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Transparent BCs for Schrodinger Equation in 1D
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» approximation of convolution kernel by sums of exponestial
o rational approximations of the Fourier—-symiobthe kernel

Numerical Example

Outlook: Cubic nonlinear case
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Numerical Computation on unbounded Domains

® Many physical problems are described mathematically by a
partial differential equation defined on anbounded domain

® Numerical computation: one has to restrict the computational
domain(2 by artificial boundary conditioner absorbing layers

#® |[f approximate solution coincides dawith exact solution,
these BCs are callddansparent boundary conditio(EBCSs)
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Numerical Computation on unbounded Domains

® Many physical problems are described mathematically by a
partial differential equation defined on anbounded domain

® Numerical computation: one has to restrict the computational
domain(2 by artificial boundary conditioner absorbing layers

#® |[f approximate solution coincides dawith exact solution,
these BCs are callddansparent boundary conditio(EBCSs)

® Constructed artificial boundary conditions should
o approximatghe exact whole—space solution restrictedto

o |ead towell-posedinitial) boundary value problem

o allow for anefficient(andeasy numerical implementation
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The Schrodinger Equation

® SE is the fundamental equation of quantum mechanics
developed 1926 by Austrian physickstwin Schrodinger

® describes form oprobability waves
that govern motion of small particles

specifies how these waves are
altered by external influences

® itis calledFresnel’s equatiom optics and
‘parabolic equationin acoustics & geophysics

(1887-1961)

0w = —0%u+V(x,t)u, 2R, t>0

u(xz,t) € C wave functionV (x,t) € R given potential
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TBCs for the Schrodinger Equation

10ru = —Bgu +V(z,H)u, xR, t>0
Al: supp u(z,0) C (z;,z,) ... computational domain
A2: Viz,t) =V, x<ua, Ve, t)=V,, z=>uz,

(both assumptions can be relaxed significantly)

#® Goal: reproducey = uy,, . With transparent BCatx = x;, x,
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The Derivation of the right TBC

® right TBCOu(x,,t) = (T u)(x,,t) from exterior problem:
10w = —éﬁw +Vow, x> x,
w(x,0) =0, x>z,

w(x,,t) =v(x,,t), decay conditionlim w(x,t) =0

r—00
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The Derivation of the right TBC

® right TBCOu(x,,t) = (T u)(x,,t) from exterior problem:
10w = —éﬁw +Vow, x> x,
w(x,0) =0, x>z,

w(x,,t) =v(x,,t), decay conditionlim w(x,t) =0

r—00
® explicit solutionof the right exterior problem by
Laplace transformationi(z, s) = [, w —stdt

O = (—is + Vo )w, x>z,

SOIUtion:’lf](aj')S) — A+(S)€ mx —|—A_(S)€_ J{/T—I—Vraj
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The Derivation of the right TBC

right TBC O, u(x,,t) = (T u)(x,, t) from exterior problem:
10w = —éﬁw +Vow, x> x,
w(x,0) =0, x>z,

w(x,,t) =v(x,,t), decay conditionlim w(x,t) =0

r—00
explicit solutionof the right exterior problem by
Laplace transformationi(z, s) = [, w —stdt

O = (—is + Vo )w, x>z,

solution must be iL2(Q): 8,1 (zy, 8) = 0(zy, s) e V5 HVr (@)

iInverse Laplace transformatiex right TBC: [Papadakis '82]
1 v d o [Pu(z,,T)eVT
Opu(Ty,t) = —€ "4 — _ZW—/ = d
wap,t) = —e e Vier

Artificial Boundary Conditions for Sckdinger Equations — p.6/3



Approaches for transient Schrodinger Equation

approximation of
J convolution kernel

discretized TBCs
(by quadrature rule)

T~ _—

[ analytical TBCs }

(rational) approximations
of symbol s

[ spatially discrete TBCs J [ temporally discrete TBCs J [ fully discrete TBCs }

'
} [ discrete convolution ] E>ole Condition ]

Layer (PML)

[ Perfectly Matched
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Approaches for transient Schrodinger Equation

