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ANALYTIC TRANSPARENT BOUNDARY CONDITIONS

i0u+ Au =0, (x,t)€R?xRF, (1)
u(x,0) = ul(x), x€R2

[ESchadle (02)
w similar tools already used in 1D :

@ transmission problem
o Laplace transform : L(w)(x,7) = (1) = [ w(x,t)e""'dt, Re(r) >0
o Step 1 : split problem (1) as a transmission problem between 2 and Q¢

Qezt

n
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ANALYTIC TRANSPARENT BOUNDARY CONDITIONS

QC’.’L’f

Interior problem Exterior problem
0w+ Av =0, (x,t)€QxRT idw+ Aw =0, (x,t) € Q™ x RT,
v(x,0) =ul(x), x€Q Onw(x,t) = Opv(x,t), (x,t) € x RT,
—_ + et
v(x,t) = w(x,t), (x,t) €' xR | llim S (Vw~ ﬁ N e_zzat; w) _
x| —-+o0o

Presence of the Sommerfeld-like radiation condition to ensure the uniqueness
of the solution in Q<.
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ANALYTIC TRANSPARENT BOUNDARY CONDITIONS

o Step 2:

LAPLACE TRANSFORM IN ¢t TO THE EXTERIOR PROBLEM
(A + E)(x,7) =0, x€Q=t
OnW(x,7) = On0(x,T), ( T) €T,

lim +/|x] (Vw X, T) — ik (x, 7')) = 0.

|x|—+o00 | |

Helmholtz-like equation : wave number k = v/i7, with Re(k) > 0.
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ANALYTIC TRANSPARENT BOUNDARY CONDITIONS

@ Step 2 :
LAPLACE TRANSFORM IN ¢ TO THE EXTERIOR PROBLEM

(A +E)w(x,7) =0, xe€Q=t
On(x,7) = 0n0(x,7), (x,7)€T,

lim /]x]| (vw(x,r) : TzI - ikw(x,r)) )

|x|—+o00

Helmholtz-like equation : wave number k = /it, with Re(k) > 0.

Theory of potential for the 2D Helmholtz equation : representation formula of
the exterior field by a superposition of the single- and double—layer potentials

I
(2 - M) w(x,7) = Loyw, x€eT.
where
Single-layer potential  Lo(x) = — [ G(x,y)e(y)dl'(y), xe€T,
Double-layer potential Mcp fr hG(x,y ) (y)dl'(y), xe€eT,

setting G(x,y) = ﬁHél)(k\x —-yl).
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ANALYTIC TRANSPARENT BOUNDARY CONDITIONS

Inverse Laplace transform

DIRICHLET-TO-NEUMANN MAP
O = L7 (L*l (g - M)ﬁ(x, -)) (), xel, J

Composition of an inverse Laplace transform and spatial integral operators :
numerical evaluation would be difficult and costly (nonlocality).
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ANALYTIC TRANSPARENT BOUNDARY CONDITIONS

Inverse Laplace transform
DIRICHLET-TO-NEUMANN MAP
Bnv = L1 (L*l (g - ZV[){)(X, -)) (), xel,

Composition of an inverse Laplace transform and spatial integral operators :
numerical evaluation would be difficult and costly (nonlocality).

ARTIFICIAL BOUNDARY CONDITIONS
@ Mimic the pioneering work of Engquist and Majda (77,79) : leads to
families of approximate (non—local and local) artificial boundary
conditions.

@ Main defect : conditions are not exact.
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OUTLINE
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@ Straight artificial boundary
@ General convex artificial boundary
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STRAIGHT ARTIFICIAL BOUNDARY

STRAIGHT BOUNDARY : Dimenza (95), Arnold (98)

Q= {x = (z1,22); x2 < 0} A Tt
Q% = {x = (21, 22); 22 > 0}

[ = {x € R?|zy = 0}
@ - .
{(i@t +Au=0, (xt)€QxRF,

u(x,0) =ul(x), VxeQ, "
supp(ul) C Q

@ Step 1 : transmission problem
@ Step 2 : Laplace transform in time (with dual variable 7) and tangential
Fourier transform F in the x;-direction (with dual variable &)

