Construction of 2D artificial boundary conditions for the linear Schrödinger EQUATION VIA FRACTIONAL PSEUDO－DIFFERENTIAL OPERATORS

by
Christophe Besse joint work with X ．Antoine

Univ Lille 1／Paul Painlevé Lab．／Inria Project Team Simpaf

6th International Congress on Industrial and Applied Mathematics

$$
\text { 16-20 July } 2007
$$

Outline

(1) Analytic transparent boundary conditions
(2) Artificial boundary conditions

- Straight artificial boundary
- General convex artificial boundary
(3) Approximations of TBC

Outline

(1) Analytic transparent boundary conditions
(2) Artificial boundary conditions

- Straight artificial boundary
- General convex artificial boundary
(3) Approximations of TBC

Analytic transparent boundary conditions

$$
\begin{align*}
& i \partial_{t} u+\Delta u=0, \quad(\mathbf{x}, t) \in \mathbb{R}^{2} \times \mathbb{R}^{+} \\
& u(\mathbf{x}, 0)=u^{I}(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{2} \tag{1}
\end{align*}
$$

葍Schädle（02）
Int similar tools already used in 1D ：
－transmission problem
－Laplace transform ： $\mathcal{L}(w)(\mathbf{x}, \tau)=\hat{w}(\tau)=\int_{0}^{\infty} w(\mathbf{x}, t) e^{-\tau t} d t, \operatorname{Re}(\tau)>0$
－Step 1 ：split problem（1）as a transmission problem between Ω and $\Omega^{\text {ext }}$

Analytic transparent boundary conditions

Interior problem

$$
\begin{aligned}
& i \partial_{t} v+\Delta v=0, \quad(\mathbf{x}, t) \in \Omega \times \mathbb{R}^{+} \\
& v(\mathbf{x}, 0)=u^{I}(\mathbf{x}), \quad \mathbf{x} \in \Omega \\
& v(\mathbf{x}, t)=w(\mathbf{x}, t), \quad(\mathbf{x}, t) \in \Gamma \times \mathbb{R}^{+}
\end{aligned}
$$

Exterior problem

$$
\begin{array}{ll}
i \partial_{t} w+\Delta w=0, & (\mathbf{x}, t) \in \Omega^{\mathrm{ext}} \times \mathbb{R}^{+}, \\
\partial_{\mathbf{n}} w(\mathbf{x}, t)=\partial_{\mathbf{n}} v(\mathbf{x}, t), & (\mathbf{x}, t) \in \Gamma \times \mathbb{R}^{+}, \\
\lim _{|\mathbf{x}| \rightarrow+\infty} \sqrt{|\mathbf{x}|}\left(\nabla w \cdot \frac{\mathbf{x}}{|\mathbf{x}|}+\mathrm{e}^{-i \frac{\pi}{4}} \partial_{t}^{\frac{1}{2}} w\right)=0 .
\end{array}
$$

Presence of the Sommerfeld-like radiation condition to ensure the uniqueness of the solution in $\Omega^{\text {ext }}$.

Analytic transparent boundary conditions

- Step 2 :

LAPLACE TRANSFORM IN t TO THE EXTERIOR PROBLEM

$$
\begin{aligned}
& \left(\Delta+k^{2}\right) \hat{w}(\mathbf{x}, \tau)=0, \quad \mathbf{x} \in \Omega^{\mathrm{ext}} \\
& \partial_{\mathbf{n}} \hat{w}(\mathbf{x}, \tau)=\partial_{\mathbf{n}} \hat{v}(\mathbf{x}, \tau), \quad(\mathbf{x}, \tau) \in \Gamma \\
& \lim _{|\mathbf{x}| \rightarrow+\infty} \sqrt{|\mathbf{x}|}\left(\nabla \hat{w}(\mathbf{x}, \tau) \cdot \frac{\mathbf{x}}{|\mathbf{x}|}-i k \hat{w}(\mathbf{x}, \tau)\right)=0 .
\end{aligned}
$$

Helmholtz-like equation : wave number $k=\sqrt{i \tau}$, with $\operatorname{Re}(k)>0$.
Theory of potential for the 2D Helmholtz equation : representation formula of the exterior field by a superposition of the single- and double-layer potentials

$$
\left(\frac{I}{2}-M\right) \hat{\omega}(\mathrm{x}, \tau)=L \partial_{\mathrm{n}} \hat{w}, \quad \mathrm{x} \in \Gamma .
$$

where
Single-layer potential $\quad L \varphi(\mathrm{x})=-\int_{\Gamma} G(\mathrm{x}, \mathrm{y}) \varphi(\mathrm{y}) d \Gamma(\mathrm{y}), \quad \mathrm{x} \in \Gamma$,
Double-layer potential $M \varphi(\mathrm{x})=\int_{\Gamma} \partial_{\mathrm{n}} G(\mathrm{x}, \mathrm{y}) \varphi(\mathrm{y}) d \Gamma(\mathrm{y}), \quad \mathrm{x} \in \Gamma$, setting $G(\mathrm{x}, \mathrm{y})=\frac{i}{4} H_{0}^{(1)}(k|\mathrm{x}-\mathrm{y}|)$.