Greengard & Jiang

approximation of
convolution kernel

(rational) approximations [ discretized TBCs J

of symbol 05
: Mayfield
EFU?GTU & Di Menza \ Baskakov & Popov
zefte :
Shibata Papadakis 1982
Kuska .
Fevens & Jiang [ ana|ytICa| TBCS }
[ spatially discrete TBCs J [ temporally discrete TBCs J [ fully discrete TBCs J
Alonso—Mallo & Requera Arnold, Ehrhardt, Schulte,

Sofronov & Zisowsky

\J
[ Perfectly Matched } [ discrete convolution J %ole Condition J

Layer (PML)

Collino Schmidt & Deuflhard Schmidt, Rupre_cht,_
Antoine & Besse Schadle & Zschiedrich

Lubich & Schadle
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Procedure to derive the analytic TBC

(1) Split problem into coupled equations: interior and extepimblems
(2) Apply a Laplace transformation in tinte

(3) Solve the ordinary differential equationsan

(4) Allow only ‘outgoing’ waves by taking decaying solution as — oo
(5) Match Dirichlet and Neumann valuesat z;, r = x,

(6) Apply the inverse Laplace transformation to obtain the TBC
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Procedure to derive the analytic TBC

(1) Split problem into coupled equations: interior and extepimblems
(2) Apply a Laplace transformation in tinte

(3) Solve the ordinary differential equationsan

(4) Allow only ‘outgoing’ waves by taking decaying solution as — oo
(5) Match Dirichlet and Neumann valuesat z;, r = x,

(6) Apply the inverse Laplace transformation to obtain the TBC

® Forthe IBVP on2 with a DtN or a NtD TBC, existence and
uniqueness of the solution has been proved, e.g. [Antoass&03]

® Continuous TBCs fully solve the problem of confining the sadat
domain to a bounded interval
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Procedure to derive the analytic TBC

(1) Split problem into coupled equations: interior and extepimblems
(2) Apply a Laplace transformation in tinte

(3) Solve the ordinary differential equationsan

(4) Allow only ‘outgoing’ waves by taking decaying solution as — oo
(5) Match Dirichlet and Neumann valuesat z;, r = x,

(6) Apply the inverse Laplace transformation to obtain the TBC

® Forthe IBVP on2 with a DtN or a NtD TBC, existence and
uniqueness of the solution has been proved, e.g. [Antoass&03]

® Continuous TBCs fully solve the problem of confining the sadat
domain to a bounded interval

but: their numerical discretization is not trivial at all!

here: two different approaches to derive (semi)discrete TBCsABQGs

Artificial Boundary Conditions for Sckdinger Equations — p.8/3



Temporally discrete TBCs

® SE discretized uniformly in time with—stable multi—step method

K K
é Y ot => "B (= +V)u", n>K
=0 =0

(2) instead of Laplace-transformation we applyg @ransformation

Zw")=d(z) =) u'z", z2€C, |2 >R(Z(u"))
n=0

(3) 2nd order ODE z%? W(z) = (=07 + Vp)i(z), x>
N——
ZK:() OéjZK_j : : : : .
0(z) = Z{K A generating function of time integration schen
j=o P52

® Assumptionon startupsupp(v’) C [, z,], j=0,1,...,K —1
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Example: trapezoidal rule discretization

iun—l—l —yn _ _ag yntl NEPYAL N Vn—l—l(x)un—i—l T ‘/fn(x)un7 LR
At 2 2
method (Crank-Nicolson) hagenerating functiod(z) = 2;;}
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Example: trapezoidal rule discretization

U — un—l—l 4oy Vn—l—l(x)un—i—l T Vn(x)un
. _ _82 R
A A 2 TS
method (Crank-Nicolson) hagenerating functiod(z) = 2;}
(3) solving the ODE vyields general solution
. .0(2) . +/.6(2)
Wz, z) = At (2) e Va7 L A7 (2) e VIR T T g,
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Example: trapezoidal rule discretization

U — un—l—l 4oy Vn—l—l(x)un—i—l i Vn(x)un
. _ _82 R
A A 2 TS
method (Crank-Nicolson) hagenerating functiod(z) = 2;;}
(3) solving the ODE vyields general solution
. .0(2) . +/.6(2)
Wz, z) = At (2) e Va7 L A7 (2) e VIR T T g,

(4)u™ € L*(]x,,0[) ~» A~ mustvanish
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Example: trapezoidal rule discretization

n+1 i um N Vn—l—l(x)un—i—l i Vn(x)un

_ R
At T 9 2 T €

method (Crank-Nicolson) hagenerating functiod(z) = 22’;}
(3) solving the ODE vyields general solution

