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THE LSE WITH PERIODIC POTENTIALS AT INFINITY

Time-d problem reads:

iut + uxx = V (x)u,

u(x , 0) = u0(x).

V (x): periodic at infinity;
u0(x): locally supported.

Bound state problem:

−uxx + V (x)u = Eu,

E : real energy;
u: real L2 wave function.

Mathieu model 

Kronig−Penney model 

Wave packet 

C. Zheng (Math Tsinghua) ABC for Periodic Schrödinger’s Equation July 24, 2007 2 / 48



ARTIFICIAL BOUNDARY METHOD

Limit the computational domain by artificial boundaries!

t=T 

t=0 

Whole definition domain 

Key point: how to design the absorbing boundary condition?
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LSE IN THE FREQUENCY DOMAIN

Performing the Laplace transformation on

iut + uxx = V (x)u, x > 0

yields
−ûxx + V (x)û = zû,

with z = is. Here s is the Laplace variable.

Suppose û+ is a nontrivial L2 solution. We need to compute

I(z) :=
û′+(0)

û+(0)
.

I(z): the impedance. ûx(0) = I(z)û(0): exact ABC.
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OUTLINE

1 PERIODIC SECOND ORDER ODE

2 COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER
OPERATOR

3 TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY
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PERIODIC SECOND ORDER ODE

We consider a more general problem

− d
dx

(
1

m(x)

dy
dx

)
+ V (x)y = ρ(x)zy , x > 0,

where m, V and ρ are S-periodic, and

0 < M0 ≤ m(x) ≤ M1 < +∞, V (x) ≥ V0, ρ(x) ≥ ρ0 > 0.

Two questions:
1 For what value of z, the ODE has a non-trivial L2 solution;
2 In this case, what is the impedance? Notice that I(z) = I(z̄).
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FIRST ORDER ODE SYSTEM

By introducing w = 1
m(x)

dy
dx , the equation

− d
dx

(
1

m(x)

dy
dx

)
+ V (x)y = ρ(x)zy , x > 0,

is transformed into

d
dx

(
w
y

)
=

(
0 V − ρz
m 0

) (
w
y

)
.

Given any vector (w1, y1)
T at x1, a unique (w2, y2)

T at x2.
Transformation matrix: T (x , y) ∈ C2×2.

T (x , x) = I, det T (x1, x2) = 1,

T (x2, x3)T (x1, x2) = T (x1, x3),

T (x1 + S, x2 + S) = T (x1, x2).
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TRANSFORMATION MATRIX

Notice that

∂

∂x
T (x1, x) =

(
0 V (x)− ρ(x)z

m(x) 0

)
T (x1, x).

But

T (x1, x2) 6= e

∫ x2
x1

 0 V (x)− ρ(x)z
m(x) 0

dx

except when m ≡ m0, V ≡ V0 and ρ = ρ0. In this case

T (x1, x2) = e
(x2−x1)

 0 V0 − ρ0z
m0 0


.

C. Zheng (Math Tsinghua) ABC for Periodic Schrödinger’s Equation July 24, 2007 12 / 48



FLOQUET SOLUTION

Consider T (0, S). It has two eigenvalues e±µS with <µ ≤ 0 since
det T (x , y) = 1. If <µ < 0, then two eigenvalues are distinct. Suppose
(c±, d±)T are the associated eigenvectors.

T (0, x)(c±, d±)T

are two linearly independent solutions. Besides,

e∓µxT (0, x)(c±, d±)T

are periodic functions. Thus

T (0, x)(c+, d+)T = eµxe−µxT (0, x)(c+, d+)T

is an L2 solution. L2 solution ↔ <µ < 0 ↔ |eµS| < 1.

I(z) =
y ′(0)

y(0)
= m(0)

c+

d+
.
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EXAMPLE: m(x) = m0, V (x) = V0 AND ρ(x) = ρ0

In this case,

T (0, S) = e
S

 0 V0 − ρ0z
m0 0


.

is constant. The eigenvalues are e±µS with

µ = − +
√

m0(V0 − ρ0z) if =z 6= 0 or <z <
V0

ρ0
.