—+o0
]:ﬁ(an 7, 5) = / / e_zgwl_ﬁu(t,xl,xg)dxldu T=0+1ip
0 R,
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STRAIGHT ARTIFICIAL BOUNDARY

Differential equation in the normal variable x5 for the solution w in Q&
(92, + it — €%) Fiv(z2,€,7) =0, 23>0,
Solution given as the superposition of two waves
Fid(wa,&,7) = AT(E, 7)e™M €D 4 A= (g, r)eirr €2,
with A\ (€, 7) = £+/iT — €2.
Let (z1,t,&,p) € € := {(21,¢,€,p) €R?, p+ & > 0}.

iR iR
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STRAIGHT ARTIFICIAL BOUNDARY
In order to Fu(.,&,7) € L2(RT), we require A~ =0

Fib(wp, &) = AT (6, m)eM €Nz ME(g 1) = fir — &2
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STRAIGHT ARTIFICIAL BOUNDARY
In order to F(.,&,7) € L2(RT), we require A~ =0

‘7:@(1'27577) = A+(f77’)ei/\1+(577')127 )\?:(57_) _ m

REMARKS
@ The part of the wave w at point (z1,t,&, p) in £ is exponentially
decaying (as zo — o) and usually called evanescent

o & is called the M-quasi elliptic region setting M = (1,2)

@ The pair M is introduced to recall the different homogeneities of the
dual variables 7 and £ in the symbols )\{E
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STRAIGHT ARTIFICIAL BOUNDARY

In order to Fu(.,&,7) € L*(RT), we require A~ =0

‘7:@(1'27577) = A+(f77’)ei/\1+(577')127 )\?:(57_) _ m

REMARKS

@ The part of the wave w at point (z1,t,&, p) in £ is exponentially
decaying (as zo — o) and usually called evanescent

o & is called the M-quasi elliptic region setting M = (1,2)

@ The pair M is introduced to recall the different homogeneities of the
dual variables 7 and £ in the symbols )\{E

e The points (z1,t,, p) in the cone H = {(21,,&,p), p+ &> <0}
represent the propagative part of the wave. This zone is referred to as
the M-quasi hyperbolic part.
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STRAIGHT ARTIFICIAL BOUNDARY
In order to F(.,&,7) € L2(RT), we require A~ =0

‘7:@(1'27577) = A+(f77’)ei/\1+(577')127 )\?:(57_) _ m

REMARKS

@ The part of the wave w at point (z1,t,&, p) in £ is exponentially
decaying (as zo — o) and usually called evanescent

o & is called the M-quasi elliptic region setting M = (1,2)

@ The pair M is introduced to recall the different homogeneities of the
dual variables 7 and £ in the symbols )\{E

e The points (z1,t,, p) in the cone H = {(21,,&,p), p+ &> <0}
represent the propagative part of the wave. This zone is referred to as
the M-quasi hyperbolic part.

@ The complementary zone G = {(z1,t,&,p), p+ &* = 0} corresponds to
the rays propagating along the boundary (grazing waves). This region is
called the M-quasi glancing zone. It is reduced to {(0,0,0,0)} if the
wave u is not tangentially incident to I'.
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STRAIGHT ARTIFICIAL BOUNDARY

o

Apply the normal derivative operator 0,, to
Fi(wa,&,7) = AT (€, 7)eM (6722 and choose 25 = 0, n = (1,0) as the
outwardly unitary normal vector to the computational domain.

Inverse Laplace-Fourier transform
Ontt +iAT(04,,0)u=0, onT xR",

with

1 v+ioco R )
Ao du(ar00) = o [ [ N a6 me s agar
Y

—ico
Formally,
ARTIFICIAL BOUNDARY CONDITION
Ot —i\/id; + Aru=0 onT xR J

where Ar denotes the surface Laplace-Beltrami operator 831.