Analytic transparent boundary conditions

- Step 2 :

LAPLACE TRANSFORM IN t TO THE EXTERIOR PROBLEM

$$
\begin{aligned}
& \left(\Delta+k^{2}\right) \hat{w}(\mathbf{x}, \tau)=0, \quad \mathbf{x} \in \Omega^{\mathrm{ext}} \\
& \partial_{\mathbf{n}} \hat{w}(\mathbf{x}, \tau)=\partial_{\mathbf{n}} \hat{v}(\mathbf{x}, \tau), \quad(\mathbf{x}, \tau) \in \Gamma \\
& \lim _{|\mathbf{x}| \rightarrow+\infty} \sqrt{|\mathbf{x}|}\left(\nabla \hat{w}(\mathbf{x}, \tau) \cdot \frac{\mathbf{x}}{|\mathbf{x}|}-i k \hat{w}(\mathbf{x}, \tau)\right)=0 .
\end{aligned}
$$

Helmholtz-like equation : wave number $k=\sqrt{i \tau}$, with $\operatorname{Re}(k)>0$.
Theory of potential for the 2D Helmholtz equation : representation formula of the exterior field by a superposition of the single- and double-layer potentials

$$
\left(\frac{I}{2}-M\right) \hat{w}(\mathbf{x}, \tau)=L \partial_{\mathbf{n}} \hat{w}, \quad \mathbf{x} \in \Gamma .
$$

where
Single-layer potential $\quad L \varphi(\mathbf{x})=-\int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{y}) d \Gamma(\mathbf{y}), \quad \mathbf{x} \in \Gamma$,
Double-layer potential $\quad M \varphi(\mathbf{x})=\int_{\Gamma} \partial_{\mathbf{n}} G(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{y}) d \Gamma(\mathbf{y}), \quad \mathbf{x} \in \Gamma$,
setting $G(\mathbf{x}, \mathbf{y})=\frac{i}{4} H_{0}^{(1)}(k|\mathbf{x}-\mathbf{y}|)$.

ANALYTIC TRANSPARENT BOUNDARY CONDITIONS

Inverse Laplace transform
DIRICHLET-TO-NEUMANN MAP

$$
\partial_{\mathbf{n}} v=\mathcal{L}^{-1}\left(L^{-1}\left(\frac{I}{2}-M\right) \hat{v}(\mathbf{x}, \cdot)\right)(t), \quad \mathbf{x} \in \Gamma
$$

Composition of an inverse Laplace transform and spatial integral operators : numerical evaluation would be difficult and costly (nonlocality).

```
ARTIFICIAL BOUNDARY CONDITIONS
    - Mimic the pioneering work of Engquist and Majda (77,79) : leads to
        families of approximate (non-local and local) artificial boundary
        conditions.
    - Main defect : conditions are not exact.
```


Analytic transparent boundary conditions

Inverse Laplace transform

DIRICHLET-TO-NEUMANN MAP

$$
\partial_{\mathbf{n}} v=\mathcal{L}^{-1}\left(L^{-1}\left(\frac{I}{2}-M\right) \hat{v}(\mathbf{x}, \cdot)\right)(t), \quad \mathbf{x} \in \Gamma
$$

Composition of an inverse Laplace transform and spatial integral operators : numerical evaluation would be difficult and costly (nonlocality).

Artificial boundary conditions

- Mimic the pioneering work of Engquist and Majda $(77,79)$: leads to families of approximate (non-local and local) artificial boundary conditions.
- Main defect : conditions are not exact.