+/M_ i T/; 5(2)_
w(x,z) = Av VT A T e >

(4)u" € L*(Jay,0[) ~ A~ mustvanish

N

Z(ﬁxw“)(z):iJK/%?—VZ( "z), x=ux,

(6) inverseZ-transformation- expressiord,w" (z,) in terms ofw”(x,.)
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Example: trapezoidal rule discretization
B n—|—1_|_un Vn—l—l(x)un—i—l_'_vn(x)un
At P2 i 2

method (Crank-Nicolson) hagenerating functiod(z) = 22’;}
(3) solving the ODE vyields general solution

+/M_ i T/; 5(2)_
w(x,z) = Av VT A T e >

(4)u™ € LQ(]xr, ~[) ~» A~ mustvanish
n+1

, TR

N

(6) 8™ =) " up™ T F ate = x, with weightsu,, (for V. = 0)
k=0
T V2 Cea, keN
Up = —e —1)¥uy, :
k T k 0

(i . iy, g i, s,y — (11, L L3 13
ug U1, U2, U3, U4, U5, ... ) = 7727272.472.47'”
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(2)
(3)

Fully discrete TBCs

SE discretized in space and time Gyank-Nicolson scheme

T ut o Yyl gy
i J J _D2 J J i J J J J
At * 2 2

right artificial boundary is located at. = x; + JAzx

, ] €L

Instead of Laplace-transformation we appl @ransformation

2nd order difference equation with constant coefficients

Wis1(2)—2 (1 - AT‘””Z <z@ + v)) Wi (2)+j_1(2) =0, j > J

general solution
bj(z) = AT (2 () + ATV (z), j=T -1
wherex(z) andx(z)~! are the roots of thquadratic equation

2
X2—2<1—A7m<7;%?+%>))(+1:0
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(4) decaying solutiong,;(z), j — oo ~» choosédranch with|y(z)| < 1

® Z-transformed right discrete TBfArnold '95, Ehrhardt '01]

A

iy-1(2) = x(2)t(2)

® transformed boundary kerng(z)

x(z) = 1—%332 (z%zt) _ Vr) \+/A2a:2 (ﬁZ) —Vr> <A;:2 (ﬁZ) —Vr) _2>

(6) Z~!'-transformation yieldsonvolution coefficientfor discrete TBC

(xn) == Z ' (x(2)), neNg

® right discrete TBGeads in physical space

n
k
Uy = E Xn—kUy, n €N
k=1
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Discretizations and Approximations

TBCs completely solve problem of confining unbounded domain
(theoretically)

for an(efficient) implementatiothe TBCs have to be discretized
and/or approximated
three main approachasthe literature
o discretizations of the TBC byuadrature rules
» approximation of convolution kernel by sums of exponeastial
o rational approximations of Fourier—symiaflconvolution kernel
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Discretizations by quadrature formulas

#® firstidea to incorporate TBC in scheme isa-hoc discretization

tn - .VT
0

\/?

7%
~ 1 (un—l—l—k un—l—l—k) e—inkAt/ todr
~ E : J - Y-
Ax — VT

1—-k 1-k\ —i
2\/A_t n (u7}—|— _ugtl )6 1ViekAt

T Az kzzo VE+1+Vk
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Discretizations by quadrature formulas

#® firstidea to incorporate TBC in scheme isa-hoc discretization

~» discretized TBdor the SE

Ax - B -
un—l—l o un—_}—l _ un—i—l o (un—l—l kE un—_}—l k;) Op
J J—1 J J J—1
2BVAL kzzl
. 1 P ~ e—inpk:At
with B = ——7—=¢"1 U =
t V2 €% k VEFI+VE

® Theorem[Mayfield '89]: CN—FD scheme for the Schrddinger
equation with a certain discretized analytic TBCstigble «—-

4 At
- c 2 1—2 2'—2
— A jEN[(JJr) ,(279)77]
0
c&,
1 1 1
3 T 1
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Rational approximations of the Fourier symbol

#® |n pseudodifferential calculus the Laplace transform efkbrnel
{/s is identified with the~ourier symbol+/iw

