Construction of Stable Discretization Schemes of Non-Reflecting Boundary Conditions for the 1D Schrödinger Equation

Xavier ANTOINE

 Joint work with C. BESSEInstitut Elie Cartan de Nancy

Nancy-Université INRIA-CORIDA

ICIAM 2007 - Minisymposium on ABCs for linear and nonlinear Schrödinger equations

Overview of the talk

(1) The Schrödinger equation

- Where can you meet this equation
- The Schrödinger equation
(2) The continuous problem
- The beginning of the story
- Building the continuous non-reflecting boundary condition
- Properties of the truncated BVP
(3) Discretization
- Semi-discrete time scheme
- Fully discrete scheme

4 Numerical simulation
(5) Conclusions
(1) The Schrödinger equation

- Where can you meet this equation
- The Schrödinger equation
(2) The continuous problem
- The beginning of the story
- Building the continuous non-reflecting boundary condition
- Properties of the truncated BVP
(3) Discretization
- Semi-discrete time scheme
- Fully discrete scheme

4 Numerical simulation
(3) Conclusions

1.1. Where can you meet this equation

Principle :

Under some simplifications, you can meet e.g. the Schrödinger equation in Wave Propagation as a simplified model (approximating the Helmholtz equation) : it is then better known as the Standard Parabolic Equation (SPE) in Electromagnetism, Fresnel Equation in optics,...

1.1. Where can you meet this equation

An example : the SPE

$$
i \partial_{x} u+\frac{1}{2 k} \partial_{z}^{2} u+\frac{k}{2}\left(n^{2}-1\right) u=0 \quad(\mathrm{SPE}=\mathrm{LSE})
$$

where u is an approximation of the true wavefield, x is the direction of propagation, z the transverse direction, k the wavenumber and n the index of the medium Moreover, you must add an initial value of the field at the initial "time" $x=0$

$$
u(0, z)=u_{0}(z)
$$

1.2. The linear Schrödinger equation

The Linear Schrödinger Equation (LSE) is defined more generally by $(x, t) \in \mathbb{R}_{x}^{N} \times \mathbb{R}_{t}^{*+}, N=1,2$

$$
\left\{\begin{array}{l}
\left(i \partial_{t}+\Delta+V(x, t)\right) u(x, t)=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Δ is the Laplace operator, V is a potential

What we guess :

Our goal is to compute an (approximation?) of u inside a finite computational domain Ω_{i}. We consider $N=1$ (and $N \geq 2$ will be treated in other talks) : This is exactly the aim of the so-called Non-Reflecting Boundary Conditions, Artificial or Absorbing BC, PML...
(1) The Schrödinger equation

- Where can you meet this equation
- The Schrödinger equation
(2) The continuous problem
- The beginning of the story
- Building the continuous non-reflecting boundary condition
- Properties of the truncated BVP
(3) Discretization
- Semi-discrete time scheme
- Fully discrete scheme
(4) Numerical simulationConclusions

2.1 The beginning of the story

- Baskakov \& Popov 89, Arnold 91, DiMenza 95, etc ...
- 1D-LSE

$$
\left\{\begin{array}{l}
i \partial_{t} u+\partial_{x}^{2} u+V u=0, x \in \mathbb{R}, t>0 \tag{1}\\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Proposition

If $u_{0} \in L^{2}(\mathbb{R}), V \in C\left(\mathbb{R}_{t}^{+}, L^{\infty}\right)$, there exists a unique solution $u \in C\left(\mathbb{R}_{t}, L^{2}(\mathbb{R})\right)$ and

$$
\|u(., t)\|_{2}=\left\|u_{0}\right\|_{2}, \forall t>0
$$

2.2 Building the continuous non-reflecting boundary condition (NRBC)

- Let $\left.\Omega_{i}=\right] x_{l}, x_{r}\left[\Gamma=\left\{x_{l}, x_{r}\right\}\right.$,

- Assumptions: $\operatorname{supp}\left(u_{0}\right) \subset \Omega_{i}$ and $V=0$. Continuity of u and $\partial_{x} u$ across the fictitious boundary Γ

Splitting the problem : introduction of the DN operator

- Interior problem

$$
\left\{\begin{array}{l}
i \partial_{t} u+\partial_{x}^{2} u=0, x \in \Omega_{i}, t>0 \\
u(x, 0)=u_{0}(x), x \in \Omega_{i} \\
\partial_{x} u=\partial_{x} v, x \in \Gamma, t>0
\end{array}\right.
$$

and exterior problem

$$
\left\{\begin{array}{l}
i \partial_{t} v+\partial_{x}^{2} v=0, x \in \Omega_{l, r}, t>0 \\
v(x, 0)=0, x \in \Omega_{l, r} \\
v(x, t)=u(x, t), x \in \Gamma, t>0 \\
\lim _{|x| \rightarrow \infty} v(x, t)=0, t>0
\end{array}\right.
$$