Outline

(1) ANALYTIC TRANSPARENT BOUNDARY CONDITIONS
(2) Artificial boundary conditions

- Straight artificial boundary
- General convex artificial boundary
(3) Approximations of TBC

Straight artificial boundary

Straight boundary : Dimenza (95), Arnold (98)

$$
\left.\begin{array}{l}
\Omega=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right) ; x_{2}<0\right\} \\
\Omega^{\mathrm{ext}}=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right) ; x_{2}>0\right\} \\
\Gamma=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{2}=0\right\}
\end{array}\right\} \begin{aligned}
& \left\{\left(i \partial_{t}+\Delta\right) u=0, \quad(\mathbf{x}, t) \in \Omega \times \mathbb{R}^{+},\right. \\
& u(\mathbf{x}, 0)=u^{I}(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega \\
& \operatorname{supp}\left(u^{I}\right) \subset \Omega
\end{aligned}
$$

- Step 1 : transmission problem
- Step 2 : Laplace transform in time (with dual variable τ) and tangential Fourier transform \mathcal{F} in the x_{1}-direction (with dual variable ξ)

$$
\mathcal{F} \hat{u}\left(x_{2}, \tau, \xi\right)=\int_{0}^{+\infty} \int_{\mathbb{R}_{x_{1}}} e^{-i \xi x_{1}-\tau t} u\left(t, x_{1}, x_{2}\right) d x_{1} d t, \quad \tau=\sigma+i \rho
$$

Straight artificial boundary

Differential equation in the normal variable x_{2} for the solution w in $\Omega^{\text {ext }}$

$$
\left(\partial_{x_{2}}^{2}+i \tau-\xi^{2}\right) \mathcal{F} \hat{w}\left(x_{2}, \xi, \tau\right)=0, \quad x_{2}>0,
$$

Solution given as the superposition of two waves

$$
\mathcal{F} \hat{w}\left(x_{2}, \xi, \tau\right)=A^{+}(\xi, \tau) e^{i \lambda_{1}^{+}(\xi, \tau) x_{2}}+A^{-}(\xi, \tau) e^{i \lambda_{1}^{-}(\xi, \tau) x_{2}}
$$

with $\lambda_{1}^{ \pm}(\xi, \tau)= \pm \sqrt{i \tau-\xi^{2}}$.
Let $\left(x_{1}, t, \xi, \rho\right) \in \mathcal{E}:=\left\{\left(x_{1}, t, \xi, \rho\right) \in \mathbb{R}^{4}, \rho+\xi^{2}>0\right\}$.

Straight artificial boundary

In order to $\mathcal{F} \hat{w}(., \xi, \tau) \in L^{2}\left(\mathbb{R}^{+}\right)$, we require $A^{-}=0$

$$
\mathcal{F} \hat{w}\left(x_{2}, \xi, \tau\right)=A^{+}(\xi, \tau) e^{i \lambda_{1}^{+}(\xi, \tau) x_{2}}, \quad \lambda_{1}^{ \pm}(\xi, \tau)=\sqrt{i \tau-\xi^{2}}
$$

Remarks

- The part of the wave \hat{w} at point $\left(x_{1}, t, \xi, \rho\right)$ in \mathcal{E} is exponentially decaying (as $x_{2} \rightarrow \infty$) and usually called evanescent
- \mathcal{E} is called the M-quasi elliptic region setting $M=(1,2)$
- The pair M is introduced to recall the different homogeneities of the dual variables τ and ξ in the symbols $\lambda_{1}^{ \pm}$
- The points $\left(x_{1}, t, \xi, \rho\right)$ in the cone $\mathcal{H}=\left\{\left(x_{1}, t, \xi, \rho\right), \rho+\xi^{2}<0\right\}$ represent the propagative part of the wave. This zone is referred to as the M-quasi hyperbolic part.
- The complementary zone $\mathcal{G}=\left\{\left(x_{1}, t, \xi, \rho\right), \rho+\xi^{2}=0\right\}$ corresponds to the rays propagating along the boundary (grazing waves). This region is called the M-quasi glancing zone. It is reduced to $\{(0,0,0,0)\}$ if the wave u is not tangentially incident to I

Straight artificial boundary

In order to $\mathcal{F} \hat{w}(., \xi, \tau) \in L^{2}\left(\mathbb{R}^{+}\right)$, we require $A^{-}=0$

$$
\mathcal{F} \hat{w}\left(x_{2}, \xi, \tau\right)=A^{+}(\xi, \tau) e^{i \lambda_{1}^{+}(\xi, \tau) x_{2}}, \quad \lambda_{1}^{ \pm}(\xi, \tau)=\sqrt{i \tau-\xi^{2}}
$$

