − Un
j−1)

upwind (right-hand) Un+1
j = Un

j − k
h
A(Un

j+1 − Un
j )

Lax-Friedrichs Un+1
j = 1

2
(Un

j−1 + Un
j+1)− k

2h
A(Un

j+1 − Un
j−1)

Lax-Wendroff Un+1
j = Un

j − k
2h

A(Un
j+1 − Un

j−1)

+ k2

2h2 A
2(Un

j+1 − 2Un
j + Un

j−1)

Beam-Warming Un+1
j = Un

j − k
2h

A(3Un
j − 4Un

j−1 + Un
j−2)

+ k2

2h2 A
2(Un

j − 2Un
j−1 + Un

j−2)

The above techniques are constructed using the differential equations. How-
ever, we are also interested in weak solutions, which satisfy the correspond-
ing integral formulation. It is surprising that methods based on the differ-
ential equations are often suitable also for weak solutions, which are neither
smooth nor continuous.

Consistency, Stability and Convergence

We analyse the convergence of explicit finite difference methods now. This
analysis is similar to the case of ordinary differential equations.

We require a specific notation. Let the application of a one-stage method
be given by a operator Hk, i.e.,

Un+1 = Hk(U
n), Un+1

j = Hk(U
n; j),

where Un is the vector including all approximations Un
j ∈ Rm. For example,

the method (5.35) implies the operator

Hk(U
n; j) = Un

j − k
2hA

(
Un

j+1 − Un
j−1

)
. (5.44)
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The difference operator Hk can also be applied to a function v : R → Rm.
Thereby, the difference formula is centered around an arbitrary point x ∈ R.
In case of (5.35), the evaluation Hk(v) is defined by

Hk(v; x) = (Hk(v))(x) = v(x)− k
2hA (v(x + h)− v(x− h)) .

In particular, the difference operator can be applied to the piecewise con-
stant function (5.32). It holds

Uk(x, t + k) = Hk(Uk(·, t); x), (5.45)

where the evaluation of the operator coincides for the discrete data and the
constructed function. Due to this identity, we apply the same symbol in
our notation.

We consider just linear methods in this chapter, i.e., the operators Hk are
linear. Hence it holds

Hk (αUn + βV n) = αHk (Un) + βHk (V n) (α, β ∈ R).

The operator is also well-defined in case of an infinite number of grid points,
where Un ∈ R∞ holds. In case of a grid with N points, it follows Un ∈ RmN .
Thus the operator is given by a matrix of size mN ×mN . The method can
be written as Un+1 = HkU

n using the same symbol for the operator as well
as the matrix.

We are interested in the error of the approximations with respect to the
exact solution. In case of classical solutions, the global error is defined by

En
j := Un

j − un
j .

In case of weak solutions, we consider the errors with respect to the cell
averages, i.e.,

Ēn
j := Un

j − ūn
j .

We define the error function

Ek(x, t) := Uk(x, t)− u(x, t) (5.46)

using (5.32). It follows the pointwise evaluations En
j in (xj, tn) and the

corresponding cell averages Ēn
j . The convergence of the method is defined

via the global error.
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Definition 22 A method Un+1 = Hk(U
n) with the global error (5.46),

where Uk(x, t) is computed recursively using Hk and the initial data u0,
is called convergent with respect to a norm ‖ · ‖, if it holds

lim
k→0

‖Ek(·, t)‖ = 0 (5.47)

for each t ≥ 0 and all initial values u0 (in some class).

The convergence of a method depends on the choice of the norm. For
simplicity, we consider a scalar function v : R → R. In case of a classical
(or at least continuous) solution, the convergence is optimal in the maximum
norm

‖v‖∞ = sup{|v(x)| : x ∈ R}.
In case of weak solutions, the integral form of the conservation law suggests
the integral norm

‖v‖1 =

∫ +∞

−∞
|v(x)| dx. (5.48)

We apply the norm ‖·‖1 and write simply ‖·‖ in the following. The integral
norm can be applied to the discrete data via

‖Un‖1 := ‖Uk(·, tn)‖1 = h

+∞∑
j=−∞

|Un
j | (Un

j ∈ R). (5.49)

The convergence (5.47) is defined for a vector-valued error function (5.46).
The method is convergent if and only if the global error converges to zero
in each component. Hence we consider the norm component-wise. A cor-
responding vector norm can be applied. For example, the maximum norm
yields

lim
k→0

‖Ek(·, t)‖ = 0 :⇔ lim
k→0

max{‖(Ek(·, t))p‖1 : p = 1, . . . , m} = 0.