- In other words, we want to compute the exterior Dirichlet-Neumann (DN) operator $\Lambda_{l, r}$ such that : $\partial_{x} u=\Lambda_{l, r} u$

Some basic properties of the Laplace transform

A few classical properties

$$
\mathcal{L}(v)(x, \tau)=\hat{v}(\tau)=\int_{0}^{\infty} v(x, t) e^{-\tau t} d t
$$

setting $\tau=\eta+i \zeta, \eta>0$

$$
\begin{aligned}
& \mathcal{L}\left(\partial_{t} v\right)(x, \tau)=\tau \hat{v}(x, \tau)-v(0) \\
& \mathcal{L}(f \star g)=\hat{f} \hat{g} \\
& \mathcal{L}^{-1}(\hat{f} \hat{g})=\int_{0}^{t} f(s) g(t-s) d s \\
& \mathcal{L}^{-1}\left(\frac{1}{\sqrt{\tau}}\right)=\frac{1}{\sqrt{\pi}} t^{-1 / 2}
\end{aligned}
$$

Building the NRBC

- In the exterior domain, one gets

$$
i \tau \hat{v}+\partial_{x}^{2} \hat{v}=0
$$

with trivial solution

$$
\hat{v}(x, \tau)=A e^{\sqrt{-i \tau} x}+B e^{-\sqrt{-i \tau} x}
$$

- But $v \in L^{2}, v(\infty, \tau)=0, A=0$ and we have e.g. at x_{r}

$$
\hat{v}(x, \tau)=e^{-\sqrt{-i \tau}\left(x-x_{r}\right)} \hat{u}\left(x_{r}, \tau\right)
$$

- Derivation and continuity yield

$$
\partial_{x} \hat{u}\left(x_{r}, \tau\right)=-\sqrt{-i \tau} \hat{u}\left(x_{r}, \tau\right)=-e^{-i \pi / 4} \tau\left(\frac{\widehat{u}\left(x_{r}, \tau\right)}{\sqrt{\tau}}\right)
$$

Building the NRBC

- Finally, using the inverse Laplace transform leads to the DN-type exact NRBC

$$
\begin{equation*}
\partial_{\mathbf{n}} u+e^{-i \pi / 4} \partial_{t}^{1 / 2} u=0, x \in \Gamma \tag{2}
\end{equation*}
$$

with the $1 / 2$ fractional derivative

$$
\begin{equation*}
\partial_{t}^{1 / 2} u(x, t)=\frac{1}{\sqrt{\pi}} \frac{d}{d t} \int_{0}^{t} \frac{u(x, s)}{\sqrt{t-s}} d s \tag{3}
\end{equation*}
$$

- In a similar way, one gets the Neumann-Dirichlet NRBC

$$
\begin{equation*}
u(x, t)+e^{i \pi / 4} I_{t}^{1 / 2} \partial_{\mathbf{n}} u(x, t)=0, x \in \Gamma \tag{4}
\end{equation*}
$$

with fractional integral

$$
I_{t}^{1 / 2} v(x, t)=\frac{1}{\sqrt{\pi}} \int_{0}^{t} \frac{v(x, s)}{\sqrt{t-s}} d s
$$

2.3 Properties of the truncated BVP

- Consider for example the ND problem (same for DN)

$$
\left\{\begin{array}{l}
\left(i \partial_{t}+\partial_{x}^{2}\right) u(x, t)=0, \quad \text { in } \Omega_{i}, t>0 \tag{5}\\
u_{l, r}+e^{i \pi / 4} l_{t}^{1 / 2}\left(\partial_{\mathbf{n}} u_{l, r}\right)=0, \text { on } \Gamma, t>0, \\
u(x, 0)=u_{0}, \text { in } \Omega_{i} .
\end{array}\right.
$$

Proposition

If $u_{0} \in H^{1}\left(\Omega_{i}\right)$, there exists one and only one solution $u \in C\left(\mathbb{R}_{t}, H^{1}\left(\Omega_{i}\right)\right)$. Moreover, u satisfies

$$
\|u(t)\|_{L^{2}\left(\Omega_{i}\right)} \leq\left\|u_{0}\right\|_{L^{2}\left(\Omega_{i}\right)}, \forall t>0 .
$$

(1) The Schrödinger equation

- Where can you meet this equation
- The Schrödinger equation
(2) The continuous problem
- The beginning of the story
- Building the continuous non-reflecting boundary condition
- Properties of the truncated BVP
(3) Discretization
- Semi-discrete time scheme
- Fully discrete scheme
(4) Numerical simulation
(5) Conclusions

3.1 Semi-discrete time scheme : what about stability?

Question: Being given an interior semi-discrete scheme (Crank-Nicolson here), are we able to build a globally stable scheme including the discretization of the NRBC?

