A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations

Matthias Ehrhardt

Institut für Mathematik, Technische Universität Berlin

ehrhardt@math.tu-berlin.de

joint work with X. Antoine, A. Arnold, C. Besse and A. Schädle Preprint No.18–2007 of the Institute for Mathematics, TU Berlin, May 2007

Minisymposium IC/MP/025/R/32

Artificial Boundary Conditions for linear and nonlinear Schrödinger equations

ICIAM07 – 6th International Congress on Industrial and Applied Mathematics 16 – 20 July 2007, Zürich, Switzerland

Outline

- Numerical Computation on unbounded Domains
- Transparent BCs for Schrödinger Equation in 1D
 - Analytic Transparent BCs
 - temporally/spatially/fully discrete Transparent BCs
- Discretizations and Approximations of the Transparent BCs
 - discretization by quadrature rules
 - approximation of convolution kernel by sums of exponentials
 - rational approximations of the Fourier–symbol of the kernel
- Numerical Example
- Outlook: Cubic nonlinear case

Numerical Computation on unbounded Domains

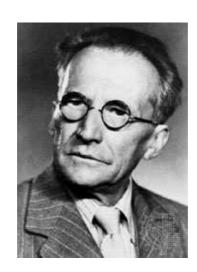
- Many physical problems are described mathematically by a partial differential equation defined on an unbounded domain
- Numerical computation: one has to restrict the computational domain Ω by artificial boundary conditions or absorbing layers
- If approximate solution coincides on Ω with exact solution, these BCs are called transparent boundary conditions (TBCs)

Numerical Computation on unbounded Domains

- Many physical problems are described mathematically by a partial differential equation defined on an unbounded domain
- Numerical computation: one has to restrict the computational domain Ω by artificial boundary conditions or absorbing layers
- If approximate solution coincides on Ω with exact solution, these BCs are called transparent boundary conditions (TBCs)
- Constructed artificial boundary conditions should
 - approximate the exact whole–space solution restricted to Ω
 - lead to well–posed (initial) boundary value problem
 - allow for an efficient (and easy) numerical implementation

The Schrödinger Equation

- SE is the fundamental equation of quantum mechanics developed 1926 by Austrian physicist Erwin Schrödinger
- describes form of probability waves that govern motion of small particles specifies how these waves are altered by external influences
- it is called Fresnel's equation in optics and 'parabolic equation' in acoustics & geophysics



(1887 - 1961)

$$i\partial_t u = -\partial_x^2 u + V(x,t)u, \quad x \in \mathbb{R}, \ t > 0$$

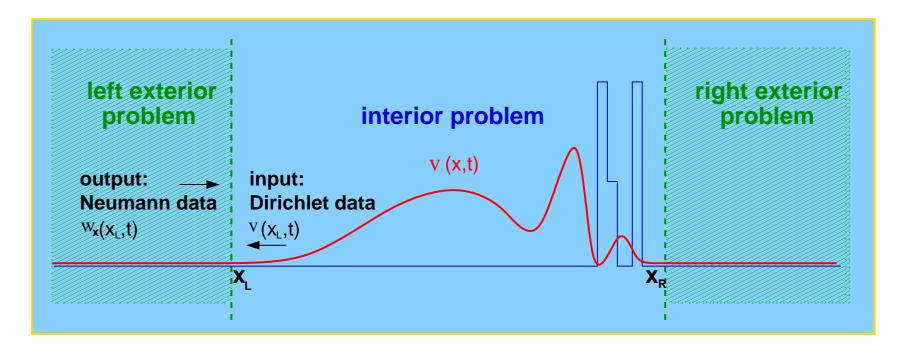
 $u(x,t) \in \mathbb{C}$ wave function, $V(x,t) \in \mathbb{R}$ given potential

TBCs for the Schrödinger Equation

$$i\partial_t u = -\partial_x^2 u + V(x,t)u, \quad x \in \mathbb{R}, \quad t > 0$$

- A1: supp $u(x,0) \subseteq (x_l,x_r)$... computational domain
 - A2: $V(x,t) = V_l$, $x \le x_l$, $V(x,t) = V_r$, $x \ge x_r$

(both assumptions can be relaxed significantly)



• Goal: reproduce $v = u_{[x_l, x_r]}$ with transparent BCs at $x = x_l, x_r$

The Derivation of the right TBC

• right TBC $\partial_x u(x_r, t) = (T u)(x_r, t)$ from exterior problem:

$$i\partial_t w = -\partial_x^2 w + V_r w, \quad x > x_r$$

$$w(x,0) = 0, \quad x > x_r$$

$$w(x_r,t) = v(x_r,t), \quad \text{decay condition } \lim_{x \to \infty} w(x,t) = 0$$

The Derivation of the right TBC

• right TBC $\partial_x u(x_r, t) = (T u)(x_r, t)$ from exterior problem:

$$i\partial_t w = -\partial_x^2 w + V_r w, \quad x > x_r$$
 $w(x,0) = 0, \quad x > x_r$ $w(x_r,t) = v(x_r,t), \quad \text{decay condition } \lim_{x \to \infty} w(x,t) = 0$

explicit solution of the right exterior problem by

Laplace transformation:
$$\hat{w}(x,s) = \int_0^\infty w(x,t)e^{-st} dt$$

$$\partial_x^2 \hat{w} = (-is + V_r)\hat{w}, \quad x > x_r$$

solution:
$$\hat{w}(x,s) = A^+(s)e^{\sqrt[t]{-is+V_r}x} + A^-(s)e^{-\sqrt[t]{-is+V_r}x}$$