Since the global error cannot be estimated directly, we require further con-
cepts to analyse the convergence. We insert the exact solution of the con-
servation law into the formula of a finite difference method. For example,
the Lax-Friedrichs method (5.37) can be written in the form

1
k

(
Un+1

j − 1
2

(
Un

j−1 + Un
j+1

))
+ 1

2hA
(
Un

j+1 − Un
j−1

)
= 0. (5.50)
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The local error follows from an evaluation at an exact solution, i.e.,

Lk(x, t) := 1
k

(
u(x, t + k)− 1

2 (u(x− h, t) + u(x + h, t))
)

+ 1
2hA (u(x + h, t)− u(x− h, t)) .

If the solution is sufficiently smooth, a Taylor expansion yields (u ≡ u(x, t))

Lk(x, t) = 1
k

((
u + kut + 1

2k
2utt +O(k3)

) − (
u + 1

2h
2uxx +O(h4)

))

+ 1
2hA

(
2hux +O(h3)

)

= ut + Aux + 1
2

(
kutt − h2

k uxx

)
+O(k2),

(5.51)
where r := k

h is assumed to be constant. Since u satisfies the differential
equations (5.29), we apply the substitutions (5.41) and obtain

Lk(x, t) = 1
2k

(
A2 − h2

k2I
)

uxx(x, t) +O(k2). (5.52)

It follows the pointwise convergence

lim
k→0

Lk(x, t) = 0 for each x ∈ R and each t ≥ 0.

The partial derivatives of the solution can be bounded by the derivatives
of the initial values u0. For each component p = 1, . . . , m, we obtain an
estimate

|(Lk(x, t))p| ≤ Cpk for all k < k0

and arbitrary x, i.e., also in the maximum norm. The constants Cp depend
just on the initial data u0 of the solution. If the support of the initial values
is compact, then it follows a finite integral norm for each t ≥ 0 and it holds

‖(Lk(·, t))p‖1 ≤ C̃pk for all k < k̃0,

where the constants C̃p depend on the initial data.

Likewise, the consistency of a general one-stage method can be defined.
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Definition 23 A finite difference method Un+1 = Hk(U
n) with the local

error
Lk(x, t) = 1

k [u(x, t + k)−Hk(u(·, t); x)] (5.53)

is called consistent, if it holds

lim
k→0

‖Lk(·, t)‖ = 0

for each t ≥ 0 and all initial values u0 (in same class). A finite differ-
ence method is consistent of order q, if for each initial values with compact
support and each T > 0 some constants CL ≥ 0 and k0 > 0 exist such that

‖Lk(·, t)‖ ≤ CLkq for all k < k0, t ≤ T. (5.54)

Again the consistency depends on the choice of the norm. We consider the
integral norm ‖ · ‖1. The application to vector-valued functions is done as
for the global error.

For a consistent method, the local error can be reduced by choosing suffi-
ciently small step sizes. However, the consistency alone is not sufficient for
the convergence of the method, i.e., a reduction of the global error.

To guarantee the convergence of a method, we require the stability of the
finite difference scheme. The local error (5.53) implies

u(x, t + k) = Hk(u(·, t); x) + kLk(x, t). (5.55)

Using (5.45), the linearity of the operator yields a recursion for the global
error

Ek(x, t + k) = Hk(Ek(·, t); x)− kLk(x, t). (5.56)

The global error at time t + k consists to two parts: a contribution of the
global error in the previous time layer and a new contribution from the
current local error. We solve the recursion and obtain at time tn

Ek(·, tn) = Hn
k(Ek(·, 0))− k

n∑
i=1

Hn−i
k (Lk(·, ti−1)), (5.57)

where Hi
k denotes the i-fold application of the operator Hk.
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The global error (5.57) includes an error from the initial values, which results
from changing the initial function u0 into discrete data. However, this
error vanishes in the limit case h → 0. The global error is bounded at
time tn provided that the local errors in (5.57) are not accumulated by the
evaluations of the operators Hk. It follows the concept of stability.

