TECHNISCHE UNIVERSITÄT WIEN

Open Boundary Conditions for Quantum Waveguide

Anton ARNOLD

(with M. Ehrhardt, M. Schulte, I. Sofronov)

Outline

- Quantum Waveguides
 - Schrödinger model
- Transparent Boundary Conditions for Schrödinger Equation
 - discretization (nonlocal in t)
 - approximation (local in t)
 - waveguide simulation
 - circular geometry

Quantum Waveguides

• Elements of future semiconductors:

control potential $V \ \rightarrow \ {\rm reflection}/{\rm transmission}$

• 2D-electron gas $\dots \psi(x,y,t) \in \mathbbm{C}$

$$\begin{cases} i\hbar\psi_t = -\frac{\hbar^2}{2m_e}\Delta\psi + V(x, y, t)\psi, & \Omega \subseteq \mathbb{R}^2, t > 0\\ \psi = 0, & \partial\Omega\\ + \text{``open'' boundary conditions at } I, O \end{cases}$$

Goals:

- stationary modes (with const. inflow)
- transient behavior (e.g. switching times)

Stationary Waves in a Quantum Waveguide -+ 7 Port Electron density: modulus of Port 3 wavefunction $|\psi(x,y)|$, interference in canal 1 Y-axis x-axis b of phase Port4 wavefunction: Port3 Y axis $\arg \psi(x,y)$ Port1 Port2 X axis

from: [Vanbésien, Burgnies, Lippens '95], IEMN-Lille

Question: Construction of *artificial* BCs for transient simulations for keeping the computational domain as small as possible

Open Boundary Conditions for Quantum Waveguide

Outline

- Quantum Waveguides
 - Schrödinger model
- Transparent Boundary Conditions for Schrödinger Equation
 - discretization (nonlocal in t)
 - approximation (local in t)
 - waveguide simulation
 - circular geometry

Discretization of analytic TBC

left TBC for free 1D-Schrödinger equation $i\psi_t = -\psi_{xx}$:

$$\sqrt{-i\partial_t}\psi = \psi_x$$
 or $\psi(0,t) = \frac{1}{\sqrt{\pi}}e^{\frac{\pi}{4}i}\int_0^t \frac{\psi_x(0,\tau)}{\sqrt{t-\tau}}d\tau$

previous discretization [Mayfield '89]:

$$\int_0^{t_N} \frac{\psi_x(0, t_N - \tau)}{\sqrt{\tau}} d\tau \approx \frac{1}{\Delta x} \sum_{n=0}^{N-1} (\underbrace{\psi_1^{N-n} - \psi_0^{N-n}}_{\text{left boundary of } [t_n, t_{n+1}]}) \int_{t_n}^{t_{n+1}} \frac{d\tau}{\sqrt{\tau}}$$

Theorem [Mayfield]: overall IBV–scheme (with Crank-Nicolson finite differences) is stable \iff

$$C\frac{\Delta t}{\Delta x^2} \in \bigcup_{j \in N_0} [(2j+1)^{-2}, (2j)^{-2}]$$

- Drawbacks of discretizing the analytic TBC:
 - destroys the unconditional stability of the CN-scheme !
 - numerical reflections at the boundary

New discrete TBC

STRATEGY:

- discretize whole space problem $(j \in \mathbb{Z})$
- derivation of the discrete TBC (for discrete scheme) instead of: discretization of the analytic TBC

simple model discretization:

Crank-Nicolson FD-scheme for free Schrödinger equation:

$$i\frac{\psi_j^{n+1} - \psi_j^n}{\Delta t} = -D_{\Delta x}^2 \frac{\psi_j^{n+1} + \psi_j^n}{2}, \ D_{\Delta x} \psi_j^n = \frac{\psi_{j+\frac{1}{2}}^n - \psi_{j-\frac{1}{2}}^n}{\Delta x}$$

 $\psi_j^n \approx \psi(j\Delta x, n\Delta t)$, unconditionally stable: $\|\psi^n\|_2 \!=\! \|\psi^0\|_2$

Z-transformed left exterior problem $(\psi_j^0 = 0, j \leq 0)$ with $\mathcal{Z}\{\psi_j^n\} = \hat{\psi}_j(z) = \sum_{n=0}^{\infty} \psi_j^n z^{-n}, z \in \mathbb{C}$:

$$\hat{\psi}_{j-1} - 2(1 - i\frac{\Delta x^2}{\Delta t}\frac{z-1}{z+1})\hat{\psi}_j + \hat{\psi}_{j+1} = 0, \quad j \le 1$$