Remarks

- The part of the wave \hat{w} at point $\left(x_{1}, t, \xi, \rho\right)$ in \mathcal{E} is exponentially decaying (as $x_{2} \rightarrow \infty$) and usually called evanescent
- \mathcal{E} is called the M-quasi elliptic region setting $M=(1,2)$
- The pair M is introduced to recall the different homogeneities of the dual variables τ and ξ in the symbols $\lambda_{1}^{ \pm}$
represent the propagative part of the wave. This zone is referred to as the M-quasi hyperbolic part.
- The complementary zone $\mathcal{G}=$
the rays propagating along the boundary (grazing waves). This region is called the M-quasi glancing zone. It is reduced to $\{(0,0,0,0)\}$ if the wave u is not tangentially incident to Γ

Straight artificial boundary

In order to $\mathcal{F} \hat{w}(., \xi, \tau) \in L^{2}\left(\mathbb{R}^{+}\right)$, we require $A^{-}=0$

$$
\mathcal{F} \hat{w}\left(x_{2}, \xi, \tau\right)=A^{+}(\xi, \tau) e^{i \lambda_{1}^{+}(\xi, \tau) x_{2}}, \quad \lambda_{1}^{ \pm}(\xi, \tau)=\sqrt{i \tau-\xi^{2}}
$$

Remarks

- The part of the wave \hat{w} at point $\left(x_{1}, t, \xi, \rho\right)$ in \mathcal{E} is exponentially decaying (as $x_{2} \rightarrow \infty$) and usually called evanescent
- \mathcal{E} is called the M-quasi elliptic region setting $M=(1,2)$
- The pair M is introduced to recall the different homogeneities of the dual variables τ and ξ in the symbols $\lambda_{1}^{ \pm}$
- The points $\left(x_{1}, t, \xi, \rho\right)$ in the cone $\mathcal{H}=\left\{\left(x_{1}, t, \xi, \rho\right), \rho+\xi^{2}<0\right\}$ represent the propagative part of the wave. This zone is referred to as the M-quasi hyperbolic part.
- The complementary zone $\mathcal{G}=$ the rays propagating along the boundary (grazing waves). This region is called the M-quasi glancing zone. It is reduced to $\{(0,0,0,0)\}$ if the wave u is not tangentially incident to Γ

Straight artificial boundary

In order to $\mathcal{F} \hat{w}(., \xi, \tau) \in L^{2}\left(\mathbb{R}^{+}\right)$, we require $A^{-}=0$

$$
\mathcal{F} \hat{w}\left(x_{2}, \xi, \tau\right)=A^{+}(\xi, \tau) e^{i \lambda_{1}^{+}(\xi, \tau) x_{2}}, \quad \lambda_{1}^{ \pm}(\xi, \tau)=\sqrt{i \tau-\xi^{2}}
$$

Remarks

- The part of the wave \hat{w} at point $\left(x_{1}, t, \xi, \rho\right)$ in \mathcal{E} is exponentially decaying (as $x_{2} \rightarrow \infty$) and usually called evanescent
- \mathcal{E} is called the M-quasi elliptic region setting $M=(1,2)$
- The pair M is introduced to recall the different homogeneities of the dual variables τ and ξ in the symbols $\lambda_{1}^{ \pm}$
- The points $\left(x_{1}, t, \xi, \rho\right)$ in the cone $\mathcal{H}=\left\{\left(x_{1}, t, \xi, \rho\right), \rho+\xi^{2}<0\right\}$ represent the propagative part of the wave. This zone is referred to as the M-quasi hyperbolic part.
- The complementary zone $\mathcal{G}=\left\{\left(x_{1}, t, \xi, \rho\right), \rho+\xi^{2}=0\right\}$ corresponds to the rays propagating along the boundary (grazing waves). This region is called the M-quasi glancing zone. It is reduced to $\{(0,0,0,0)\}$ if the wave u is not tangentially incident to Γ.

Straight artificial boundary

Apply the normal derivative operator $\partial_{x_{2}}$ to $\mathcal{F} \hat{w}\left(x_{2}, \xi, \tau\right)=A^{+}(\xi, \tau) e^{i \lambda_{1}^{+}(\xi, \tau) x_{2}}$ and choose $x_{2}=0, \mathbf{n}=(1,0)$ as the outwardly unitary normal vector to the computational domain.
Inverse Laplace-Fourier transform

$$
\partial_{\mathbf{n}} u+i \Lambda^{+}\left(\partial_{x_{1}}, \partial_{t}\right) u=0, \quad \text { on } \Gamma \times \mathbb{R}^{+},
$$

with

$$
\Lambda^{+}\left(\partial_{x_{1}}, \partial_{t}\right) w\left(x_{1}, 0, t\right)=\frac{1}{(2 \pi)^{2} i} \int_{\gamma-i \infty}^{\gamma+i \infty} \int_{\mathbb{R}} \lambda_{1}^{+}(\xi, \tau) \mathcal{F} \hat{w}(0, \xi, \tau) e^{i \xi x_{1}+s t} d \xi d \tau
$$

Formally,

Artificial boundary condition

$$
\partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+\Delta_{\Gamma}} u=0 \quad \text { on } \Gamma \times \mathbb{R}^{+}
$$

where Δ_{Γ} denotes the surface Laplace-Beltrami operator $\partial_{x_{1}}^{2}$.
The exact DtN operator is therefore non-local both in space and time.