Definition 24 The finite difference method Un+1 = Hk(U
n) is called stable

(according to Lax-Richtmyer), if for each T ≥ 0 it exist constants CS ≥ 0
and k0 > 0 satisfying

‖Hn
k‖ ≤ CS for all nk ≤ T, k < k0. (5.58)

The definition of the stability involves the norm of the operators Hn
k . For a

linear operator G : R∞ → R∞, the operator norm is given by

‖G‖ := sup
V 6=0

‖G(V )‖
‖V ‖ (V ∈ R∞) ,

where we apply the norm (5.49) on R∞. This norm is generalised to a
system of equations by considering the maximum again. In case of N grid
points in space, an arbitrary vector norm can be used on RmN .

Since it holds ‖Hn
k‖ ≤ ‖Hk‖n, the condition ‖Hk‖ ≤ 1 is sufficient for the

stability of the method. Some growth of the operator norm is allowed. For
example, the condition

‖Hk‖ ≤ 1 + αk for all k < k0

implies

‖Hn
k‖ ≤ ‖Hk‖n ≤ (1 + αk)n ≤ eαkn ≤ eαT for all nk ≤ T,

i.e., the stability property (5.58).

We reconsider the Lax-Friedrichs method (5.37) in case of the linear advec-
tion equation ut + aux = 0, i.e.,

Un+1
j = 1

2

(
Un

j−1 + Un
j+1

)− ak
2h

(
Un

j+1 − Un
j−1

)
.
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The corresponding norm (5.49) on R∞ becomes

‖Un+1‖ = h

+∞∑

j=−∞

∣∣Un+1
j

∣∣

≤ h
2

[
+∞∑

j=−∞

∣∣1− ak
h

∣∣ ·
∣∣Un

j+1

∣∣ +
+∞∑

j=−∞

∣∣1 + ak
h

∣∣ ·
∣∣Un

j−1

∣∣
]

.

The condition ∣∣∣∣
ak

h

∣∣∣∣ ≤ 1 (5.59)

guarantees that the coefficients are not negative. We estimate

‖Un+1‖ ≤ h
2

[(
1− ak

h

) ∑
j

∣∣Un
j+1

∣∣ +
(
1 + ak

h

) ∑
j

∣∣Un
j−1

∣∣
]

= 1
2

[(
1− ak

h

) ‖Un‖+
(
1 + ak

h

) ‖Un‖] = ‖Un‖.
Thus the condition (5.59) implies ‖Hk‖ ≤ 1 and the method is stable. The
derivation of the stability condition uses the same strategy as in the direct
estimation for parabolic equations in Sect. 3.3.

A linear hyperbolic system (5.29) can be decoupled into m linear advection
equations by a linear transformation. It follows that the Lax-Friedrichs
method is stable in case of

∣∣∣∣
λpk

h

∣∣∣∣ ≤ 1 for all p = 1, . . . , m , (5.60)

where λp ∈ R represent the eigenvalues of the matrix A.

The stability concept of Lax-Richtmyer agrees to the Lipschitz-continuous
dependence of the numerical solution with respect to the initial values. Let
Un, V n be the approximations computed from U0, V0, respectively. It follows

‖Un − V n‖ = ‖Hn
k(U

0)−Hn
k(V

0)‖ = ‖Hn
k(U

0 − V 0)‖
≤ ‖Hn

k‖ · ‖U0 − V 0‖ ≤ CS‖U0 − V 0‖.
Alternatively, the stability concept of von-Neumann can be carried over to
the case of linear hyperbolic equations.
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As for ordinary differential equations, the convergence is equivalent to the
stability in case of consistent methods. This result is given by the equiva-
lence theorem of Lax.