 \rightarrow transformed DTBC

(from decaying solution for $j \to -\infty$):

$$\hat{\psi}_1(z) = lpha(z)\hat{\psi}_0(z), \quad |lpha(z)| > 1$$

6

- inverse Z-transformation (explicit or numerical): $(s_n) := Z^{-1}\{\frac{z+1}{z}\alpha(z)\}$
- discrete TBC: $\psi_1^n = \sum_{k=1}^n \psi_0^k s_{n-k} \psi_1^{n-1}$
- 3-point recursion for (s_n)
- $s_n = O(n^{-3/2})$... cp. to (1)

Theorem [AA '95]: CN - FD scheme for Schrödinger equation with discrete TBC is unconditionally stable:

$$\|\psi^n\|_2^2 := \Delta x \sum_{j=1}^J |\psi_j^n|^2 \le \|\psi^0\|_2^2, \quad n \ge 1$$

- \rightarrow no numerical reflections
- \rightarrow same numerical effort as 'ad-hoc' discretization of

$$\psi_x(0,t) = C \frac{d}{dt} \int_0^t \frac{\psi(0,\tau)}{\sqrt{t-\tau}} d\tau$$
(1)

free Schrödinger equation (V = 0)

Gaussian beam, right-traveling [AA, VLSI Design '98]

Scattering at potential barrier

- incoming plane wave ψ^{in} (from left) with 0.3 eV
- potential barrier V(x): 0.3 eV
- at t = 0: applied bias of -0.1 eV switched on:

• *important:* inhomogeneous discrete TRB at x = 0 [AA, TTSP 2001]

$$\left(\partial_x - \sqrt{-i\partial_t}\right)\left(\psi(0,t) - \psi^{in}(0,t)\right) = 0$$

 $\rightarrow \psi(x,t)$ converges to new steady state corresp. to W(x) \rightarrow switching current j(t) stationary from $t \approx 0.2$ ps on

2D Schrödinger equation - waveguide

$$\psi_{xx} = -\psi_{yy} - i\psi_t + V\psi$$

• TBC at x = 0 is non-local (pseudo-differential) in t and y:

$$\psi_x(0, y, t) = \sqrt{-\partial_{yy} - i\partial_t + V} \psi$$

• for waveguides: $\psi(x, 0, t) = \psi(x, Y, t) = 0$:

• TBC is local for each sine-mode in y:

$$\begin{split} \hat{\psi}_x^m(0,t) &= \sqrt{-i\partial_t + V^m} \,\hat{\psi}^m \\ &= \sqrt{\frac{-i}{\pi}} \frac{d}{dt} e^{-iV^m t} \int_0^t \frac{\hat{\psi}^m(0,\tau) e^{iV^m \tau}}{\sqrt{t-\tau}} d\tau \\ V^m &= V_0 + \left(\frac{m\pi}{Y}\right)^2, \qquad m \in \mathbb{N} \end{split}$$

- rigorous derivation for Schrödinger-Poisson: [Ben Abdallah-Méhats-Pinaud '04]
- discrete derivation: [AA-Ehrhardt-Sofronov '03]

- right-traveling Gaussian beam, TBC at x=300 [Schulte-AA '07]
- implementation of discrete TBC in y-Fourier space (since nonlocal in y and t)

2D Schrödinger equation (V = 0)– non-orthogonal incident

- right-traveling Gaussian beam hits boundary at 45°
- result impossible with *absorbing layer* can only be tuned for 1 wavenumber

- advantage of TBCs:
 - absolutely reflection-free
 - unconditionally stable
- disadvantage (for long-time calculations): numerical effort $O(N^2)$; N...# of time steps TBC-evaluation (discrete convolution) dominates PDEsolution

• goal:

approximate convolution kernel $(s_n) \rightarrow O(N)$ -effort

cpu-time for TBC $(\cdot \cdot \cdot)$ and approximative TBC (-)

Approximative TBCs – Fast evaluation of convolutions

• Idea: approximation of s_n by sum of exponentials; $s_n = O(n^{-3/2})$ — discrete analogue of [Grote-Keller '95]:

$$s_n \approx \tilde{s}_n = \sum_{l=1}^{L} b_l q_l^{-n}, \quad n \in \mathbb{N}, \ |q_l| > 1, \ L \sim 20$$

$$\mathcal{Z}\{\tilde{s}_n\} = s_0 + \sum_{l=1}^{L} \frac{b_l}{q_l z - 1}, \quad |z| \ge 1.$$