Straight artificial boundary

REmARKS:

- This derivation leads inevitably to junction problems located in corners

One must work on a convex open set

- One can restrict Λ^{+}to \mathcal{H} : filtering of the propagative part of the wave field \Rightarrow

Transparent Boundary Condition

$$
\partial_{\mathbf{n}} u-i O p_{\mid \mathcal{H}}\left(\sqrt{i \tau-\xi^{2}}\right) u=0 \quad \text { on } \Gamma \times \mathbb{R}^{+}
$$

- Factorization: $\left(i \partial_{t}+\Delta\right) u=\left(\partial_{x_{2}}-i \sqrt{i \partial_{t}+\partial_{x_{1}}^{2}}\right)\left(\partial_{x_{2}}+i \sqrt{i \partial_{t}+\partial_{x_{1}}^{2}}\right)$

General convex artificial boundary

GENERAL CONVEX OPEN SET $\Omega \subset \mathbb{R}^{2}$: factorization of the operator $i \partial_{t}+\Delta$

Methodology

- Generalized coordinates system of the boundary : variable r normal variable along the unit normal vector \mathbf{n} variable s curvilinear abscissa along Γ

$$
\Delta=\partial_{r}^{2}+\kappa_{r} \partial_{r}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)
$$

$\kappa_{r}=h^{-1} \kappa:$ curvature on the parallel surface Γ_{r} to Γ
$h(r, s)=1+r \kappa$.

$$
\Rightarrow \quad L:=i \partial_{t}+\Delta=\partial_{r}^{2}+\kappa_{r} \partial_{r}
$$

$+i \partial_{t}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)$

$$
r \nVdash x_{2} \quad s \nVdash x_{1} \quad t \nLeftarrow t
$$

General convex artificial boundary

- Define ψ do classes

DÉFINITION

(1) $a \in S^{m}$ symbol, said to be quasi homogeneous of degree m if

$$
a\left(r, s, \mu \xi, \mu^{2} \omega\right)=\mu^{m} a(r, s, \mu, \omega)
$$

(2) $A \in O P S^{m}$ if $a=\sigma(A)$ admits an asymptotic expansion of the form

$$
a \sim \sum_{j=-m}^{+\infty} a_{-j}, \quad a_{-j} \in S^{-j} \quad \text { and } \quad \forall p \geq-m, \quad a-\sum_{j=-m}^{p} a_{-j} \in S^{-(p+1)}
$$

- Nirenberg-like factorization theorem
$\exists \Lambda^{ \pm} \in O P S^{1}, r$-regular function

$$
L=\left(\partial_{r}+i \Lambda^{-}\left(r, s, \partial_{s}, \partial_{t}\right)\right)\left(\partial_{r}+i \Lambda^{+}\left(r, s, \partial_{s}, \partial_{t}\right)\right)+R
$$

with $R \in O P S^{-\infty}$. The factorization theorem holds in \mathcal{H}, \mathcal{E} but not \mathcal{G}.

General convex artificial boundary

- Define ψ do classes

DÉFINITION

(1) $a \in S^{m}$ symbol, said to be quasi homogeneous of degree m if

$$
a\left(r, s, \mu \xi, \mu^{2} \omega\right)=\mu^{m} a(r, s, \mu, \omega)
$$

(2) $A \in O P S^{m}$ if $a=\sigma(A)$ admits an asymptotic expansion of the form

$$
a \sim \sum_{j=-m}^{+\infty} a_{-j}, \quad a_{-j} \in S^{-j} \quad \text { and } \quad \forall p \geq-m, \quad a-\sum_{j=-m}^{p} a_{-j} \in S^{-(p+1)}
$$

- Nirenberg-like factorization theorem
$\exists \Lambda^{ \pm} \in O P S^{1}, r$-regular function

$$
\begin{gathered}
L=\left(\partial_{r}+i \Lambda^{-}\left(r, s, \partial_{s}, \partial_{t}\right)\right)\left(\partial_{r}+i \Lambda^{+}\left(r, s, \partial_{s}, \partial_{t}\right)\right)+R \\
\downarrow r \rightarrow 0 \\
\left(\partial_{n}+i \Lambda^{+}\left(s, \partial_{s}, \partial_{t}\right)\right)
\end{gathered}
$$

with $R \in O P S^{-\infty}$. The factorization theorem holds in \mathcal{H}, \mathcal{E} but not \mathcal{G}.