Theorem 15 (Lax) Considering the linear hyperbolic system (5.29), let
the linear method Un+1 = Hk(U

n) be consistent. It follows that stability
(according to Lax-Richtmyer) and convergence of the method are equivalent.

The proof can be found in, for example, J.C. Strikwerda: Finite Difference
Schemes and Partial Differential Equations. Wadsworth & Brooks/Cole,
1989.

We just show the more important part, namely that the stability implies
the convergence. The equation (5.57) implies

‖Ek(·, tn)‖ ≤ ‖Hn
k‖ · ‖Ek(·, 0)‖+ k

n∑
i=1

‖Hn−i
k ‖ · ‖Lk(·, ti−1)‖.

The stability condition (5.58) allows for the estimate

‖Ek(·, tn)‖ ≤ CS

(
‖Ek(·, 0)‖+ k

n∑

i=1

‖Lk(·, ti−1)‖
)

.

If the method is consistent of order q, then the property (5.54) yields the
estimate

‖Ek(·, tn)‖ ≤ CS

(‖Ek(·, 0)‖+ TCLkq
)

for all k < k0

and each time nk = tn ≤ T . If the error vanishes in the initial data, then
we obtain the convergence immediately. Otherwise, we demand that the
errors in the initial values exhibit the magnitude O(hq). We assume that
r = k

h is constant. It follows for t = tn

‖Ek(·, t)‖ ≤ CEkq for all t ≤ T and k < k0.

In particular, the order of consistency coincides with the order of conver-
gence.
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CFL condition

A linear hyperbolic system (5.29) can be decoupled into m separate linear
advection equations vt +λjvx = 0, where λ1, . . . , λm ∈ R are the eigenvalues
of the matrix A. It follows that the solution u in a point (x∗, t∗) depends
on the initial values (5.30) at t = 0 just in the space points

D(x∗, t∗) := {x∗ − λjt
∗ : j = 1, . . . , m} . (5.61)

The set (5.61) is called the analytical domain of dependence of the solution.

A natural requirement for a numerical method is that the approximation
in a grid point (xj, tn) is computed using initial data close to the space
points (5.61) for x∗ = xj, t∗ = tn. Otherwise, we could modify the initial
data such that the exact solution changes in (xj, tn), whereas the numerical
approximation remains constant.

For example, we discuss the important case of an explicit method, where
the approximation Un

j depends on the three previous approximations Un−1
l

for l = j − 1, j, j + 1. Successively, the approximation Un
j is calculated by a

finite set of initial values U0
l , see Fig. 21. It follows the numerical domain

of dependence
Dk(xj, tn) ⊂ {x : |x− xj| ≤ nh}

at time t = 0. More general, a point (x∗, t∗) with t∗ = nk exhibits the
numerical domain of dependence

Dk(x
∗, t∗) ⊂ {

x : |x− x∗| ≤ h
k t∗

}
.

For constant r = k
h , the limit k → 0 yields

D0(x
∗, t∗) :=

{
x : |x− x∗| ≤ t∗

r

}
, (5.62)

since the grid points become dense in the limit. The numerical domain of de-
pendence (5.62) has to include the analytical domain of dependence (5.61),
i.e.,

D(x∗, t∗) ⊂ D0(x
∗, t∗). (5.63)

The requirement (5.63) is called the CFL condition due to Courant, Fried-
richs and Lewy. We have shown that the CFL condition is necessary for the
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Figure 21: Numerical domain of dependence.

convergence of a numerical method. According to Theorem 15, the CFL
condition is also necessary for the stability in case of a consistent method.
Hence a consistent technique violating the CFL condition cannot be stable.

In our example, the CFL condition (5.63) results to the equivalent require-
ment

|(x∗ − λpt
∗)− x∗| ≤ t∗

r ⇔
∣∣∣λpk

h

∣∣∣ ≤ 1 (5.64)

for all p = 1, . . . , m. On the one hand, the CFL condition coincides with the
stability condition (5.60) of the Lax-Friedrichs method (5.37). On the other
hand, the explicit Euler method (5.35) satisfies the CFL condition (5.64)
for sufficiently small step size k. However, the explicit Euler method is un-
stable for all step sizes. Hence the CFL property represents just a necessary
condition for stability.