The eigenvector associated with eµS is

(c+, d+) = (µ, m0)
T .

Thus

I(z) = µ = − +
√

m0ρ0
+

√
V0

ρ0
− z.
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EXAMPLE: m(x) = ρ(x) = 1 AND V (x) = 2 cos(2x)

Modulus of eµS with respect to z.
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EXAMPLE: m(x) = ρ(x) = 1 + cos(2x)/5 AND

V (x) = sin(2x)

Modulus part of eµS with respect to z.
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STOP BANDS

It turns out that those ending points of real intervals are nothing but the
eigenvalues of the periodic characteristic problem:

Find λ ∈ R and y ∈ C1
per [0, 2S], such that

− d
dx

(
1

m(x)

dy
dx

)
+ V (x)y = ρ(x)λy .

Those real points at which the Floquet’s factor has a modulus less than
1 constitute a series of intervals

(−∞, x1), (x2, x3), · · ·

They are called stop bands.
Conclusion: for all z with =z 6= 0 or in the stop bands, periodic 2nd
ODE has a nontrivial L2 solution.
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EXAMPLE: V (x) = 0.2 cos(2x), m = ρ = 1
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EXAMPLE: V (x) = 0.2 cos(2x), m = ρ = 1
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EXAMPLE: V (x) = 0.2 cos(2x), m = ρ = 1
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EXAMPLE: V (x) = 0.2 cos(2x), m = ρ = 1
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MAIN RESULT: A CONJECTURE

A careful observation reveals that
Both turning points ai and singular points bi are eigenvalues of the
characteristic problem;
ai is associated with an even eigenfunction;
bi is associated with an odd eigenfunction;
The singularity behaves like 1/ +

√
bi − z;

The solution around turning points behaves like +
√

ai − z.
We conjecture that

I(z) = −
√

m(0)ρ(0) +
√
−z + a0

+∞∏
r=1

+
√
−z + ar

+
√
−z + br

.

for all symmetric m, V and ρ.
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EXAMPLE: PERIODIC GAUSSIAN

V =
∑+∞

n=−∞ e−16(x−π/2−nπ)2
, m = ρ = 1
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EXAMPLE: PERIODIC GAUSSIAN PULSE

V =
∑+∞

n=−∞ e−16(x−π/2−nπ)2
, m = ρ = 1
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EXAMPLE: PERIODIC GAUSSIAN PULSE

V =
∑+∞

n=−∞ e−16(x−π/2−nπ)2
, m = ρ = 1

IR(z) = −
√

m(0)ρ(0) +
√
−z + a0

R∏
r=1

+
√
−z + ar

+
√
−z + br

.
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EXAMPLE: V = 0, m = 1,ρ = 1 + cos(2x)/5
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EXAMPLE: V = 0, m = 1,ρ = 1 + cos(2x)/5

IR(z) = −
√

m(0)ρ(0) +
√
−z + a0

R∏
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MAXIMUM GENERALIZATION

Numerical evidences have already shown that

I(z) = −
√

m(0)ρ(0) +
√
−z + a0

+∞∏
r=1

+
√
−z + ar

+
√
−z + br

.

when =z 6= 0. This result can be further generalized for those real z in
the stop bands. In this case

I(z) = lim
real ε→0

I(z ± ε).
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OUTLINE

1 PERIODIC SECOND ORDER ODE
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COMPUTING THE BOUND STATES FOR THE

SCHRÖDINGER OPERATOR

Suppose

V (x) =


V L

per , x < xL,

Vint , xL < x < xR,

V R
per , x > xR.

V L
per and V R

per are periodic. Given E , we solve

−uxx + V (x)u = Φ(E)u, xL < x < xR,

−ux = IL(E)u, x = xL,

ux = IR(E)u, x = xR.