The Derivation of the right TBC

• right TBC $\partial_x u(x_r, t) = (T u)(x_r, t)$ from exterior problem:

$$i\partial_t w = -\partial_x^2 w + V_r w, \quad x > x_r$$
 $w(x,0) = 0, \quad x > x_r$ $w(x_r,t) = v(x_r,t), \quad \text{decay condition } \lim_{x \to \infty} w(x,t) = 0$

explicit solution of the right exterior problem by

Laplace transformation:
$$\hat{w}(x,s) = \int_0^\infty w(x,t)e^{-st} dt$$

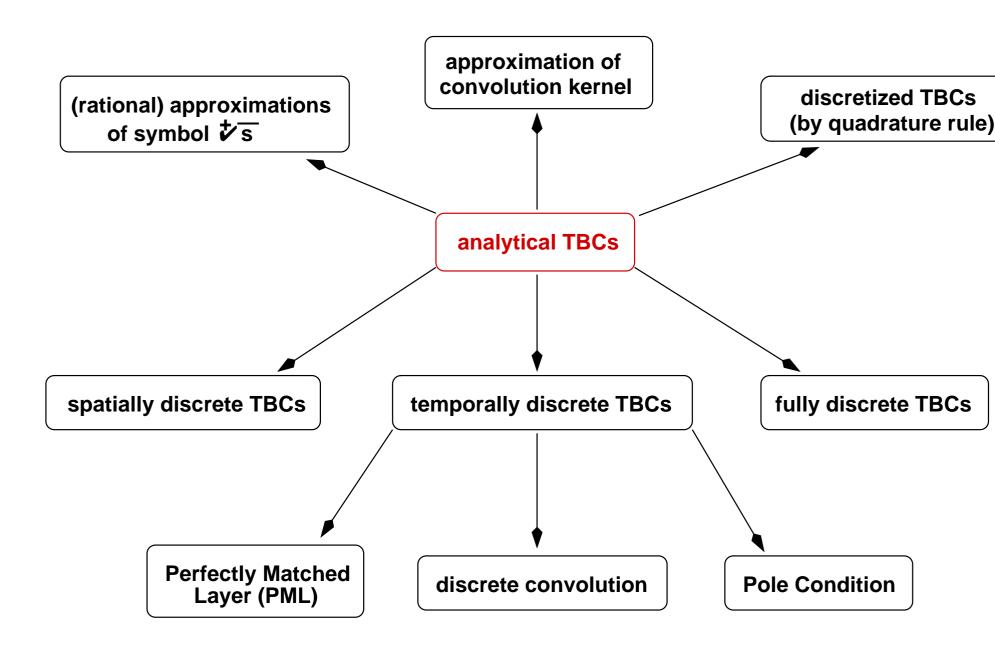
$$\partial_x^2 \hat{w} = (-is + V_r)\hat{w}, \quad x > x_r$$

solution must be in
$$L^2(\Omega)$$
: $\partial_x \hat{w}(x_r,s) = \hat{v}(x_r,s) e^{-\sqrt[t]{-is+V_r}(x-x_r)}$

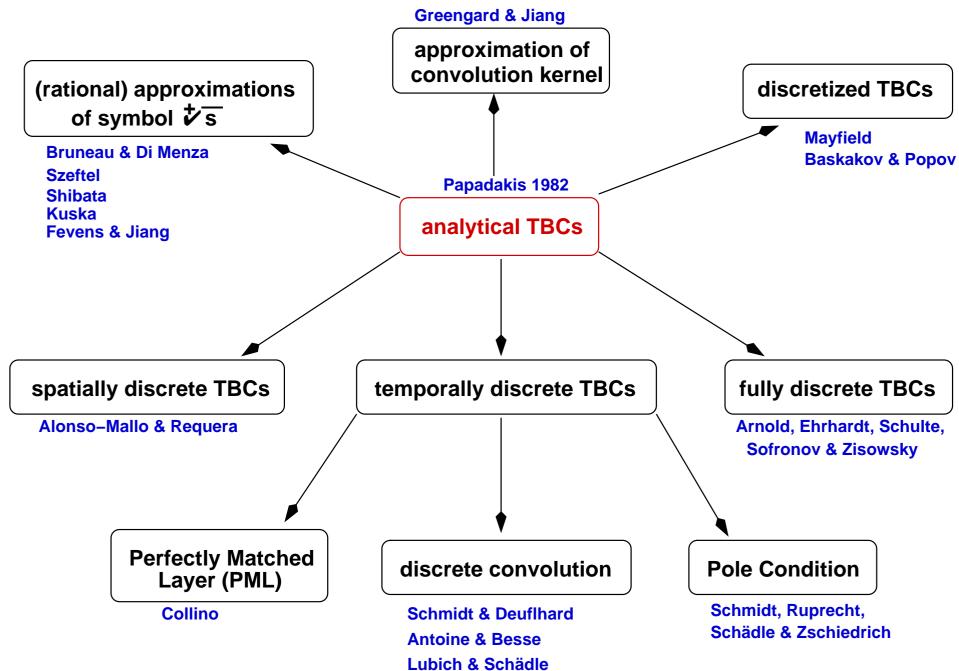
■ inverse Laplace transformation ~ right TBC: [Papadakis '82]

$$\partial_x u(x_r, t) = -e^{-i\frac{\pi}{4}} \frac{1}{\sqrt{\pi}} e^{-iV_r t} \frac{d}{dt} \int_0^t \frac{u(x_r, \tau)e^{iV_r \tau}}{\sqrt{t - \tau}} d\tau$$

Approaches for transient Schrödinger Equation



Approaches for transient Schrödinger Equation



Procedure to derive the analytic TBC

- (1) Split problem into coupled equations: interior and exterior problems
- (2) Apply a Laplace transformation in time t
- (3) Solve the ordinary differential equations in x
- (4) Allow only 'outgoing' waves by taking decaying solution as $|x| \to \infty$
- (5) Match Dirichlet and Neumann values at $x = x_l$, $x = x_r$
- (6) Apply the inverse Laplace transformation to obtain the TBC

Procedure to derive the analytic TBC

- (1) Split problem into coupled equations: interior and exterior problems
- (2) Apply a Laplace transformation in time t
- (3) Solve the ordinary differential equations in x
- (4) Allow only 'outgoing' waves by taking decaying solution as $|x| \to \infty$
- (5) Match Dirichlet and Neumann values at $x = x_l$, $x = x_r$
- (6) Apply the inverse Laplace transformation to obtain the TBC
- For the IBVP on Ω with a DtN or a NtD TBC, existence and uniqueness of the solution has been proved, e.g. [Antoine/Besse'03]
- Continuous TBCs fully solve the problem of confining the spatial domain to a bounded interval