General convex artificial boundary

IDENTIFICATION OF THE DIFFERENT TERMS

- $L=\partial_{r}^{2}+\kappa_{r} \partial_{r}+i \partial_{t}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)$
- $\left(\partial_{r}+i \Lambda^{-}\right)\left(\partial_{r}+i \Lambda^{+}\right)=\partial_{r}^{2}$

General convex artificial boundary

Identification of the different terms

- $L=\partial_{r}^{2}+\kappa_{r} \partial_{r}+i \partial_{t}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)$
- $\left(\partial_{r}+i \Lambda^{-}\right)\left(\partial_{r}+i \Lambda^{+}\right)=\partial_{r}^{2}+i\left(\Lambda^{+}+\Lambda^{-}\right) \partial_{r}$

Therefore, one has

- Consider the asymptotic expansions of the symbols, the rules of symbolic calculus of $\sigma\left(\Lambda^{-} \Lambda^{+}\right)$and identification of the symbols by homogeneity.
- Retriction to the boundary $r=0$ and $\bar{\lambda}=\lim _{r \rightarrow 0} \lambda$.

General convex artificial boundary

Identification of the different terms

- $L=\partial_{r}^{2}+\kappa_{r} \partial_{r}+i \partial_{t}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)$
- $\left(\partial_{r}+i \Lambda^{-}\right)\left(\partial_{r}+i \Lambda^{+}\right)=\partial_{r}^{2}+i\left(\Lambda^{+}+\Lambda^{-}\right) \partial_{r}+i O_{p}\left(\partial_{r} \lambda^{+}\right)-\Lambda^{-} \Lambda^{+}$

Therefore, one has

$$
\left\{\begin{array}{l}
i\left(\lambda^{+}+\lambda^{-}\right)=\kappa_{r}, \\
i \partial_{r} \lambda^{+}-\sigma\left(\Lambda^{-} \Lambda^{+}\right)=i \xi\left(h^{-1} \partial_{s} h^{-1}\right)-\xi^{2} h^{-2}+i \tau,
\end{array}\right.
$$

with $\lambda^{ \pm} \sim \sum_{j=-1}^{+\infty} \lambda_{-j}^{ \pm}, \lambda_{-j}^{ \pm} \in S^{-j}$

- Consider the asymptotic expansions of the symbols, the rules of symbolic calculus of $\sigma\left(\Lambda^{-} \Lambda^{+}\right)$and identification of the symbols by homogeneity.
- Retriction to the boundary $r=0$ and $\widetilde{\lambda}=\lim _{r \rightarrow 0} \lambda$.

General convex artificial boundary

Identification of the different terms

- $L=\partial_{r}^{2}+\kappa_{r} \partial_{r}+i \partial_{t}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)$
- $\left(\partial_{r}+i \Lambda^{-}\right)\left(\partial_{r}+i \Lambda^{+}\right)=\partial_{r}^{2}+i\left(\Lambda^{+}+\Lambda^{-}\right) \partial_{r}+i O p\left(\partial_{r} \lambda^{+}\right)-\Lambda^{-} \Lambda^{+}$

Therefore, one has

$$
\left\{\begin{array}{l}
i\left(\lambda^{+}+\lambda^{-}\right)=\kappa_{r}, \\
i \partial_{r} \lambda^{+}-\sigma\left(\Lambda^{-} \Lambda^{+}\right)=i \xi\left(h^{-1} \partial_{s} h^{-1}\right)-\xi^{2} h^{-2}+i \tau
\end{array}\right.
$$

with $\lambda^{ \pm} \sim \sum_{j=-1}^{+\infty} \lambda_{-j}^{ \pm}, \lambda_{-j}^{ \pm} \in S^{-j}$.

- Consider the asymptotic expansions of the symbols, the rules of symbolic calculus of $\sigma\left(\Lambda^{-} \Lambda^{+}\right)$and identification of the symbols by homogeneity.
- Retriction to the boundary $r=0$ and $\widetilde{\lambda}=\lim _{r \rightarrow 0} \lambda$.