The exact DtN operator is therefore non-local both in space and time.
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STRAIGHT ARTIFICIAL BOUNDARY

REMARKS : - /)/ AT
@ This derivation leads inevitably to \ . / N

junction problems located in corners / ! ‘ —

One must work on a convex open set m

@ One can restrict AT to H : filtering of the propagative part of the wave
field =

TRANSPARENT BOUNDARY CONDITION
Onu — iOp(Vit —€2)u=0 on[ xRT }
e Factorization : (i0; + A)u = (0z, — i1/10; + 02, )(0s, + i1/10; + 03))

[m] = =
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GENERAL CONVEX ARTIFICIAL BOUNDARY
GENERAL CONVEX OPEN SET ) C R? : factorization of the operator
10 + A

METHODOLOGY
@ Generalized coordinates system of the boundary :

variable r normal variable along the unit normal vector n

variable s curvilinear abscissa along T’

A =02+ k.0, + h 10, (h10;)
ky = h™ 'k : curvature on the parallel surface ', to '

h(r,s) =1+rk.

= L:=i0+ A = 0% k.0,
+i0; + h™10s(h~10,)

T e To S e~ T t et
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(GENERAL CONVEX ARTIFICIAL BOUNDARY
@ Define ido classes

DEFINITION

Q@ a € S™ symbol, said to be quasi homogeneous of degree m if

a(r, s, pé, p’w) = p™a(r, s, p,w)

Q@ A€ OPS™ if a=o0(A) admits an asymptotic expansion of the form

+oo p
an~ Z a—j, a_j€ S~/ and Yp>-m, a— Z a_j € S (1)
j=——m j=—m

4

@ Nirenberg—like factorization theorem
JAET € OPS?, r—regular function

L= (0, +iA (r,5,05,0;)) (Or +iAT(r,s,05,0¢)) + R

with R € OPS~°°. The factorization theorem holds in H, £ but not G.

o (=) = IciaM — FRIDAY, JuLy 20TH 2007



(GENERAL CONVEX ARTIFICIAL BOUNDARY
@ Define ido classes

DEFINITION

Q@ a € S™ symbol, said to be quasi homogeneous of degree m if

a(r, s, pé, p’w) = p™a(r, s, p,w)

Q@ A€ OPS™ if a=o0(A) admits an asymptotic expansion of the form

+oo p
an~ Z a—j, a_j€ S~/ and Yp>-m, a— Z a_j € S (1)
j=——m j=—m

4

@ Nirenberg—like factorization theorem
JAET € OPS?, r—regular function

L= (0, +1iA (r,5,05,0;)) (Or +iAT(r,5,05,0)) + R
lr—20
(871, ar iA+(Sv asv 8t))

with R € OPS~°°. The factorization theorem holds in H, £ but not G.
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(GENERAL CONVEX ARTIFICIAL BOUNDARY @

IDENTIFICATION OF THE DIFFERENT TERMS
@ L =02 + k.0, +i0 +h 105(h~10;)
o (9, +iA7) (8, +iAt) =
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(GENERAL CONVEX ARTIFICIAL BOUNDARY @

IDENTIFICATION OF THE DIFFERENT TERMS
@ L =02 + k0. +i0 +h 105(h10;)
o (Or 4 iA™)(8, +iAt) = 92
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(GENERAL CONVEX ARTIFICIAL BOUNDARY Q

IDENTIFICATION OF THE DIFFERENT TERMS
@ L =02 + k.0, +i0 +h 105(h™10;)
o (Oy +iA™)(0r +iAT) = 82 +i(AT + A7)0,
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(GENERAL CONVEX ARTIFICIAL BOUNDARY Q

IDENTIFICATION OF THE DIFFERENT TERMS
@ L =02 + k.0, +i0 +h 105(h™10;)
o (Oy +iA™)(0r +iAT) = 82 + (AT + A7)0, +iOp(8,AT) — A=A*
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(GENERAL CONVEX ARTIFICIAL BOUNDARY @

IDENTIFICATION OF THE DIFFERENT TERMS
@ L =02 + k.0, +i0 +h 105(h~10;)
o (Oy + A7)0y +iAT) = 82 +i(AT + A7)0, +iOp(8,AT) — A=A+
Therefore, one has
AT+ A7) = Ky,
10 AT — o (A"AT) =ie(R10:h71) — €202 + i,
+oo )
with AE ~ Y~ A A e 57
j=—1

o Consider the asymptotic expansions of the symbols, the rules of symbolic
calculus of o(A~A™) and identification of the symbols by homogeneity.