Procedure to derive the analytic TBC

- (1) Split problem into coupled equations: interior and exterior problems
- (2) Apply a Laplace transformation in time t
- (3) Solve the ordinary differential equations in x
- (4) Allow only 'outgoing' waves by taking decaying solution as $|x| \to \infty$
- (5) Match Dirichlet and Neumann values at $x = x_l$, $x = x_r$
- (6) Apply the inverse Laplace transformation to obtain the TBC
- For the IBVP on Ω with a DtN or a NtD TBC, existence and uniqueness of the solution has been proved, e.g. [Antoine/Besse'03]
- Continuous TBCs fully solve the problem of confining the spatial domain to a bounded interval

but: their numerical discretization is not trivial at all!

here: two different approaches to derive (semi)discrete TBCs and ABCs

Temporally discrete TBCs

● SE discretized uniformly in time with A–stable multi–step method

$$\frac{i}{\Delta t} \sum_{j=0}^{K} \alpha_j u^{n-j} = \sum_{j=0}^{K} \beta_j \left(-\partial_x^2 + V \right) u^{n-j}, \quad n \ge K$$

(2) instead of Laplace-transformation we apply a \mathbb{Z} -transformation

$$\mathcal{Z}(u^n) = \hat{u}(z) := \sum_{n=0}^{\infty} u^n z^{-n}, \quad z \in \mathbb{C}, \quad |z| > R(\mathcal{Z}(u^n))$$

(3) 2nd order ODE $i\underbrace{\frac{\delta(z)}{\Delta t}} \hat{w}(z) = (-\partial_x^2 + V_r) \hat{w}(z), \quad x > x_r$

$$\delta(z) = \frac{\sum_{j=0}^{K} \alpha_j z^{K-j}}{\sum_{j=0}^{K} \beta_j z^{K-j}}$$
 generating function of time integration scheme

Assumption on startup: $supp(u^j) \subset [x_l, x_r], \quad j = 0, 1, \dots, K-1$

$$i\frac{u^{n+1} - u^n}{\Delta t} = -\partial_x^2 \frac{u^{n+1} + u^n}{2} + \frac{V^{n+1}(x)u^{n+1} + V^n(x)u^n}{2}, \ x \in \mathbb{R}$$

method (Crank-Nicolson) has generating function $\delta(z)=2\frac{z-1}{z+1}$

$$i\frac{u^{n+1} - u^n}{\Delta t} = -\partial_x^2 \frac{u^{n+1} + u^n}{2} + \frac{V^{n+1}(x)u^{n+1} + V^n(x)u^n}{2}, \ x \in \mathbb{R}$$

method (Crank-Nicolson) has generating function $\delta(z)=2\frac{z-1}{z+1}$

(3) solving the ODE yields general solution

$$\hat{w}(x,z) = A^{+}(z) e^{i \sqrt[t]{i \frac{\delta(z)}{\Delta t} - V_r} x} + A^{-}(z) e^{-i \sqrt[t]{i \frac{\delta(z)}{\Delta t} - V_r} x}, \quad x > x_r$$

$$i\frac{u^{n+1} - u^n}{\Delta t} = -\partial_x^2 \frac{u^{n+1} + u^n}{2} + \frac{V^{n+1}(x)u^{n+1} + V^n(x)u^n}{2}, \ x \in \mathbb{R}$$

method (Crank-Nicolson) has generating function $\delta(z)=2\frac{z-1}{z+1}$

(3) solving the ODE yields general solution

$$\hat{w}(x,z) = A^{+}(z) e^{i \sqrt[t]{i \frac{\delta(z)}{\Delta t} - V_r} x} + A^{-}(z) e^{-i \sqrt[t]{i \frac{\delta(z)}{\Delta t} - V_r} x}, \quad x > x_r$$

(4)
$$u^n \in L^2(]x_r, \infty[) \longrightarrow A^-$$
 must vanish

$$i\frac{u^{n+1} - u^n}{\Delta t} = -\partial_x^2 \frac{u^{n+1} + u^n}{2} + \frac{V^{n+1}(x)u^{n+1} + V^n(x)u^n}{2}, \ x \in \mathbb{R}$$

method (Crank-Nicolson) has generating function $\delta(z)=2\frac{z-1}{z+1}$

(3) solving the ODE yields general solution

$$\hat{w}(x,z) = A^{+}(z) e^{i \sqrt[t]{i \frac{\delta(z)}{\Delta t} - V_r} x} + A^{-}(z) e^{-i \sqrt[t]{i \frac{\delta(z)}{\Delta t} - V_r} x}, \quad x > x_r$$

(4) $u^n \in L^2(]x_r, \infty[) \longrightarrow A^-$ must vanish

$$\mathcal{Z}(\partial_x w^n)(z) = i \sqrt[4]{i \frac{\delta(z)}{\Delta t} - V_r} \mathcal{Z}(w^n)(z), \quad x = x_r$$

(6) inverse \mathcal{Z} -transformation \rightsquigarrow expression $\partial_x w^n(x_r)$ in terms of $w^k(x_r)$

$$i\frac{u^{n+1} - u^n}{\Delta t} = -\partial_x^2 \frac{u^{n+1} + u^n}{2} + \frac{V^{n+1}(x)u^{n+1} + V^n(x)u^n}{2}, \ x \in \mathbb{R}$$

method (Crank-Nicolson) has generating function $\delta(z)=2\frac{z-1}{z+1}$

(3) solving the ODE yields general solution

$$\hat{w}(x,z) = A^{+}(z) e^{i \sqrt[t]{i \frac{\delta(z)}{\Delta t} - V_r} x} + A^{-}(z) e^{-i \sqrt[t]{i \frac{\delta(z)}{\Delta t} - V_r} x}, \quad x > x_r$$

