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1.1. Where can you meet this equation

Principle :

Under some simplifications, you can meet e.g. the Schrödinger
equation in Wave Propagation as a simplified model
(approximating the Helmholtz equation) : it is then better known
as the Standard Parabolic Equation (SPE) in Electromagnetism,
Fresnel Equation in optics,...
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1.1. Where can you meet this equation

An example : the SPE

i∂x u +
1

2k
∂2

z u +
k

2
(n2 − 1)u = 0 (SPE = LSE)

where u is an approximation of the true wavefield, x is the
direction of propagation, z the transverse direction, k the
wavenumber and n the index of the medium
Moreover, you must add an initial value of the field at the initial
"time" x = 0

u(0, z) = u0(z)
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1.2. The linear Schrödinger equation

The Linear Schrödinger Equation (LSE) is defined more generally
by (x , t) ∈ R

N
x × R

∗+
t , N = 1, 2

{
(i∂t + ∆ + V (x , t))u(x , t) = 0,
u(x , 0) = u0(x).

∆ is the Laplace operator, V is a potential

What we guess :

Our goal is to compute an (approximation ?) of u inside a finite
computational domain Ωi . We consider N = 1 (and N ≥ 2 will be
treated in other talks) : This is exactly the aim of the so-called
Non-Reflecting Boundary Conditions, Artificial or Absorbing BC,
PML...
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2.1 The beginning of the story

Baskakov & Popov 89, Arnold 91, DiMenza 95, etc ...

1D-LSE
{

i∂tu + ∂2
x u + Vu = 0, x ∈ R, t > 0,

u(x , 0) = u0(x)
(1)

Proposition

If u0 ∈ L2(R), V ∈ C(R+
t ,L
∞), there exists a unique solution

u ∈ C(Rt ,L
2(R)) and

‖u(., t)‖2 = ‖u0‖2,∀t > 0
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2.2 Building the continuous non-reflecting boundary

condition (NRBC)

Let Ωi =]xl , xr [, Γ = {xl , xr},

Ωl Ωi Ωr

~n ~n

xrxl

Assumptions : supp(u0) ⊂ Ωi and V = 0. Continuity of u and
∂x u across the fictitious boundary Γ
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Splitting the problem : introduction of the DN operator

Interior problem






i∂tu + ∂2
x u = 0, x ∈ Ωi , t > 0,

u(x , 0) = u0(x), x ∈ Ωi ,
∂x u = ∂x v , x ∈ Γ, t > 0,

and exterior problem






i∂tv + ∂2
x v = 0, x ∈ Ωl ,r , t > 0,

v(x , 0) = 0, x ∈ Ωl ,r ,
v(x , t) = u(x , t), x ∈ Γ, t > 0,
lim|x |→∞ v(x , t) = 0, t > 0.

In other words, we want to compute the exterior
Dirichlet-Neumann (DN) operator Λl ,r such that : ∂xu = Λl ,ru
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Some basic properties of the Laplace transform

A few classical properties

L(v)(x , τ) = v̂(τ) =

∫ ∞

0
v(x , t)e−τ tdt

setting τ = η + iζ, η > 0

L(∂tv)(x , τ) = τ v̂(x , τ)− v(0)

L(f ⋆ g) = f̂ ĝ

L−1(f̂ ĝ) =

∫
t

0
f (s)g(t − s)ds

L−1(
1√
τ
) =

1√
π

t−1/2
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Building the NRBC

In the exterior domain, one gets

iτ v̂ + ∂2
x v̂ = 0,

with trivial solution

v̂(x , τ) = Ae
√
−iτx + Be−

√
−iτx

But v ∈ L2, v(∞, τ) = 0, A = 0 and we have e.g. at xr

v̂(x , τ) = e−
√
−iτ(x−xr )û(xr , τ)

Derivation and continuity yield

∂x û(xr , τ) = −
√
−iτ û(xr , τ) = −e−iπ/4τ(

û(xr , τ)√
τ

)
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Building the NRBC

Finally, using the inverse Laplace transform leads to the
DN-type exact NRBC

∂nu + e−iπ/4∂
1/2
t u = 0, x ∈ Γ, (2)

with the 1/2 fractional derivative

∂
1/2
t u(x , t) =

1√
π

d

dt

∫
t

0

u(x , s)√
t − s

ds (3)