In particular, a CFL condition has to be satisfied for one-sided methods like
the upwind schemes. Considering the linear advection equation ut+aux = 0,
the left-sided method (5.38) reads

Un+1
j = Un

j − ak
h

(
Un

j − Un
j−1

)
, (5.65)

whereas the right-sided scheme (5.39) results to

Un+1
j = Un

j − ak
h

(
Un

j+1 − Un
j

)
. (5.66)

Both techniques are consistent of first order. A corresponding CFL condi-
tion can be constructed, which depends on the sign of the velocity a. In

144



case of a > 0, the CFL condition is never satisfied by the method (5.66),
whereas the method (5.65) fulfills the CFL condition for sufficiently small
time step size k. In case of a < 0, the properties are vice versa. Moreover,
the upwind methods are stable if and only if their CFL condition is satisfied.

Simulation of weak solutions

In the above analysis of consistency and convergence, we have assumed suf-
ficiently smooth solutions, i.e., classical solutions. However, weak solutions
appear in practice. We expect a corresponding critical behaviour for non-
smooth solutions. Typically, discontinuities appear at isolated locations. To
investigate the performance of the methods, we consider a Riemann problem
of the scalar linear advection equation

ut + aux = 0, u : R×R+
0 → R,

u0(x) =

{
1 for x < 0
0 for x > 0.

(5.67)

with constant velocity a 6= 0. The unique solution is u(x, t) = u0(x − at).
Due to the discontinuity, a difference formula for ux becomes unbounded in
case of h → 0. The local error of the method does not converge to zero.
Thus Theorem 15 cannot be applied.

Alternatively, the initial data u0 can be approximated by smooth func-
tions uε

0, where the limit ε → 0 recovers u0. Given a method, which is
consistent and stable for smooth solutions, it follows the convergence again.
However, the order of convergence can be reduced significantly. In particu-
lar, a numerical solution includes obvious errors using some finite grid.

The simulation of the Riemann problem (5.67) for a = 1 illustrates the
critical behaviour. We apply the Lax-Friedrichs method (5.37), the upwind
scheme (5.65), the Lax-Wendroff method (5.42) and the Beam-Warming
technique (5.43). Fig. 22 illustrates the results. The corresponding be-
haviour is typical:
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Figure 22: Numerical solutions using step sizes h = 0.01, k = 0.005 (solid line) and exact
solution (dashed line) of Riemann problem for a = 1 at time t = 0.5.
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• Methods of first order yield smeared solutions, i.e., an incorrect nu-
merical diffusion appears. The shape of the discontinuity is not re-
produced. Nevertheless, the decay of the numerical approximations is
centered around the correct location of the discontinuity.

• Methods of second order reproduce the shape of the discontinuity sig-
nificantly better. The position of the discontinuity is resolved correctly
again. However, incorrect oscillations appear close to the discontinuity.

This qualitative behaviour of the finite difference methods can be explained
by the concept of modified partial differential equations.

Furthermore, the global error can be estimated with respect to the integral
norm (5.48) in case of the Riemann problem (5.67). Considering h → 0 and
k
h constant, it follows

‖u(·, t)− Uk(·, t)‖1 ≈ Cth
q for each t ≥ 0

with q = 1
2 in case of the Lax-Friedrichs method (5.37) and q = 2

3 in case of
the Lax-Wendroff scheme (5.42). Hence the classical order of consistency is
reduced significantly.
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5.4 Conservative methods for nonlinear systems

Now we construct numerical methods for general nonlinear systems of con-
servation laws

ut + f(u)x = 0 (5.68)

with an unknown solution u : R × R+
0 → Rm and a smooth flux function

f : Rm → Rm. We assume that the system (5.68) is hyperbolic. A grid
xj := jh and tn := nk is applied again with step sizes h and k in space
and time, respectively. In particular, we want to determine approximations
of weak solutions of the system (5.68). Accordingly, corresponding cells
are considered in the domain of dependence, see Figure 23. The integral
form (5.18) of the conservation law (5.68) yields the equations