- (4) $u^n \in L^2(]x_r, \infty[) \longrightarrow A^-$ must vanish
- (6) $\partial_x v^{n+1} = \sum_{k=0}^{n+1} u_k v^{n+1-k}$ at $x = x_r$ with weights u_n (for $V_r = 0$)

$$u_k = -e^{-\frac{i\pi}{4}} \frac{\sqrt{2}}{\sqrt{\Delta t}} (-1)^k \tilde{u}_k, \quad k \in \mathbb{N}_0,$$

$$(\tilde{u}_0 \, \tilde{u}_1, \tilde{u}_2, \tilde{u}_3, \tilde{u}_4, \tilde{u}_5, \dots) = \left(1, 1, \frac{1}{2}, \frac{1}{2}, \frac{1 \cdot 3}{2 \cdot 4}, \frac{1 \cdot 3}{2 \cdot 4}, \dots\right)$$

Fully discrete TBCs

● SE discretized in space and time by Crank-Nicolson scheme

$$i\frac{u_j^{n+1} - u_j^n}{\Delta t} = -D_x^2 \frac{u_j^{n+1} + u_j^n}{2} + \frac{V_j^{n+1} u_j^{n+1} + V_j^n u_j^n}{2}, \ j \in \mathbb{Z}$$

right artificial boundary is located at $x_r = x_l + J\Delta x$

- (2) instead of Laplace-transformation we apply a Z-transformation
- (3) 2nd order difference equation with constant coefficients

$$\hat{w}_{j+1}(z) - 2\left(1 - \frac{\Delta x^2}{2}\left(i\frac{\delta(z)}{\Delta t} + V_r\right)\right)\hat{w}_j(z) + \hat{w}_{j-1}(z) = 0, \ j > J$$

general solution

$$\hat{w}_j(z) = A^+(z)\chi^{j-J}(z) + A^-(z)\chi^{-(j-J)}(z), \quad j \ge J - 1$$

where $\chi(z)$ and $\chi(z)^{-1}$ are the roots of the quadratic equation

$$X^{2} - 2\left(1 - \frac{\Delta x^{2}}{2}\left(i\frac{\delta(z)}{\Delta t} + V_{r}\right)\right)X + 1 = 0$$

- (4) decaying solutions $\hat{u}_j(z)$, $j \to \infty \iff$ choose branch with $|\chi(z)| < 1$
- Z-transformed right discrete TBC [Arnold '95, Ehrhardt '01]

$$\hat{u}_{J-1}(z) = \chi(z)\hat{u}_J(z)$$

• transformed boundary kernel $\chi(z)$

$$\chi(z) = 1 - \frac{\Delta x^2}{2} \left(i \frac{\delta(z)}{\Delta t} - V_r \right) - \sqrt[+]{\frac{\Delta x^2}{2} \left(i \frac{\delta(z)}{\Delta t} - V_r \right) \left(\frac{\Delta x^2}{2} \left(i \frac{\delta(z)}{\Delta t} - V_r \right) - 2 \right)}$$

(6) \mathcal{Z}^{-1} -transformation yields convolution coefficients for discrete TBC

$$(\chi_n) := \mathcal{Z}^{-1}(\chi(z)), \quad n \in \mathbb{N}_0$$

right discrete TBC reads in physical space

$$u_{J-1}^n = \sum_{k=1}^n \chi_{n-k} u_J^k, \quad n \in \mathbb{N}$$

Discretizations and Approximations

- TBCs completely solve problem of confining unbounded domain (theoretically)
- for an (efficient) implementation the TBCs have to be discretized and/or approximated
- three main approaches in the literature
 - discretizations of the TBC by quadrature rules
 - approximation of convolution kernel by sums of exponentials
 - rational approximations of Fourier–symbol of convolution kernel

Discretizations by quadrature formulas

• first idea to incorporate TBC in scheme is an ad-hoc discretization

$$\int_{0}^{t_{n+1}} \frac{u_{x}(x_{r}, t_{n+1} - \tau) e^{-iV_{r}\tau}}{\sqrt{\tau}} d\tau$$

$$\approx \frac{1}{\Delta x} \sum_{k=0}^{n} (u_{J}^{n+1-k} - u_{J-1}^{n+1-k}) e^{-iV_{r}k\Delta t} \int_{t_{k}}^{t_{k+1}} \frac{d\tau}{\sqrt{\tau}}$$

$$= \frac{2\sqrt{\Delta t}}{\Delta x} \sum_{k=0}^{n} \frac{(u_{J}^{n+1-k} - u_{J-1}^{n+1-k}) e^{-iV_{r}k\Delta t}}{\sqrt{k+1} + \sqrt{k}}$$

Discretizations by quadrature formulas

- first idea to incorporate TBC in scheme is an ad-hoc discretization
- → discretized TBC for the SE

$$u_J^{n+1} - u_{J-1}^{n+1} = \frac{\Delta x}{2B\sqrt{\Delta t}} u_J^{n+1} - \sum_{k=1}^n (u_J^{n+1-k} - u_{J-1}^{n+1-k}) \tilde{\ell}_k$$

with
$$B = -\frac{1}{\sqrt{2\pi}} e^{i\frac{\pi}{4}}, \qquad \tilde{\ell}_k = \frac{e^{-iV_r k\Delta t}}{\sqrt{k+1} + \sqrt{k}}$$

■ Theorem [Mayfield '89]: CN–FD scheme for the Schrödinger equation with a certain discretized analytic TBCs is stable ⇔

$$\frac{4}{\pi} \frac{\Delta t}{\Delta x^2} \in \bigcup_{j \in \mathbb{N}_0} [(2j+1)^{-2}, (2j)^{-2}]$$

$$C \frac{\Delta t}{\Delta x^2}$$

$$\frac{1}{16} \frac{1}{9}$$

$$1$$

Rational approximations of the Fourier symbol

- In pseudodifferential calculus the Laplace transform of the kernel $\sqrt[+]{s}$ is identified with the Fourier symbol $\sqrt[+]{i\omega}$
- now: rational approximations of Fourier symbol of convolution kernel
- fractional derivative operator $\partial_t^{1/2}$ in analytic TBC is nonlocal—in—time (due to the non–polynomial nature of its Fourier symbol $\sqrt[+]{i\omega}$)
- **Example:** In the spatial discrete case the Fourier symbol is given in

$$\chi(s) = 1 - \frac{\Delta x^2}{2} (is - V_r) + \sqrt[+]{\frac{\Delta x^2}{2} (is - V_r) \left(\frac{\Delta x^2}{2} (is - V_r) - 2\right)}$$