® now: rational approximations of Fourier symbol of convauatkernel

#® fractional derivative operat(ﬂg/ %in analytic TBC isnonlocal—-in—time
(due to the non—polynomial nature of its Fourier symBGiw)

® Example: In thespatial discrete caghe Fourier symbol is given in

x(s)=1— Af (is — V) + K/Af (is — w)(A;Q (is — V) — 2)

® rational approximation of these symbols allows fdoeal—in—time
approximated convolution

® For all of the subsequent methods saanpriori informationon the
dominant wavenumber of the solution at the boundary is reede
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Bruneau—-Di Menza, Szeftel, Shibata, and Kuskz

#® right analytic TBCin Fourier spacel(,. = 0)

_€z7r/4 +/-

Oxt(xy,w) = iw (T, w)

® approximate the symbol/iw by a rational function

m m a;cndzn
Rm@W):ZOJ?kn—Ziw_'_dm, azzvd;cn>0
k=0 k=1 k

ru—DiMe requireR,, (iw) to interpolate/iw at2m + 1 distinct points

Szeftel also uses a rational approximation $fiw, but different coefficients:
o Padeé approximation

o coefficients by minimizing theeflection coefficient
Shibata linear approximation with two intersection points

Kuska 1/1-Padé approximation about dominant frequengcyo choose
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Approach of Fevens and Jiang

family of absorbing boundary conditions (ABCs) of orger

p

[1

[=1

(

z'g—ka
ox :

)u:(), peN

from the shape = ¢!(k*—«t) of a plane waveone sees:
all waves with wavenumbér = a; are perfectly absorbed

well-posednestor this class of (analytic) ABCs was established

with low order choice® = 2 orp = 3; a1 = as = a3 One recovers
the ABCs of Shibata and of Kuska
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e o o o

Numerical Example

SE with a vanishing potentidd = 0 and a Gaussian initial condition
u' (z) = exp(—2? +ikox), = €R

» analytic solutiorcan be calculated explicitly

? —1x° — kox + kit
Uex (T, 1) \/_4t+zexp< R ) T € >

comput. domainf2;,; =] — 5, 5[, frequencyky = 8, final timeTy = 4

high frequency of solution needs a very good approximatfoﬂ?fé2

J = 40000 grid points in spatial direction and time steg = 104

contour oflog;,(|u|) to show small level of reflections
(numerical reflections cannot be visualized in traditiaz@itour plot)

-10 -9 8 -7 6 -5 -4 -3 -2 -1-01
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Example: Fevens—Jiang family

® Figure (a) contour plot of the solution
for the fully discrete scheme

® By construction there are no reflections
at all from the discrete TBC, so it serves

as a reference for the other methods X

(b) Shibata (c) Kuska (d) Fevens
® alevelsincrease improves significantly the solution

® these older methods are less competitive

Artificial Boundary Conditions for Sclidinger Equations — p.19/30



Example: Approximation of the square root

Figure (e) again as reference solution
method (f) need&7 coefficients

method (g) use20 Padé coefficients

e o o ©

method (h) only use3 coefficients
(minimization of reflection coefficient)

—

(f) Di Menza
® solutions built with a square root approximation are fatdret

() Szeftel
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Example: first group of methods

L | | | | | | | | = ArEh
<-FD
RAR AN | » BaPo
B> DD by O PML FD
S 2o, < Pole FD
KH g > | Padé
D .

- & “&*«—'1\‘ o 0 -6 _g— 3*_5_9_6 0_0 < dlMe

[» error
'_\
o
;l: T
I'J:‘W
y RN

CI) 015 I1 1i5 é 2i5 é 3i5 4
Time evolution of thespatiall, errorfor various finite difference
methods and the fixed step sizés = 2.5- 1074, At = 1074

method by Di MenzadiMe) showsstrong reflectiormproducing an
error aboutl0? times larger than the interior discretization error

method of Baskakov—PopoB&Po) induces aeflectionthat is
about the same magnitude as the interior discretizatianm err
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Example: cpu time as function of number of step

4

10 - - - 10°
ArEh ArEh
<-FD A = ~4-FD ,\;ﬂ»
103— 'D BaPo _D_ BaPo ﬁ/,/
o PML FD - PML FD 2"
é -©-Pole FD E 10" F-e- pole FD
2
§10 - Y- Padé g Padé
- diMe 10° L€~ diMe
101_ -1 m\
10
\
0 2
10 T 10 : : :
10" 10° 10° 10" 10" 10° 10° 10*
steps steps