• b_l , q_l from Padé approximation of

$$f(x) = \sum_{n=0}^{2L-1} s_n x^n, \quad x = \frac{1}{z}$$

- Advantage for long-time calculations:
- reduction of numerical costs: $O(N^2) \rightarrow O(L \cdot N)$
- reduction of memory: $O(N) \rightarrow O(L)$
- recursion:

$$\sum_{k=0}^{n-1} u_k \tilde{s}_{n-k} = \sum_{l=1}^{L} C_l^{(n)},$$

with

$$\begin{split} C_l^{(n)} &= q_l^{-1} C_l^{(n-1)} + b_l q_l^{-1} u_{n-1}; \quad n = 1, ..., N \\ C_l^{(0)} &\equiv 0. \end{split}$$

free Schrödinger equation (1D, V = 0)

solution with L = 10 solution with L = 20

relative L^2 -error with approximate TBCs, up to 15.000 time steps

TBC at x = 50; Gaussian beam, right-traveling [Schulte-AA 07]

Quantum waveguide with resonator - switching

- incoming plane wave ψ^{in} (from left) with 0.03 eV
- resonator size: 20 \times 32 nm / 20 \times 39 nm

- inhomogeneous TBC essential
- advantage over existing strategies (damping potential, e.g.): ψ^{in} is *not* restricted to 1 transversal mode

Quantum waveguide - reduction of oscillations

solution $\psi_1(x, y, t)$ highly oscillatory in t \rightarrow transformation $\varphi(x, y, t) := e^{-i\omega t} \psi_1(x, y, t)$ for numerics, $\psi_2(x, y, t) = e^{i\omega t} \varphi(x, y, t)$

 \Rightarrow error reduction (in $\|\cdot\|_{L^2(\Omega)}$) up to 75%

2D Schrödinger equation - circular domain

free 2D Schrödinger equation in polar coordinates:

$$i\psi_t = -rac{1}{2}\left(rac{1}{r}(r\psi_r)_r + rac{1}{r^2}\psi_{ heta heta}
ight)$$

- uniform radial off-set grid $r_j = (j + \frac{1}{2})\Delta r$, uniform angular grid: $\psi_{j,k}^n \approx \psi(r_j, \theta_k, t_n)$
- discrete Fourier transform in θ_k , Z-transform in $t \Rightarrow$ finite difference equation for each mode m variable coefficients:

$$a_{j}\hat{\psi}_{j-1}(z) + b_{j}^{m}(z)\hat{\psi}_{j}(z) + c_{j}\hat{\psi}_{j+1}(z) = 0, \ j \ge J - 1$$
(2)

- Z-transformed TBC: $\hat{\ell}_{J+1}(z) = \frac{\hat{\psi}_{J+1}(z)}{\hat{\psi}_{J}(z)}$ for *decaying* solution $\hat{\psi}_{j}(z)$ as $j \to \infty$
- for stability: solve (2) from $j = "\infty"$ back to j = J; initial condition at $j = "\infty"$: 1D-TBC
- numerical / discrete inverse Z-transformation of $\hat{\ell}_{J+1}(z)$: \rightarrow convolution coefficients

computational domain: unit disc $\Omega_1 = [0,1] \times [0,2\pi]$

initial condition: Gaussian beam, traveling in direction $\vec{k}=(2.5,-2.5):$

$$\psi^{I}(r,\theta) = \frac{1}{\sqrt{\alpha_{x}\alpha_{y}}} e^{2ik_{x}r\cos\theta + 2ik_{y}r\sin\theta - \frac{(r\cos\theta)^{2}}{2\alpha_{x}} - \frac{(r\sin\theta)^{2}}{2\alpha_{y}}}$$

$$\alpha_x = \alpha_y = 0.04$$

symmetric polar grid: $\Delta r = \frac{1}{128}$, $\Delta \theta = \frac{2\pi}{128}$; J = K = 128; $\Delta t = \frac{1}{128}$

CIRCULAR DOMAIN

CIRCULAR DOMAIN

relative error:
$$\frac{||\psi(r_j, \theta_k, t_n) - \varphi(r_j, \theta_k, t_n)||_{\Omega, 2}}{||\varphi(r_j, \theta_k, t_n)||_{\Omega, 2}}$$

 ψ : numerical solution

$\varphi:$ exact solution or numerical reference solution on Ω_2