- rational approximation of these symbols allows for a local—in—time approximated convolution
- For all of the subsequent methods some a-priori information on the dominant wavenumber of the solution at the boundary is needed

Bruneau-Di Menza, Szeftel, Shibata, and Kuska

• right analytic TBC in Fourier space $(V_r = 0)$

$$\partial_x \hat{u}(x_r, \omega) = -e^{i\pi/4} \sqrt[4]{i\omega} \,\hat{u}(x_r, \omega)$$

• approximate the symbol $\sqrt[+]{i\omega}$ by a rational function

$$R_m(i\omega) = \sum_{k=0}^m a_k^m - \sum_{k=1}^m \frac{a_k^m d_k^m}{i\omega + d_k^m}, \quad a_k^m, d_k^m > 0$$

ru-DiMe require $R_m(i\omega)$ to interpolate $\sqrt[+]{i\omega}$ at 2m+1 distinct points

Szeftel also uses a rational approximation of $\sqrt[+]{i\omega}$, but different coefficients:

- Padé approximation
- coefficients by minimizing the reflection coefficient

Shibata linear approximation with two intersection points

Kuska 1/1-Padé approximation about dominant frequency ω_0 to choose

Approach of Fevens and Jiang

 \blacksquare family of absorbing boundary conditions (ABCs) of order p

$$\prod_{l=1}^{p} \left(i \frac{\partial}{\partial x} + a_l \right) u = 0, \quad p \in \mathbb{N}$$

- from the shape $u = e^{i(kx \omega t)}$ of a plane wave one sees: all waves with wavenumber $k = a_l$ are perfectly absorbed
- well-posedness for this class of (analytic) ABCs was established
- with low order choices p = 2 or p = 3; $a_1 = a_2 = a_3$ one recovers the ABCs of Shibata and of Kuska

Numerical Example

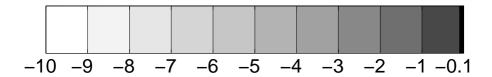
• SE with a vanishing potential $V \equiv 0$ and a Gaussian initial condition

$$u^{I}(x) = \exp(-x^2 + ik_0x), \quad x \in \mathbb{R}$$

analytic solution can be calculated explicitly

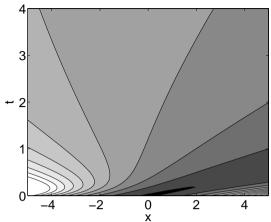
$$u_{\text{ex}}(x,t) = \sqrt{\frac{i}{-4t+i}} \exp\left(\frac{-ix^2 - k_0x + k_0^2t}{-4t+i}\right), \quad x \in \mathbb{R}, \ t > 0$$

- comput. domain $\Omega_{int} =]-5, 5[$, frequency $k_0 = 8$, final time $T_f = 4$
- high frequency of solution needs a very good approximation of $\partial_t^{1/2}$
- J = 40000 grid points in spatial direction and time step $\Delta t = 10^{-4}$
- contour of $\log_{10}(|u|)$ to show small level of reflections (numerical reflections cannot be visualized in traditional contour plot)

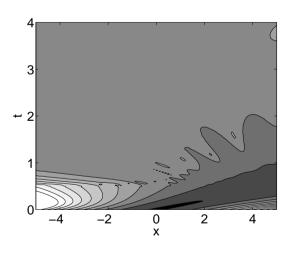


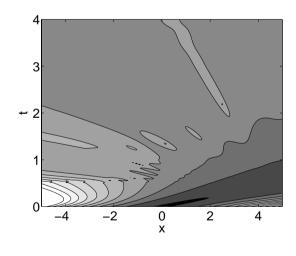
Example: Fevens–Jiang family

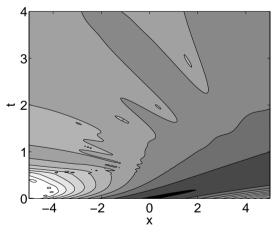
- Figure (a) contour plot of the solution for the fully discrete scheme
- By construction there are no reflections at all from the discrete TBC, so it serves as a reference for the other methods



(a) Arnold–Ehrhardt







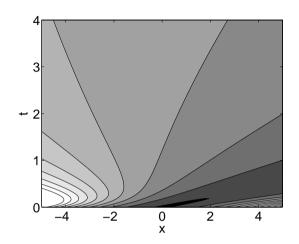
(b) Shibata

(c) Kuska

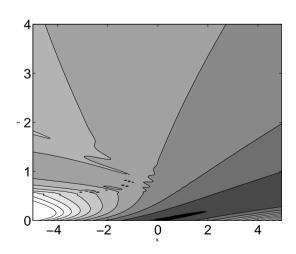
- (d) Fevens
- a levels increase improves significantly the solution
- these older methods are less competitive

Example: Approximation of the square root

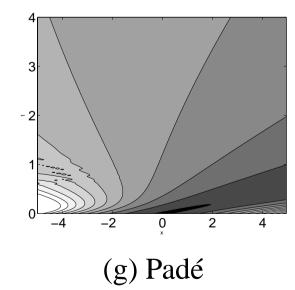
- Figure (e) again as reference solution
- method (f) needs 27 coefficients
- method (g) uses 20 Padé coefficients
- method (h) only uses 3 coefficients(minimization of reflection coefficient)