∫ x
j+1

2

x
j− 1

2

u(x, tn+1) dx =

∫ x
j+1

2

x
j− 1

2

u(x, tn) dx

+

∫ tn+1

tn

f(u(xj− 1
2
, t)) dt−

∫ tn+1

tn

f(u(xj+ 1
2
, t)) dt

(5.69)

for each j ∈ Z and n ∈ N0. Dividing (5.69) by h, we obtain an equation for
the evolution of the cell averages (5.31)

ūn+1
j = ūn

j +
1

h

∫ tn+1

tn

f(u(xj− 1
2
, t)) dt− 1

h

∫ tn+1

tn

f(u(xj+ 1
2
, t)) dt. (5.70)

Numerical methods are constructed using the equation (5.70) now.

Definition 25 (conservative method) A finite difference method is
called conservative, if it can be written in the form

Un+1
j = Un

j − k
h

[
F (Un

j−p, U
n
j−p+1, . . . , U

n
j+q)

− F (Un
j−p−1, U

n
j−p, . . . , U

n
j+q−1)

] (5.71)

with a fixed function F : Rp+q+1 → Rm and some integers p, q ≥ 0.

The most important case is p = 0 and q = 1 in (5.71), where the method
reads

Un+1
j = Un

j − k
h

[
F (Un

j , Un
j+1)− F (Un

j−1, U
n
j )

]
. (5.72)
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Figure 23: Cells in grid for finite difference method.

For the formula (5.71), we apply the short notation

Un+1
j = Un

j − k
h [F (Un; j)− F (Un; j − 1)] , (5.73)

where Un represents the complete data at time tn. A comparison of (5.70)
and (5.73) shows that we want to achieve an approximation

F (Un; j) ≈ 1

k

∫ tn+1

tn

f(u(xj+ 1
2
, t)) dt. (5.74)

Thus the function F is called the numerical flux function of the method.

To achieve a reasonable approximation in (5.74), a natural requirement is
that a constant flux function is approximated exactly, i.e.,

F (u, u, . . . , u) = f(u) for each (relevant) u ∈ Rm. (5.75)

Yet the condition (5.75) is not sufficient to obtain a convergent method. We
demand a slightly stronger property.

Definition 26 (consistency of conservative method)
A conservative method (5.71) is called consistent, if the local Lipschitz con-
dition

∥∥F (Un
j−p, U

n
j−p+1, . . . , U

n
j+q)− f(u)

∥∥ ≤ C max
−p≤i≤q

‖Uj+i − u‖ (5.76)

holds for each relevant u ∈ Rm with a constant C (which may depend on u)
in an arbitrary vector norm.
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Sufficient for the Lipschitz condition (5.76) is the elementary property (5.75)
and F ∈ C1. Often f ∈ C1 implies also F ∈ C1. Obviously, the condi-
tion (5.76) implies (5.75).

Remark that we do not define an order of consistency in case of weak so-
lutions. A consistency of higher order typically requires sufficiently smooth
solutions. Smooth solutions are classical solutions, where the usual concept
of consistency applies. In contrast, weak solutions are not smooth.

Discrete conservation

Consistent conservative methods according to Definition 25 have an ad-
vantageous property in solving conservation laws, namely the principle of
discrete conservation. Let initial values u(x, 0) = u0(x) be given with
u0(x) = u−∞ for x ≤ α and u0(x) = u+∞ for x ≥ β. In particular, these
assumptions are fulfilled for initial values with compact support. We choose
a < b and T > 0 such that

u(a, t) = u−∞, u(b, t) = u+∞ for all 0 ≤ t ≤ T

holds. On the one hand, the integral form (5.18) yields
∫ b

a

u(x, tN) dx =

∫ b

a

u(x, 0) dx− tN [f(u+∞)− f(u−∞)] (5.77)

for tN = Nk ≤ T . On the other hand, we sum up the formulas of the
conservative method (5.73)

h
L∑

j=J

Un+1
j = h

L∑

j=J

Un
j − k

L∑

j=J

[F (Un; j)− F (Un; j − 1)]