® left figure: fine spatial mesk#unknowns 40.000)
» solution of the linear system most time consuming part
— the different methods can hardly be distinguished
® right figure: coarse spatial megabout 200 unknowns)

o ArEh, FD andBaPomethods do not scale linearly
guadratic operation counf the convolution starts to dominate
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ly error

{5 error

Example: converge

< diMe

At

10

-=- ArEh

<4-FD

> BaPo
PML FD

—©-Pole FD

K- Padé

< diMe

10"

error at T’

error at T

4

nce of the methods
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10 \,.»[>
/,V
\f\“b"
10°} .-
BT
IEE > TIbX & it ¢ Jotin O S AI‘Eh
10° | <4-FD
> BaPo
PML FD
-10
10 ¢ -©-Pole FD
¥t~ Padé
B | | -I-O- diMe
10 -4 -3 -2 -1
10 10 10 10
At
107"
10° }
- _'%g’ = ArEh
10° %%%' <4-FD
> BaPo
PML FD
1072
-©- Pole FD
“¥- Padé
10 <> diMe
10 =) =) =
10 10 10
Ax




Example: second group of methods

. | | = ArEh
1072 } | B Db e & KK & x .
b PR FREEE R R e e L a4 < Feli
PP o .
4 H<< | > Kuska
10 oo Shibata

-6~ Szeftel

[y error

(I) 015 i 115 é 215 LI% 315 4
Time evolution of thespatiall, errorfor various finite difference
methods and the fixed step sizés = 2.5- 1074, At = 10~

methods of the Fevens—Jiang fanflgJdi, Kuska and Shibatall
showstrong reflections

method by Szeftgberforms better (uses only 3 coefficients!)

Artificial Boundary Conditions for Sckdinger Equations — p.24/3



ly error

Example: convergence of the methods

-2
107} ,
I, SR> O - T S S
o—6—6—6—6—6—6—90
-4
10} ‘ 10
= | :
5 g 10°°
~ -2 ArEh © rEh
-4
10} ~-Feli 10°8 ~-FelJi
> Kuska P Kuska
Shibata 1070 Shibata
6 -©- Szeftel -©- Szeftel
10 : : - : : :
10 10°° 10°° 10" 10 10°° 107 10"
At At
A e
€ S s s s s e s s e s o D)
-4
10_2_ e~ 10 I
=
S10°
= ArEh © -8 ArEh
-4
10~ ~q-Feli . 10—8 I -q-Feli
> Kuska > Kuska
Shibata 107 Shibata
6 -O- Szeftel -O- Szeftel
10 - - - — - —
10°° 10°° 10 10°° 1077 10"
Az Az
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Comparison tool for 1D Schrodinger equation

-} ABCs comparison tool

EE s 600 | 16| | 0008| |26439 | | 1| o5 [ Edit
X0 bl M Final time Ot kO m &
Initial wave (EIpifsigma“‘E)"Hfd)*exp(i*k[]*x-(x-xc).“2.I5igma“‘Q}i 3| ' B {
sigma Coxc
Evolution of the solution B
Method | Amold - Enrhard v|
1t ] Run =
H 1N _
N lteration 2000 on 2000
0gL I iontour of log TO¢ulG b
. : 0
04 2
-4
02
-6
0 : : : - : -8
=12 =10 -d -B -4 -2
1-10
ABCs comparison tool for 1D Schrodinger eq. s
by X. Antoine, C. Besse, M. Ehrhardt, A. Schadle
Y 14
1a0u + b@gu = Vu on Q2
; : ) -18
8, ut e /e~ iVt [291/2.Vt, _ gon T -10 -5 0
T b i
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ABCs for Nonlinear Schrodinger Equations

new field [Szeftel '05], [Antoine, Besse & Descombes '05]hgng '05]
® Schrodinger equation iu; + wg, + f(Ju/*)u =0 (NLS)
e.g. thecubic Schrodinger equatidif = A ul|?)
® |inear TBCswork well for reaction—diffusion egs. but not for NLS

® Problem:integral transformation methods for (discrete) TBCs for
linear equationslo not workfor nonlinear problems!
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ABCs for Nonlinear Schrodinger Equations

new field [Szeftel '05], [Antoine, Besse & Descombes '05]hgng '05]

® Schrodinger equation iu; + wg, + f(Ju/*)u =0 (NLS)
e.g. thecubic Schrodinger equatidif = A ul|?)