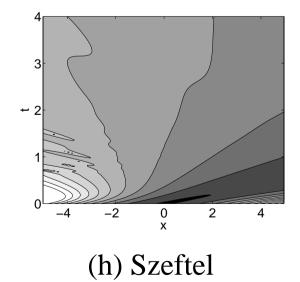


(e) Arnold–Ehrhardt



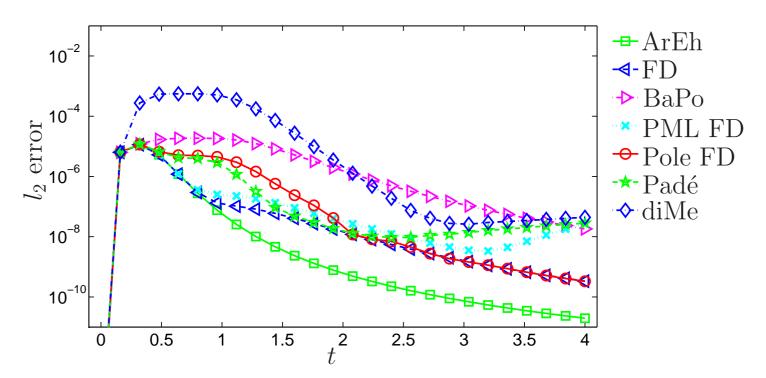
(f) Di Menza





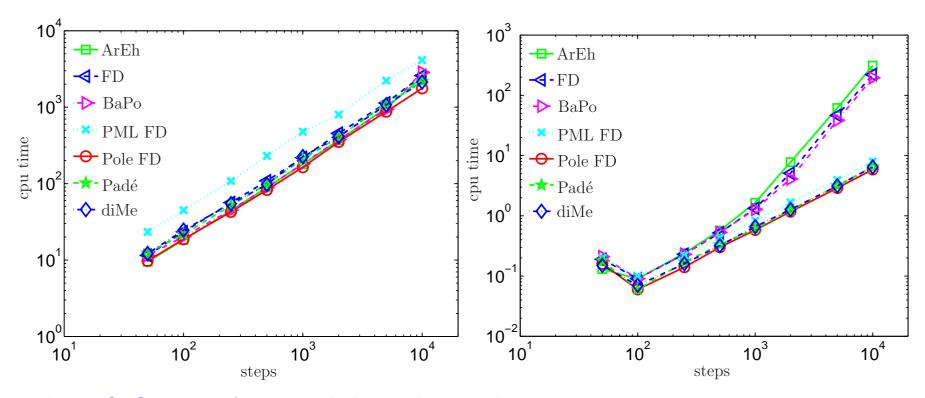
solutions built with a square root approximation are far better

Example: first group of methods



- Time evolution of the spatial l_2 error for various finite difference methods and the fixed step sizes $\Delta x = 2.5 \cdot 10^{-4}$, $\Delta t = 10^{-4}$
- method by Di Menza (diMe) shows strong reflection producing an error about 10^2 times larger than the interior discretization error
- method of Baskakov–Popov (BaPo) induces a reflection that is about the same magnitude as the interior discretization error

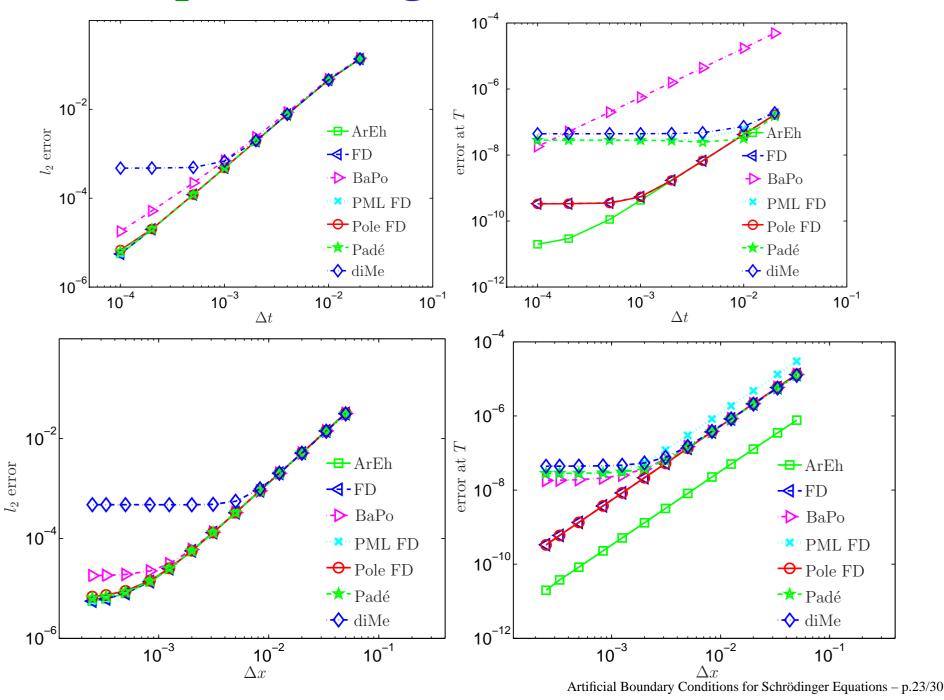
Example: cpu time as function of number of steps



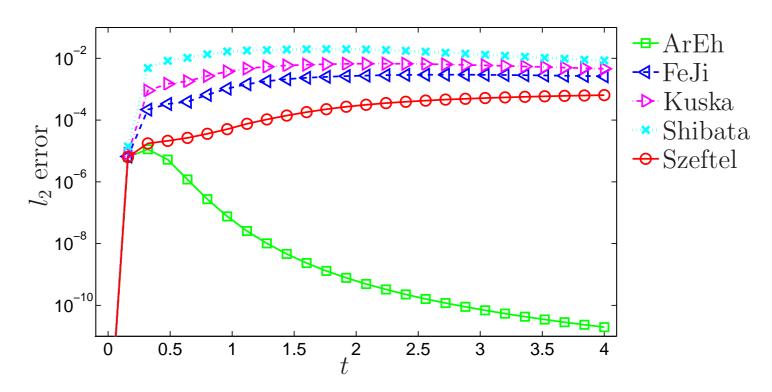
- **left figure:** fine spatial mesh (#unknowns 40.000)
 - solution of the linear system is most time consuming part

 ⇒ the different methods can hardly be distinguished
- **right figure:** coarse spatial mesh (about 200 unknowns)
 - ArEh, FD and BaPo methods do not scale linearly quadratic operation count of the convolution starts to dominate