Our strategy

Starting from the Crank-Nicolson scheme

$$
i \frac{u^{n+1}-u^{n}}{\delta t}+\partial_{x}^{2}\left(\frac{u^{n+1}+u^{n}}{2}\right)=0
$$

we mimic the different steps of the continuous case using the \mathcal{Z}-transform instead of the Laplace transform

$$
\begin{equation*}
\mathcal{Z}\left(f_{n}\right)(z)=\hat{f}(z):=\sum_{n=0}^{\infty} f_{n} z^{-n}, \quad z \in \mathbb{C}, \quad|z|>R_{\hat{f}}, \tag{6}
\end{equation*}
$$

with $R_{\hat{f}} \geq 0$ the radius of convergence

Discretization

for the DN NRBC, one gets

$$
\partial_{\mathbf{n}} u^{n}=-e^{-i \pi / 4} \frac{2}{\sqrt{2 \delta t}} \sum_{k=0}^{n} \beta_{k} u^{n-k}
$$

and for the ND NRBC

$$
u^{n}=-e^{i \pi / 4} \frac{\sqrt{2 \delta t}}{2} \sum_{k=0}^{n} \alpha_{k} \partial_{\mathbf{n}} u^{n-k}
$$

at Γ, with

$$
\left(\alpha_{0}, \alpha_{1}, \ldots\right)=\left(1,1, \frac{1}{2}, \frac{1}{2}, \frac{1 \times 3}{2 \times 4}, \frac{1 \times 3}{2 \times 4}, \ldots\right)
$$

and

$$
\beta_{k}=(-1)^{k} \alpha_{k} .
$$

Conclusion

Proposition

$$
\text { If } t_{n}=n \delta t \text { and }\left\{f^{n}\right\}_{n \in \mathbb{N}} \simeq\left\{f\left(t_{n}\right)\right\}_{n \in \mathbb{N}}, \text { then }
$$

$$
\begin{aligned}
& \boldsymbol{I}_{t}^{1 / 2} f\left(t_{n}\right) \approx \frac{\sqrt{2 \delta t}}{2} \sum_{k=0}^{n} \alpha_{k} f^{n-k} \\
& \partial_{t}^{1 / 2} f\left(t_{n}\right) \approx \frac{2}{\sqrt{2 \delta t}} \sum_{k=0}^{n} \beta_{k} f^{n-k}
\end{aligned}
$$

- In fact it correspond to the non-trivial discretizations with the trapezoidal rule of the fractional operators (Lubich)
- Using the \mathcal{Z}-transform, we prove that the semi-discrete scheme are unconditionnally $L^{2}\left(\Omega_{i}\right)$-stable and we have the energy inequality

$$
\left\|u^{N}\right\|_{L^{2}\left(\Omega_{i}\right)}<\left\|u_{0}\right\|_{L^{2}\left(\Omega_{i}\right)}, \forall N \geq 0
$$

3.2 Fully discrete scheme

We do not give the details but

- It is implemented in a Finite Element solver with weak formulation
- The DN discrete NRBC is naturally implemented into the code
- The ND is rewritten as a mixed (Fourier-Robin) boundary condition
(1) The Schrödinger equation
- Where can you meet this equation
- The Schrödinger equation
(2) The continuous problem
- The beginning of the story
- Building the continuous non-reflecting boundary condition
- Properties of the truncated BVP
(3) Discretization
- Semi-discrete time scheme
- Fully discrete scheme
(4) Numerical simulation
(5) Conclusions

Numerical simulation : the Gaussian solution

- Explicit 1D solution

$$
u(x, t)=\sqrt{\frac{i}{-4 t+i}} \exp \left(\frac{-i x^{2}-k_{0} x+k_{0}^{2} t}{-4 t+i}\right)
$$

- Quadratic FEM on $\left.\Omega_{i}=\right]-5,5\left[, k_{0}=8,1024\right.$ elements, $\delta t=10^{-3}$.

Exact solution

FIg.: Contour plot of $\log _{10}(|u|)$ for the exact solution

Gaussian solution using Baskakov-Popov

Fig.: Contour plot of $\log _{10}(|u|)$ for the Baskakov-Popov scheme

Gaussian solution using our ND scheme

Fig.: Contour plot of $\log _{10}(|u|)$ for the ND scheme

Gaussian solution using our DN scheme

FIG.: Contour plot of $\log _{10}(|u|)$ for the DN scheme

(1) The Schrödinger equation

- Where can you meet this equation
- The Schrödinger equation
(2) The continuous problem
- The beginning of the story
- Building the continuous non-reflecting boundary condition
- Properties of the truncated BVP
(3) Discretization
- Semi-discrete time scheme
- Fully discrete scheme
(4) Numerical simulation
(5) Conclusions

Conclusions for the 1D case

- 1D is solved by a strategy leading to stable schemes for the CN discretization
- You will see other solutions in the next talks
- 2D and nonlinear 1D (see the talks of Besse and Descombes, and others)
- The problem with a global potential or/and with variable coefficients is hard and still open...