In a similar way, one gets the Neumann-Dirichlet NRBC

u(x , t) + eiπ/4I
1/2
t ∂nu(x , t) = 0, x ∈ Γ, (4)

with fractional integral

I
1/2
t v(x , t) =

1√
π

∫
t

0

v(x , s)√
t − s

ds
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2.3 Properties of the truncated BVP

Consider for example the ND problem (same for DN)






(i∂t + ∂2
x )u(x , t) = 0, in Ωi , t > 0,

ul ,r + eiπ/4I
1/2
t (∂nul ,r ) = 0, on Γ, t > 0,

u(x , 0) = u0, in Ωi .

(5)

Proposition

If u0 ∈ H1(Ωi), there exists one and only one solution

u ∈ C(Rt ,H
1(Ωi)). Moreover, u satisfies

‖u(t)‖L2(Ωi ) ≤ ‖u0‖L2(Ωi ), ∀t > 0.
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3.1 Semi-discrete time scheme : what about stability ?

Question : Being given an interior semi-discrete scheme
(Crank-Nicolson here), are we able to build a globally stable
scheme including the discretization of the NRBC ?
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Our strategy

Starting from the Crank-Nicolson scheme

i
un+1 − un

δt
+ ∂2

x (
un+1 + un

2
) = 0,

we mimic the different steps of the continuous case using the
Z-transform instead of the Laplace transform

Z(fn)(z) = f̂ (z) :=
∞∑

n=0

fn z−n, z ∈ C, |z | > R
f̂
, (6)

with R
f̂
≥ 0 the radius of convergence
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Discretization

for the DN NRBC, one gets

∂nun = −e−iπ/4 2√
2δt

n∑

k=0

βkun−k

and for the ND NRBC

un = −eiπ/4

√
2δt

2

n∑

k=0

αk∂nun−k ,

at Γ, with

(α0, α1, ...) = (1, 1,
1

2
,
1

2
,
1× 3

2× 4
,
1× 3

2× 4
, ...)

and
βk = (−1)kαk .
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Conclusion

Proposition

If tn = nδt and {f n}n∈N ≃ {f (tn)}n∈N, then

I
1/2
t f (tn) ≈

√
2δt

2

n∑

k=0

αk f n−k

∂
1/2
t f (tn) ≈

2√
2δt

n∑

k=0

βk f n−k .

In fact it correspond to the non-trivial discretizations with the
trapezoidal rule of the fractional operators (Lubich)
Using the Z-transform, we prove that the semi-discrete
scheme are unconditionnally L2(Ωi)-stable and we have the
energy inequality

∥∥∥uN

∥∥∥
L2(Ωi )

< ‖u0‖L2(Ωi )
,∀N ≥ 0.
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3.2 Fully discrete scheme

We do not give the details but

It is implemented in a Finite Element solver with weak
formulation

The DN discrete NRBC is naturally implemented into the code

The ND is rewritten as a mixed (Fourier-Robin) boundary
condition
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Numerical simulation : the Gaussian solution

Explicit 1D solution

u(x , t) =

√
i

−4t + i
exp (
−ix2 − k0x + k2

0 t

−4t + i
)

Quadratic FEM on Ωi =]− 5, 5[, k0 = 8, 1024 elements,
δt = 10−3.
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Exact solution
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Fig.: Contour plot of log10(|u|) for the exact solution
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Gaussian solution using Baskakov-Popov
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Fig.: Contour plot of log10(|u|) for the Baskakov-Popov scheme
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Gaussian solution using our ND scheme
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Fig.: Contour plot of log10(|u|) for the ND scheme
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Gaussian solution using our DN scheme
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Fig.: Contour plot of log10(|u|) for the DN scheme
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Conclusions for the 1D case

1D is solved by a strategy leading to stable schemes for the
CN discretization

You will see other solutions in the next talks

2D and nonlinear 1D (see the talks of Besse and Descombes,
and others)

The problem with a global potential or/and with variable
coefficients is hard and still open...
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