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Q The Schrédinger equation
@ Where can you meet this equation
@ The Schrodinger equation
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1.1. Where can you meet this equation

Principle :

Under some simplifications, you can meet e.g. the Schrodinger
equation in Wave Propagation as a simplified model
(approximating the Helmholtz equation) : it is then better known
as the Standard Parabolic Equation (SPE) in Electromagnetism,
Fresnel Equation in optics,...
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1.1. Where can you meet this equation

An example : the SPE

i+ 2—1ka§u + g(n2 —~1)u=0 (SPE = LSE)
where u is an approximation of the true wavefield, x is the
direction of propagation, z the transverse direction, k the
wavenumber and n the index of the medium

Moreover, you must add an initial value of the field at the initial
"time" x =0

u(0,z) = up(2)
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1.2. The linear Schrodinger equation
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The Linear Schrédinger Equation (LSE) is defined more generally
by (x,t) € RV x Ry, N=1,2

{ (i0e + A + V(x, t))u(x,t) =0,
u(x,0) = up(x).

A is the Laplace operator, V is a potential

What we guess :

Our goal is to compute an (approximation ?) of u inside a finite
computational domain ;. We consider N =1 (and N > 2 will be
treated in other talks) : This is exactly the aim of the so-called
Non-Reflecting Boundary Conditions, Artificial or Absorbing BC,
PML...




© The continuous problem
@ The beginning of the story
@ Building the continuous non-reflecting boundary condition
@ Properties of the truncated BVP
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2.1 The beginning of the story

@ Baskakov & Popov 89, Arnold 91, DiMenza 95, etc ...
e 1D-LSE

iOiu+02u+ Vu=0, xcR, t >0, (1)
U(X7O) = UO(X)

Proposition

If up € L2(R), V € C(R{,L>), there exists a unique solution
u € C(Ry, L2(R)) and

lu(.; t)ll2 = [luoll2, VE > 0
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2.2 Building the continuous non-reflecting boundary

condition (NRBC)

o Let Q; =|x;, x [, I = {x1, % },

Q Q Q,

- —
n n
< -

X/ Xr

@ Assumptions : supp(up) C ©; and V = 0. Continuity of v and
Ox u across the fictitious boundary
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Splitting the problem : introduction of the DN operator

@ Interior problem

iOru +8)2(u =0,xeQ;,t>0,
u(x,0) = up(x),x € Q;,
Oxu=0xv, xel,t>0,

and exterior problem

iOv 4+ 0%v =0,x € Qrt>0,
v(x,0) =0,x € Q,,

v(ix,t) = u(x,t), xeTl, t>0,
Iim|X|_)oo V(X, t) =0,t>0.

@ In other words, we want to compute the exterior
Dirichlet-Neumann (DN) operator A, , such that : dyu = A ,u
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Some basic properties of the Laplace transform

A few classical properties

o0
LOV)(x,7) = 0(7) = / v(x, t)e "t dt
0
setting T=n+i(,n >0

L(0rv)(x,7) = TV(x,7) — v(0)

L(f*xg)= f’grt

£HFe) = [ F(s)e(e —s)ds
Y B Ry

L (\/F) ﬁt
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Building the NRBC

@ In the exterior domain, one gets
itV + 020 =0,
with trivial solution
v(x,7) = AeV—iTx + Be~ Vit
@ But v e 2 v(co,7) =0, A=0 and we have e.g. at x,
v(x,7) = e_‘/__”(x_x’)ﬁ(xr, T)

@ Derivation and continuity yield

Oxt(xp, T) = —V—iTli(x,, T) = _e—i7r/47_(a()\</ru;7'))
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Building the NRBC

@ Finally, using the inverse Laplace transform leads to the
DN-type exact NRBC

Onu + e_"”/48§/2u =0, xerl, (2)

with the 1/2 fractional derivative

OM2u(x, t) = \/i%%/ot ij/(%ds (3)

@ In a similar way, one gets the Neumann-Dirichlet NRBC

u(x,t) + e’-”/4lg/28nu(x, t)=0, xefTl, (4)

/t v(x,s) ds
0 Vt—s

with fractional integral

/g/zv(x, t) =

S
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2.3 Properties of the truncated BVP

@ Consider for example the ND problem (same for DN)

(i0; + 02)u(x,t) =0, in Q;, t >0,
upr+ ei”/“ltl/z(anu/,r) =0, onl, t>0, (5)
U(X,O) = uo,in Q,‘.

Proposition

If uy € HY(S2;), there exists one and only one solution
u € C(Ry, HY(Q;)). Moreover, u satisfies

lu(t)l 20 < lluolli2yy, VE > 0.
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© Discretization
@ Semi-discrete time scheme
o Fully discrete scheme
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3.1 Semi-discrete time scheme : what about stability ?

Question : Being given an interior semi-discrete scheme
(Crank-Nicolson here), are we able to build a globally stable
scheme including the discretization of the NRBC?
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Starting from the Crank-Nicolson scheme

ot yn N a2(u”+1 +u”
: ot X 2

) =0,

we mimic the different steps of the continuous case using the
Z-transform instead of the Laplace transform

Z(f)2)=F(2):=> faz", z€C, |z|>R;  (6)
n=0

with R; > 0 the radius of convergence
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for the DN NRBC, one gets

Opt" = — _m/4\/ﬁz/3k
and for the ND NRBC
”Tﬂﬂ/ﬁZaka u"x,
at I, with
(00,01,) = (L 5,5, 50 257 )
and
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Conclusion

If t, = ndt and {f"}peny >~ {f(tn)}nen, then

1/2f(tn ~ —Z

L2 2 ¢ -
F(tn) ~ f
(tn) = 2&;/@

<

@ In fact it correspond to the non-trivial discretizations with the
trapezoidal rule of the fractional operators (Lubich)

@ Using the Z-transform, we prove that the semi-discrete
scheme are unconditionnally L?(;)-stable and we have the
energy inequality

" < |luoll 2qyy » YN = 0.

G P
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3.2 Fully discrete scheme

We do not give the details but
@ [t is implemented in a Finite Element solver with weak
formulation
@ The DN discrete NRBC is naturally implemented into the code

@ The ND is rewritten as a mixed (Fourier-Robin) boundary
condition
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@ Numerical simulation
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Numerical simulation : the Gaussian solution

@ Explicit 1D solution

. . 2 2
i —ix* — kox + k5t
ulx, t) = \/ —4t+ieXp( —4t+ i )

@ Quadratic FEM on Q; =] — 5,5[, ko = 8, 1024 elements,
5t =103,
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Exact solution

F1a.: Contour plot of logyy(|u|) for the exact solution
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Gaussian solution using Baskakov-Popov

F1c.: Contour plot of logyy(|u|) for the Baskakov-Popov scheme
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Gaussian solution using our ND scheme

F1a.: Contour plot of log;(|u|) for the ND scheme
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Gaussian solution using our DN scheme

F1c.: Contour plot of logyo(]ul) for the DN scheme
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© Conclusions

27/28



Conclusions for the 1D case

@ 1D is solved by a strategy leading to stable schemes for the
CN discretization

@ You will see other solutions in the next talks

@ 2D and nonlinear 1D (see the talks of Besse and Descombes,
and others)

@ The problem with a global potential or/and with variable
coefficients is hard and still open...
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