Example: convergence of the methods

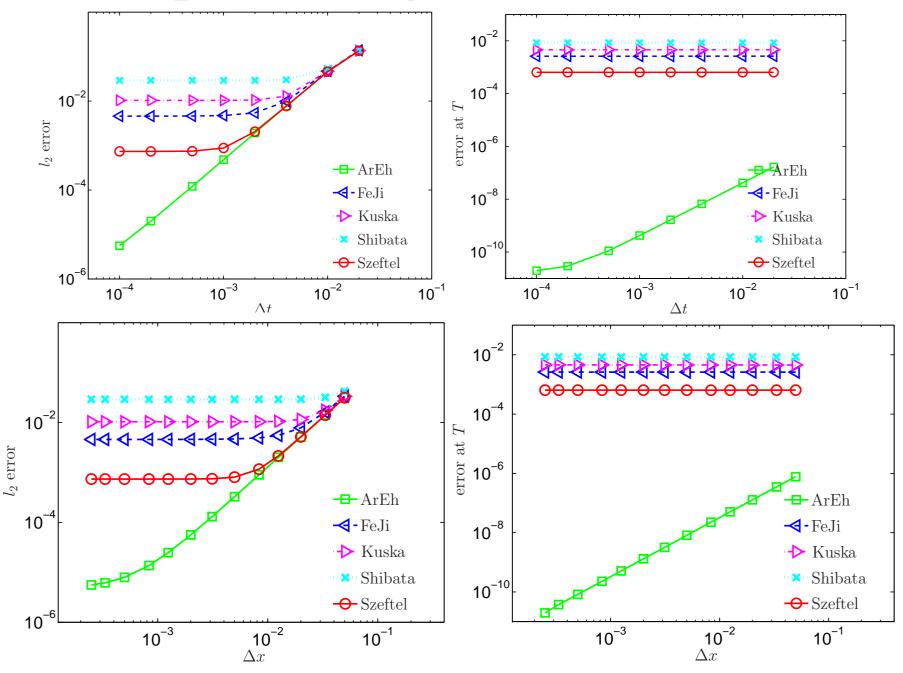


Example: second group of methods

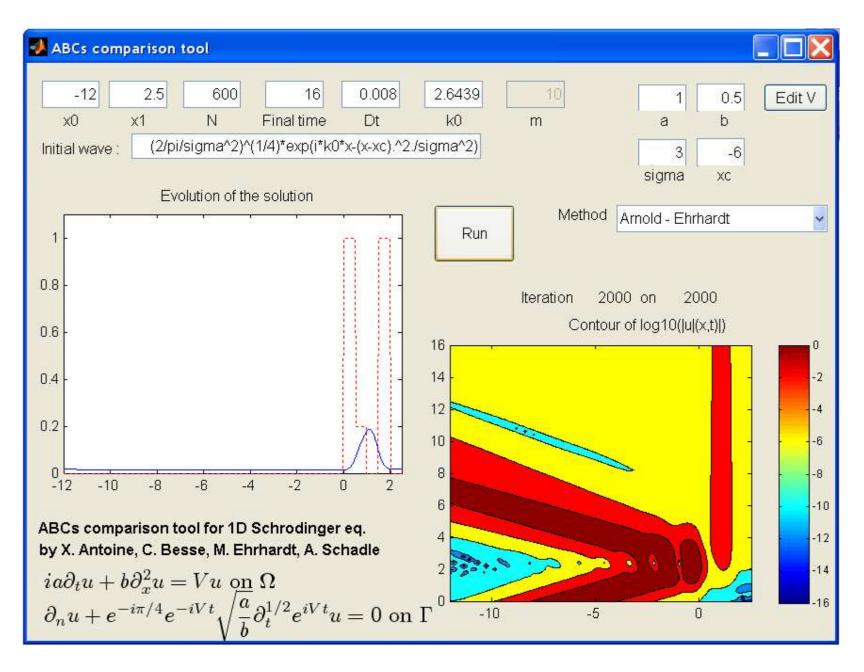


- Time evolution of the spatial l_2 error for various finite difference methods and the fixed step sizes $\Delta x = 2.5 \cdot 10^{-4}$, $\Delta t = 10^{-4}$
- methods of the Fevens–Jiang family FeJi, Kuska and Shibata all show strong reflections
- method by Szeftel performs better (uses only 3 coefficients!)

Example: convergence of the methods



Comparison tool for 1D Schrödinger equation



ABCs for Nonlinear Schrödinger Equations

new field [Szeftel '05], [Antoine, Besse & Descombes '05], [Zheng '05]

- Schrödinger equation $iu_t + u_{xx} + f(|u|^2)u = 0$ (NLS) e.g. the cubic Schrödinger equation $(f = \lambda |u|^2)$
- linear TBCs work well for reaction—diffusion eqs. but not for NLS
- Problem: integral transformation methods for (discrete) TBCs for linear equations do not work for nonlinear problems!

ABCs for Nonlinear Schrödinger Equations

new field [Szeftel '05], [Antoine, Besse & Descombes '05], [Zheng '05]

- Schrödinger equation $iu_t + u_{xx} + f(|u|^2)u = 0$ (NLS) e.g. the cubic Schrödinger equation $(f = \lambda |u|^2)$
- linear TBCs work well for reaction—diffusion eqs. but not for NLS
- Problem: integral transformation methods for (discrete) TBCs for linear equations do not work for nonlinear problems!
- Idea: transform NLS into a linear equation (with variable coefficients)
 - potential strategy
 - phase function approach
 - paralinearization

apply strategy of [Engquist & Majda '79] (adapted for Schrödinger eq.) and backtransform the obtained ABC

The Potential Strategy

We consider the cubic nonlinear Schrödinger equation

$$\begin{cases} iu_t + u_{xx} + \lambda |u|^2 u = 0, & x \in \mathbb{R}, \quad t > 0 \\ u(x,0) = u^I(x), & x \in \mathbb{R} \end{cases}$$

Nonlinearity = potential multiplied by the unknown function u \Rightarrow linear Schrödinger equation with a potential $V(x,t) = \lambda |u(x,t)|^2$

The Potential Strategy

We consider the cubic nonlinear Schrödinger equation

$$\begin{cases} iu_t + u_{xx} + \lambda |u|^2 u = 0, & x \in \mathbb{R}, \quad t > 0 \\ u(x,0) = u^I(x), & x \in \mathbb{R} \end{cases}$$

- Nonlinearity = potential multiplied by the unknown function u \rightarrow linear Schrödinger equation with a potential $V(x,t) = \lambda |u(x,t)|^2$
- Method of [Engquist & Majda '79] → second order absorbing BC

$$u_x + e^{-i\pi/4} \partial_t^{1/2} u - \frac{V}{2} e^{i\pi/4} I_t^{1/2} u = 0, \qquad x = 0$$
 (ABC2)