E lies in one of the stop bands. The energy associated with bound
state satisfies E = Φ(E). Algorithm: Newton-Steffenson iterations

C. Zheng (Math Tsinghua) ABC for Periodic Schrödinger’s Equation July 24, 2007 30 / 48



AN EXAMPLE

Consider

V (x) =

{
2 + 2 cos(πx), |x | > 1,

0, |x | < 1.
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AN EXAMPLE
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AN EXAMPLE

−10 −5 0 5 10
−0.1

−0.05

0

0.05

0.1

0.15

x

u

E
0
: Ground state

E
1
: First excited bound state

E
2
: Second excited bound state

E0 = 6.42647(−1). E1 = 4.88649. E2 = 1.20164(1).
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TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

The equation reads
iut + uxx = V (x)u.

We have z = is. The right ABC reads

ûx(xR, s) = − +
√
−is + a0

+∞∏
r=1

+
√
−is + ar

+
√
−is + br

û(xR, s), <s > 0.

Introduce a sequence of auxiliary functions

ŵk (s)
def
=

+∞∏
r=k

+
√
−is + ar

+
√
−is + br

û(xR, s), k = 1, 2, · · · ,

Then the exact ABC is rewritten as

ûx(xR, s) + +
√
−is + a0 ŵ1(s) = 0,

+
√
−is + bk ŵk = +

√
−is + ak ŵk+1, k = 1, 2, · · · .
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TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

In the physical space, it becomes

ux(xR, t) + e−iπ/4e−ia0t∂
1
2
t

(
eia0tw1(t)

)
= 0,

e−ibk t∂
1
2
t (eibk twk ) = e−iak t∂

1
2
t (eiak twk+1), k = 1, 2, · · · .

Two questions:
The sequence of wk should be truncated;

∂
1
2
t should be evaluated efficiently.
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ACCURACY TEST

The potential is
V = 2 cos(2x), x ∈ R,

and the initial function is

u0(x) = e−x2+2ix .

The computational domain is [−2π, 2π].
Algorithm: Crank-Nicolson+2nd central difference+2nd discretization

of ∂
1
2
t +Fast evaluation
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ACCURACY TEST

0.008 0.004 0.002 0.001
−18

−16

−14

−12

−10

−8

−6

−4

∆ t

Lo
g 2 E

rr

NL=NR=1
NL=NR=2
NL=NR=3
NL=NR=4
NL=NR=5

512 1024 2048 4096
−18

−16

−14

−12

−10

−8

−6

−4

M

Lo
g 2 E

rr

NL=NR=1
NL=NR=2
NL=NR=3
NL=NR=4
NL=NR=5

Here, NL and NR stand for the numbers of auxiliary functions at the
left and right boundary points, respectively.
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INTERACTION OF A WAVE PACKET WITH PERIODIC

POTENTIALS

The potential is set as

V (x) =


2qL cos 2π(x+2π)

SL
, x ∈

(
−∞,−2π + SL

4

)
,

0, x ∈
(
−2π + SL

4 , 2π − SR
4

)
,

2qR cos 2π(x−2π)
SR

, x ∈
(

2π − SR
4 ,+∞

)
.

The initial function is
u0(x) = e−x2+8ix .
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CASE A

SL = SR = π, qL = qR = 5.
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CASE B

SL = SR = π, qL = qR = 20.

C. Zheng (Math Tsinghua) ABC for Periodic Schrödinger’s Equation July 24, 2007 41 / 48



CASE C

SL = SR = π, qL = qR = 50.
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CASE D

SL = SR = π, qL = qR = 100.
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CASE E

SL = SR = π, qL = 5, qR = 100.
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CASE F

SL = SR =
π

20
, qL = qR = 200.
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CASE G

SL = SR =
π

20
, qL = qR = 1000.
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CONCLUSION

Periodic second order ODE problem has been studied;
The impedance is explicitly given when the coefficients are
symmetric;
A method for computing bound states of the Schrödinger operator
has been proposed;
Exact ABC for the time-d Schrödinger equation with periodic
potentials has been presented and implemented;
Currently under working: more general periodic structure
problems;
Unsolved task: prove the proposed conjecture theoretically;
More challenging: high-dimensional periodic structure problems.
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