= h

L∑

j=J

Un
j − k[F (Un; L)− F (Un; J − 1)]

= h

L∑

j=J

Un
j − k[f(u+∞)− f(u−∞)]

using some J, L satisfying Jh ¿ α and Lh À β. We have applied the con-
sistency (5.75) of the conservative method in the last equality. Recursively,
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we obtain

h

L∑

j=J

UN
j = h

L∑

j=J

U 0
j − tN [f(u+∞)− f(u−∞)].

We assume that the initial values are the exact cell averages, i.e., U 0
j = ū0

j .
It follows

h

L∑

j=J

U0
j =

∫ x
L+1

2

x
J− 1

2

u(x, 0) dx.

and thus

h

L∑

j=J

UN
j =

∫ x
L+1

2

x
J− 1

2

u(x, 0) dx− tN [f(u+∞)− f(u−∞)]. (5.78)

A comparison of (5.77) and (5.78) yields the crucial equality

h

L∑

j=J

UN
j =

∫ x
L+1

2

x
J− 1

2

u(x, tN) dx. (5.79)

The finite difference method defines an approximating function (5.32) sat-
isfying ∫ x

L+1
2

x
J− 1

2

Uk(x, tN) dx =

∫ x
L+1

2

x
J− 1

2

u(x, tN) dx

due to (5.79). Hence the integral of the approximation Uk coincides with the
integral of the exact solution in case of a consistent conservative method.
No errors occur in the relation (5.79). The integral form (5.18) represents
a conservation law. In view of (5.79), the conservative method exhibits a
discrete conservation of the same quantities.

Construction of conservative methods

Now we want to obtain conservative methods of the form (5.72). Thereby,
we construct approximations according to (5.74), i.e., the time integral at
the intermediate space point is approximated by the data of the two neigh-
bouring grid points.
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A simple choice of the numerical flux function is given by

Fl(Uj, Uj+1) := f(Uj) or Fr(Uj, Uj+1) := f(Uj+1).

The consistency (5.75) follows straightforward in both cases. A correspond-
ing CFL condition determines the choice of either Fl or Fr in case of scalar
conservation laws (m = 1).

Alternatively, we approximate the integral (5.74) by the arithmetic mean
of the data in the two neighbouring grid points, i.e.,

F (Uj, Uj+1) := 1
2 (f(Uj) + f(Uj+1)) .

Again the consistency (5.75) is obvious. It follows the finite difference
scheme

Un+1
j = Un

j − k
h

[1
2f(Uj) + 1

2f(Uj+1)− 1
2f(Uj−1)− 1

2f(Uj)
]

= Un
j − k

2h

[
f(Un

j+1)− f(Un
j−1)

]
.

This method is just the explicit Euler method (5.35) in the nonlinear case,
which represents an unstable scheme. Again the method can be stabilised by
replacing the central approximation Un

j by the arithmetic mean of the neigh-
bouring approximations. It follows the Lax-Friedrichs method, cf. (5.37),

Un+1
j = 1

2

(
Un

j−1 + Un
j+1

)− k
2h

[
f(Un

j+1)− f(Un
j−1)

]
.

The method can be written in the form (5.72) with the numerical flux
function

F (Uj, Uj+1) = h
2k (Uj − Uj+1) + 1

2 (f(Uj) + f(Uj+1)) . (5.80)

Hence the method is conservative and the consistency (5.75) is satisfied.
The first term in (5.80) does not imply a reasonable approximation for the
integral (5.74). However, this term becomes tiny for Uj ≈ Uj+1. Thus the
first term just causes the desired stabilisation of the method. Furthermore,
the method (5.80) is convergent of order one in case of classical solutions.