General convex artificial boundary

IDENTIFICATION OF THE DIFFERENT TERMS

- $L=\partial_{r}^{2}+\kappa_{r} \partial_{r}+i \partial_{t}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)$
- $\left(\partial_{r}+i \Lambda^{-}\right)\left(\partial_{r}+i \Lambda^{+}\right)=\partial_{r}^{2}+i\left(\Lambda^{+}+\Lambda^{-}\right) \partial_{r}+i O p\left(\partial_{r} \lambda^{+}\right)-\Lambda^{-} \Lambda^{+}$

Therefore, one has

$$
\left\{\begin{array}{l}
i\left(\lambda^{+}+\lambda^{-}\right)=\kappa_{r} \\
i \partial_{r} \lambda^{+}-\sigma\left(\Lambda^{-} \Lambda^{+}\right)=i \xi\left(h^{-1} \partial_{s} h^{-1}\right)-\xi^{2} h^{-2}+i \tau
\end{array}\right.
$$

with $\lambda^{ \pm} \sim \sum_{j=-1}^{+\infty} \lambda_{-j}^{ \pm}, \lambda_{-j}^{ \pm} \in S^{-j}$.

- Consider the asymptotic expansions of the symbols, the rules of symbolic calculus of $\sigma\left(\Lambda^{-} \Lambda^{+}\right)$and identification of the symbols by homogeneity.
- Retriction to the boundary $r=0$ and $\widetilde{\lambda}=\lim _{r \rightarrow 0} \lambda$.

$$
\widetilde{\lambda_{1}^{+}}=\sqrt{i \tau-\xi^{2}}, \widetilde{\lambda_{0}^{+}}=\frac{1}{2 \widetilde{\lambda_{1}^{+}}}\left(-i \kappa \widetilde{\lambda_{1}^{+}}-i \frac{\kappa \xi^{2}}{\widetilde{\lambda_{1}^{+}}}\right), \ldots
$$

General convex artificial boundary

Approximate TBC

$$
\partial_{\mathbf{n}} u+i \mathrm{Op}\left(\sum_{j=-1}^{m} \widetilde{\lambda_{-j}}\right) u=0 \text { on } \Gamma \times[0, T]
$$

Always non local in space-time.

Outline

(1) ANALYTIC TRANSPARENT BOUNDARY CONDITIONS
(2) Artificial boundary conditions

- Straight artificial boundary
- General convex artificial boundary
(3) Approximations of TBC

Approximations of TBC

Three strategies :

- Arnold et al. (06) derivation of a Discrete TBCs for the fully discrete time-dependent Schrödinger equation for circular geometry. Crank Nicolson finite difference scheme on Schrödinger eq. in polar coordinates.
Laplace $u \rightarrow \mathcal{Z}$-transform Fourier $\mathrm{m} \rightarrow$ discrete Fourier transform in θ-direction.
- Dimenza (95), Szeftel (04) : since TBCs are $\partial_{\mathrm{n}} u-i O p\left(\sqrt{i \tau-\xi^{2}}\right) u=0$, use a rational approximation of the square root

with $z=i \tau-\xi^{2},\left(a_{j}, b_{j}\right) \in \mathbb{C}^{2}$.
Lindmann's trick : auxiliary functions φ_{j} satisfying the surface Schrödinger equations

Then, ABCs are local and read $\partial_{\mathrm{n}} u=a_{0} u+\sum$

Approximations of TBC

Three strategies:

- Arnold et al. (06) derivation of a Discrete TBCs for the fully discrete time-dependent Schrödinger equation for circular geometry. Crank Nicolson finite difference scheme on Schrödinger eq. in polar coordinates.
Laplace $u \boldsymbol{Z} \boldsymbol{\mathcal { Z }}$-transform Fourier $\mathrm{m} \rightarrow$ discrete Fourier transform in θ-direction.
- Dimenza (95), Szeftel (04) : since TBCs are $\partial_{\mathbf{n}} u-i O p\left(\sqrt{i \tau-\xi^{2}}\right) u=0$, use a rational approximation of the square root

$$
\sqrt{z} \approx a_{0}+\sum_{j=1}^{m} \frac{a_{j} z}{z+b_{j}},
$$

with $z=i \tau-\xi^{2},\left(a_{j}, b_{j}\right) \in \mathbb{C}^{2}$.
Lindmann's trick : auxiliary functions φ_{j} satisfying the surface Schrödinger equations

$$
\left(i \partial_{t}+\Delta_{\Gamma}+b_{j}\right) \varphi_{j}=u, \quad \text { on } \mathbb{R} \times \mathbb{R}^{+}
$$

Then, ABCs are local and read $\partial_{\mathbf{n}} u=a_{0} u+\sum_{j=1}^{m} a_{j}\left(i \partial_{t}+\Delta_{\Gamma}\right) \varphi_{j}$,