The Potential Strategy

We consider the cubic nonlinear Schrödinger equation

$$\begin{cases} iu_t + u_{xx} + \lambda |u|^2 u = 0, & x \in \mathbb{R}, \quad t > 0 \\ u(x,0) = u^I(x), & x \in \mathbb{R} \end{cases}$$

- Nonlinearity = potential multiplied by the unknown function u \rightarrow linear Schrödinger equation with a potential $V(x,t) = \lambda |u(x,t)|^2$
- Method of [Engquist & Majda '79] → second order absorbing BC

$$u_x + e^{-i\pi/4} \partial_t^{1/2} u - \frac{V}{2} e^{i\pi/4} I_t^{1/2} u = 0, \qquad x = 0$$
 (ABC2)

• Recalling $V = \lambda |u|^2$ (ABC2) becomes

$$u_x + e^{-i\pi/4} \partial_t^{1/2} u - \lambda \frac{|u|^2}{2} e^{i\pi/4} I_t^{1/2} u = 0, \qquad x = 0$$

$$\partial_t^{1/2} \varphi(t) = \frac{1}{\sqrt{\pi}} \partial_t \int_0^t \frac{\varphi(\tau)}{\sqrt{t-\tau}} d\tau, \qquad I_t^{1/2} \varphi(t) = \frac{1}{\sqrt{\pi}} \int_0^t \frac{\varphi(\tau)}{\sqrt{t-\tau}} d\tau$$

The Phase Function Transformation Strategy

We consider the cubic nonlinear Schrödinger equation

$$\begin{cases} iu_t + u_{xx} + \lambda |u|^2 u = 0, & x \in \mathbb{R}, \quad t > 0 \\ u(x,0) = u^I(x), & x \in \mathbb{R} \end{cases}$$
 introduce phase function $\mathcal{V}(x,t) = \lambda \int_0^t |u(x,\tau)|^2 \, d\tau$

The Phase Function Transformation Strategy

We consider the cubic nonlinear Schrödinger equation

$$\begin{cases} iu_t + u_{xx} + \lambda |u|^2 u = 0, & x \in \mathbb{R}, \quad t > 0 \\ u(x,0) = u^I(x), & x \in \mathbb{R} \end{cases}$$
 introduce phase function $\mathcal{V}(x,t) = \lambda \int_0^t |u(x,\tau)|^2 \, d\tau$

- new unknown function $v(x,t)=e^{i\mathcal{V}(x,t)}u(x,t)$ satisfies

$$\begin{cases} iv_t + v_{xx} + 2i\mathcal{V}_x v_x + (i\mathcal{V}_x x - (\mathcal{V}_x)^2)v = 0, & x \in \mathbb{R}, \quad t > 0 \\ v(x,0) = u^I(x), & x \in \mathbb{R} \end{cases}$$

→ linear variable coefficients Schrödinger equation

The Phase Function Transformation Strategy

We consider the cubic nonlinear Schrödinger equation

$$\begin{cases} iu_t + u_{xx} + \lambda |u|^2 u = 0, & x \in \mathbb{R}, \quad t > 0 \\ u(x,0) = u^I(x), & x \in \mathbb{R} \end{cases}$$
 introduce phase function $\mathcal{V}(x,t) = \lambda \int_0^t |u(x,\tau)|^2 \, d\tau$

- new unknown function $v(x,t) = e^{i\mathcal{V}(x,t)}u(x,t)$ satisfies

$$\begin{cases} iv_t + v_{xx} + 2i\mathcal{V}_x v_x + (i\mathcal{V}_x x - (\mathcal{V}_x)^2)v = 0, & x \in \mathbb{R}, \quad t > 0 \\ v(x,0) = u^I(x), & x \in \mathbb{R} \end{cases}$$

- → linear variable coefficients Schrödinger equation
- Method of [Engquist & Majda '79] → second order absorbing BC

$$u_x + e^{-i\pi/4} e^{i\mathcal{V}} \partial_t^{1/2} (e^{-i\mathcal{V}} u) + i \frac{V_x}{4} e^{i\mathcal{V}} I_t^{1/2} (e^{-i\mathcal{V}} u) = 0, \quad x = 0$$

asymptotic ABCs by Leibnitz derivation rule for fractional operators

We have presented several different techniques to solve numerically the time-dependent SE on unbounded domains

- comparison of several implementations of the classical TBC and ABCs into finite difference (and finite element discretizations)
- mainly the one-dimensional case but also the cubic nonlinear case (cf. review paper for the 2D case)

We have presented several different techniques to solve numerically the time-dependent SE on unbounded domains

- comparison of several implementations of the classical TBC and
 ABCs into finite difference (and finite element discretizations)
- mainly the one-dimensional case but also the cubic nonlinear case (cf. review paper for the 2D case)
- several numerical examples comparing the proposed boundary conditions w.r.t. different kind of errors and the cpu time
- freely available graphical user interface (written in MATLAB) covering most of the presented approaches

We have presented several different techniques to solve numerically the time-dependent SE on unbounded domains

- comparison of several implementations of the classical TBC and ABCs into finite difference (and finite element discretizations)
- mainly the one-dimensional case but also the cubic nonlinear case (cf. review paper for the 2D case)
- several numerical examples comparing the proposed boundary conditions w.r.t. different kind of errors and the cpu time
- freely available graphical user interface (written in MATLAB) covering most of the presented approaches
- review paper / software: http://www.tbc-review.de.vu

We have presented several different techniques to solve numerically the time-dependent SE on unbounded domains

- comparison of several implementations of the classical TBC and
 ABCs into finite difference (and finite element discretizations)
- mainly the one-dimensional case but also the cubic nonlinear case (cf. review paper for the 2D case)
- several numerical examples comparing the proposed boundary conditions w.r.t. different kind of errors and the cpu time
- freely available graphical user interface (written in MATLAB) covering most of the presented approaches
- review paper / software: http://www.tbc-review.de.vu

Thank You for Your Attention!