Nonlinear generalisations of the Lax-Wendroff method (5.42) are also feasi-
ble. Considering sufficiently smooth solutions, the Taylor expansion (5.40)
exists. The conservation law (5.68) yields

ut = −f(u)x, utt = −f(u)xt = −f(u)tx = −(A(u)ut)x = (A(u)f(u)x)x,
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where A(u) ∈ Rm×m represents the Jacobian matrix of the flux function f

assuming f ∈ C1. We replace the time derivatives in the Taylor expan-
sion (5.40) and obtain

u(x, t + k) = u(x, t)− kf(u)x + 1
2k

2(A(u)f(u)x)x +O(h3).

Now we substitute the space derivatives by centered difference formulas of
second order. An inner as well as outer approximation is applied to the
term (A(u)f(u)x)x. It follows the scheme

Un+1
j = Un

j − k
2h

[
f(Un

j+1)− f(Un
j−1)

]

+ k2

2h2

[
Aj+ 1

2
(f(Un

j+1)− f(Un
j ))− Aj− 1

2
(f(Un

j )− f(Un
j−1))

]

with Aj± 1
2

:= A(u(xj± 1
2
)). Since the intermediate values u(xj± 1

2
) are un-

known, we replace them using a linear interpolation with the two neigh-
bouring values, which also represents an approximation of second order. It
follows

Un+1
j = Un

j − k
2h

[
f(Un

j+1)− f(Un
j−1)

]

+ k2

2h2

[
A(1

2(U
n
j + Un

j+1))(f(Un
j+1)− f(Un

j ))

− A(1
2(U

n
j−1 + Un

j ))(f(Un
j )− f(Un

j−1))
]
.

(5.81)

The corresponding numerical flux function reads

F (Uj, Uj+1) = 1
2 (f(Uj) + f(Uj+1))− k

2hA(1
2(Uj + Uj+1))(f(Uj+1)− f(Uj)).

The consistency (5.75) follows from the first term, whereas the second term
cancels out. Thus the first term is crucial for approximating weak solutions.
The second term can be seen as a correction, which causes a consistent
approximation of second order in case of sufficiently smooth solutions.

A drawback of the finite difference method (5.81) is that the Jacobian ma-
trices of the flux function have to be evaluated, which increases the compu-
tational effort. Similar finite difference methods can be constructed, which
avoid evaluations of the Jacobians. The Richtmyer two-step Lax-Wendroff
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method reads

U
n+ 1

2

j+ 1
2

= 1
2

(
Un

j + Un
j+1

)− k
2h

[
f(Un

j+1)− f(Un
j )

]

Un+1
j = Un

j − k
h

[
f

(
U

n+ 1
2

j+ 1
2

)
− f

(
U

n+ 1
2

j− 1
2

)]
.

(5.82)

MacCormack’s method is given by

U ∗
j = Un

j − k
h

[
f(Un

j+1)− f(Un
j )

]

Un+1
j = 1

2

(
Un

j + U ∗
j

)− k
2h

[
f

(
U∗

j

)− f
(
U ∗

j−1

)]
.

(5.83)

All three techniques (5.81), (5.82), (5.83) reduce to the original Lax-Wend-
roff method (5.42) in case of linear conservation laws (f(u) = Au). The
three methods are convergent of order two in case of sufficiently smooth
functions. Moreover, each method can be written in the form (5.71) with
a numerical flux function. Hence the methods are conservative. It can
be shown that the schemes are consistent according to Definition 26. In
conclusion, the three methods are also appropriate for the determination of
weak solutions.

The method (5.81) has been constructed based on a Taylor expansion as-
suming a sufficiently smooth solution. It is surprising that such methods
are also appropriate in case of weak solutions. Moreover, they have the ad-
vantageous property to achieve reasonable approximations in non-smooth
parts of the solution, whereas they switch automatically to approximations
of second order in smooth parts of the solution.

Considering discontinuous solutions like in a Riemann problem, the non-
linear generalisations of the Lax-Friedrichs method and the Lax-Wendroff
scheme exhibit the same behaviour as in the linear case, cf. Section 5.3. In
particular, the discrete conservation (5.79) can be observed in Figure 22.
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