@ Retriction to the boundary » = 0 and = lim, g A.

— 2
=it — &2, /\8—*7 7/ﬁ>\+77£)

2\7 AT
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(GENERAL CONVEX ARTIFICIAL BOUNDARY

APPROXIMATE TBC

8nu+i0p(z E)u:OOnI‘x[O,T]

j=—1

Always non local in space-time.
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APPROXIMATIONS OF TBC

Three strategies :

@ Arnold et al. (06) derivation of a Discrete TBCs for the fully discrete
time-dependent Schrodinger equation for circular geometry. Crank
Nicolson finite difference scheme on Schrodinger eq. in polar coordinates.

Laplace «~ Z—transform Fourier «~ discrete Fourier transform
in f—direction.
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APPROXIMATIONS OF TBC

Three strategies :

@ Arnold et al. (06) derivation of a Discrete TBCs for the fully discrete
time-dependent Schrodinger equation for circular geometry. Crank
Nicolson finite difference scheme on Schrodinger eq. in polar coordinates.

Laplace «~ Z—transform Fourier «~ discrete Fourier transform
in f—direction.

@ Dimenza (95), Szeftel (04) : since TBCs are Opu —iOp(1/iT — &2)u = 0,
use a rational approximation of the square root

m
- aj;z
\/E~a0+‘];z+ij

with 2 =it — &2, (a;,b;) € C2.
Lindmann'’s trick : auxiliary functions ; satisfying the surface
Schrodinger equations

(i0; + Ar + bj)p; =u, onRxRT.
Then, ABCs are local and read d,u = agu + Z a;(i0; + Ar)p;,
j=1
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APPROXIMATIONS OF TBC

@ Third way :
TRANSPARENT BOUNDARY CONDITION
O — 10pp (ViT —§2)u =0 onI'xRT, r=0+ip J

Since we restrict symbol to H region, —p > £2 = |7| > £2.
high frequency assumption : || > €2
Example for A} :

2 2
Vit =& =T 1—5— ~AIT — 3 +
————

iT 2V —~~
~——

local in space

non local in

|’LT| > 52 local in space
x and t T
aylor exp.
The ABC of order (m + 2)/2 is (0n + iOp( Z (X_Vj)(7,L+2)))v =0on
j=—1

I x [0, T] where (A_;)(m+2) are Taylor expansions with respect to the small
parameter 7~ truncated to the term 7 ("12)/2
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APPROXIMATIONS OF TBC

APPLICATIONS

@ Arnold (95), straight line case first and second-order Taylor expansion of
the symbol A}

(On + e‘i”/‘lat%)u =0, onI xRT

and
) 1 . 1 1
(B + e~m/197 — 6”/4§Ar1} Ju=0, on I xR*.

@ Antoine-Besse (01), general convex open set, taylor expansion in the
hyperbolic zone
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APPROXIMATIONS OF TBC

APPROXIMATED IBVP

(10 + Ay =0, (x,t) € Qx[0,T],
(DN™/'%) OV + Tjov =0, (z,t) €T x [0,T],
v (z,0) =vo(x), =€

The operators T,,, /5, m € {1,...,4} are pseudodifferential in time and
differential in space, and they are given on I' x RT by

Ty = enligi,
Thv = Typv+ gv,
. 2
Tg/gv = T1’U 6“7/4 § =F 2A1"> Itl/QU,
1 A
TQ/U = Tg/Q’U +Z (K;8 =4 585(:‘4}85) + ;) It/U,

with 1}/ = 1,6}/%
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NUMERICAL EXPERIMENTS
Explicit solution (2D)

(@1, 22,1) = —
U\xr1,x =
L2 i— 4t i — 4t

Finite elements approximation (P1!) : Q; = D(0,10), 3278 triangles,
6t =102

( 2?2 + 23 + 5izq + 25z't>
exp | —i .

t=0.25 =035 . t=050
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