® |inear TBCswork well for reaction—diffusion egs. but not for NLS

® Problem:integral transformation methods for (discrete) TBCs for
linear equationslo not workfor nonlinear problems!

® |dea:transform NLS into dinear equatior{with variable coefficients)

» potential strategy
» phase function approach
» paralinearization

apply strategy of [Engquist & Majda '79] (adapted for Schnigkr eq.)
and backtransform the obtained ABC
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The Potential Strategy

We consider theubic nonlinear Schrodinger equation

(

<iut+um+)\\ul2u:0, reR, ¢t>0
\u(:c,()):ul(a:), reR

® Nonlinearity = potential multiplied by the unknown funatia
~ linear Schrodinger equatiawmith a potentialV (x,t) = Au(x, t)|?
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The Potential Strategy

We consider theubic nonlinear Schrodinger equation

(

<iut+um+)\\ul2u:0, reR, ¢t>0
\u(:c,()):ul(a:), reR

® Nonlinearity = potential multiplied by the unknown funatia
~ linear Schrodinger equatiawith a potentialV (x,t) = A|u(z, t)|?

® Method of [Engquist & Majda 79} second order absorbing BC

Uy + e_m/48tl/2u — %eiﬁ/4]tl/2u =0, x=20 (ABC2)
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The Potential Strategy

We consider theubic nonlinear Schrodinger equation

(

<iut+um+)\\ul2u:0, reR, ¢t>0
\u(:c,()):ul(a:), reR

® Nonlinearity = potential multiplied by the unknown funatia
~ linear Schrodinger equatiawmith a potentialV (x,t) = Au(x, t)|?

® Method of [Engquist & Majda 79} second order absorbing BC

Uy + e_m/48tl/2u — %ei”/4]tl/2u =0, x=20 (ABC2)

® RecallingV = Mu|* (ABC2) becomes

Uy + e_zw/48151/2u - )\%6”/413/2u =0, x =0

0% p(t) =

o [y 2 dr,  1Pp(t) = L jg dr
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The Phase Function Transformation Strategy

We consider theubic nonlinear Schrodinger equation
(
<iut—|—um—|—)\\ul2u:0, reR, ¢t>0

\u(x,()):u[(az), reR
# introducephase function)(z,t) = A [ |u(x, )| dr
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<iut+um+)\\ul2u:0, reR, ¢t>0

\u(:c,()):ul(a:), reR
# introducephase function)(z,t) = A [ |u(x, )| dr

# new unknown function(z, t) = e?Y@y(z, t) satisfies

(

. 0+ Vg + 20V,05 + (Ve — (V3)?)v = 0, reR, t>0
\v(:v,()):u[(:v), reR

~» linear variable coefficients Schrodinger equation

Artificial Boundary Conditions for Sckdinger Equations — p.29/3



The Phase Function Transformation Strategy

We consider theubic nonlinear Schrodinger equation
(
<iut+um+)\\ul2u:0, reR, ¢t>0

\u(:c,()):ul(a:), reR
® introducephase function)(z,t) = A [) [u(z, 7)[> dr

® new unknown function(z, t) = e?Y@Hy(z, t) satisfies

’

. 0+ Vg + 20V,05 + (Ve — (V3)?)v = 0, reR, t>0
\v(az,O):uI(az), reR

~» linear variable coefficients Schrodinger equation

® Method of [Engquist & Majda 79} second order absorbing BC

- | V. |
Uy + G_ZW/462V8151/2(6_ZV’LL) + if@zvltlm(e_wu) =0, =0

asymptotic ABCs by_eibnitz derivation ruldor fractional operators
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Conclusions

We have presented several different techniques to solvencally the
time—dependent SE on unbounded domains

® comparison of several implementatiasfshe classical TBC and
ABCs into finite difference (and finite element discretinan)

® mainly the one-dimensional case but also the cubic nonlicese
(cf. review paper for the 2D case)
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Thank You for Your Attention!
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