Approximations of TBC

- Third way :

Transparent Boundary Condition

$$
\partial_{\mathbf{n}} u-i O p_{\mid \mathcal{H}}\left(\sqrt{i \tau-\xi^{2}}\right) u=0 \quad \text { on } \Gamma \times \mathbb{R}^{+}, \tau=\sigma+i \rho
$$

Since we restrict symbol to \mathcal{H} region, $-\rho>\xi^{2} \Rightarrow|\tau|>\xi^{2}$.
high frequency assumption : $|\tau| \gg \xi^{2}$
Example for λ_{1}^{+}:

$$
\underbrace{\sqrt{i \tau-\xi^{2}}}_{\begin{array}{c}
\text { non local in } \\
\text { x and } \mathrm{t}
\end{array}}=\sqrt{i \tau} \underbrace{\sqrt{1-\frac{\xi^{2}}{i \tau}}}_{\begin{array}{c}
|i \tau| \gg \xi^{2} \\
\text { Taylor exp. }
\end{array}} \approx \sqrt{i \tau}-\underbrace{\frac{\xi^{2}}{2 \sqrt{i \tau}}}_{\text {local in space }}+\underbrace{\ldots}_{\text {local in space }}
$$

The ABC of order $(m+2) / 2$ is $\left(\partial_{\mathbf{n}}+i \operatorname{Op}\left(\sum_{j=-1}^{m}\left(\widetilde{\lambda_{-j}}\right)_{(m+2)}\right)\right) v=0$ on
$\Gamma \times[0, T]$ where $\left(\widetilde{\lambda_{-j}}\right)_{(m+2)}$ are Taylor expansions with respect to the small parameter τ^{-1} truncated to the term $\tau^{-(m+2) / 2}$

Approximations of TBC

Applications

- Arnold (95), straight line case first and second-order Taylor expansion of the symbol λ_{1}^{+}.

$$
\left(\partial_{\mathbf{n}}+e^{-i \pi / 4} \partial_{t}^{\frac{1}{2}}\right) u=0, \quad \text { on } \Gamma \times \mathbb{R}^{+},
$$

and

$$
\left(\partial_{\mathbf{n}}+e^{-i \pi / 4} \partial_{t}^{\frac{1}{2}}-e^{i \pi / 4} \frac{1}{2} \Delta_{\Gamma} I_{t}^{\frac{1}{2}}\right) u=0, \quad \text { on } \Gamma \times \mathbb{R}^{+} .
$$

- Antoine-Besse (01), general convex open set, taylor expansion in the hyperbolic zone

Approximations of TBC

Approximated IBVP

$$
\left(D N^{m / 2}\right)\left\{\begin{array}{l}
\left(i \partial_{t}+\Delta\right) v=0, \quad(x, t) \in \Omega \times[0, T] \\
\partial_{\mathbf{n}} v+T_{m / 2} v=0, \quad(x, t) \in \Gamma \times[0, T] \\
v(x, 0)=v_{0}(x), \quad x \in \Omega
\end{array}\right.
$$

The operators $T_{m / 2}, m \in\{1, \ldots, 4\}$ are pseudodifferential in time and differential in space, and they are given on $\Gamma \times \mathbb{R}^{+}$by

$$
\begin{aligned}
& T_{1 / 2} v=e^{-i \pi / 4} \partial_{t}^{1 / 2} v \\
& T_{1} v=T_{1 / 2} v+\frac{\kappa}{2} v \\
& T_{3 / 2} v=T_{1} v-e^{i \pi / 4}\left(\frac{\kappa^{2}}{8}+\frac{1}{2} \Delta_{\Gamma}\right) I_{t}^{1 / 2} v, \\
& T_{2} v=T_{3 / 2} v+i\left(\frac{\kappa^{3}}{8}+\frac{1}{2} \partial_{s}\left(\kappa \partial_{s}\right)+\frac{\Delta_{\Gamma} \kappa}{8}\right) I_{t} v,
\end{aligned}
$$

with $I_{t}^{1 / 2}=I_{t} \partial_{t}^{1 / 2}$.

Numerical experiments

Explicit solution (2D)

$$
u\left(x_{1}, x_{2}, t\right)=\frac{i}{i-4 t} \exp \left(-i \frac{x_{1}^{2}+x_{2}^{2}+5 i x_{1}+25 i t}{i-4 t}\right)
$$

Finite elements approximation (\mathcal{P}^{1}): $\Omega_{i}=D(0,10), 3278$ triangles, $\delta t=10^{-2}$.

