EXACT ABSORBING BOUNDARY CONDITIONS FOR THE SCHRÖDINGER EQUATION WITH PERIODIC POTENTIALS AT INFINITY

Chunxiong Zheng

Dept. of Mathematical Sciences Tsinghua University

In collaboration with

Dr. Matthias Ehrhardt

Institut für Mathematik Technische Universität Berlin

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 1 / 48

Time-d problem reads:

 $iu_t + u_{xx} = V(x)u,$ $u(x,0) = u_0(x).$

V(x): periodic at infinity; $u_0(x)$: locally supported.

Bound state problem:

$$-u_{xx}+V(x)u=Eu,$$

E: real energy; *u*: real L^2 wave function.

ARTIFICIAL BOUNDARY METHOD

<ロ> <回> <回> <回> < 回</p>

ARTIFICIAL BOUNDARY METHOD

< ロ > < 回 > < 回 > < 回 > < 回</p>

Limit the computational domain by artificial boundaries!

< 同 > < ∃ >

Limit the computational domain by artificial boundaries!

Key point: how to design the absorbing boundary condition?

Performing the Laplace transformation on

$$iu_t + u_{xx} = V(x)u, \ x > 0$$

yields

$$-\hat{u}_{xx}+V(x)\hat{u}=z\hat{u},$$

with z = is. Here s is the Laplace variable.

Suppose \hat{u}_+ is a nontrivial L^2 solution. We need to compute

$$I(z) := rac{\hat{u}'_+(0)}{\hat{u}_+(0)}.$$

I(z): the impedance. $\hat{u}_x(0) = I(z)\hat{u}(0)$: exact ABC.

- 2 COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER OPERATOR
- **3** TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

1 PERIODIC SECOND ORDER ODE

- 2 COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER OPERATOR
- **3** TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

4 CONCLUSION

< 同 ▶ < 三 ▶

We consider a more general problem

$$-\frac{d}{dx}\left(\frac{1}{m(x)}\frac{dy}{dx}\right)+V(x)y=\rho(x)\mathbf{z}y,\ x>0,$$

where *m*, *V* and ρ are *S*-periodic, and

$$0 < M_0 \le m(x) \le M_1 < +\infty, \ V(x) \ge V_0, \ \rho(x) \ge \rho_0 > 0.$$

Two questions:

- For what value of z, the ODE has a non-trivial L^2 solution;
- 2 In this case, what is the impedance? Notice that $\overline{I(z)} = I(\overline{z})$.

FIRST ORDER ODE SYSTEM

By introducing $w = \frac{1}{m(x)} \frac{dy}{dx}$, the equation

$$-\frac{d}{dx}\left(\frac{1}{m(x)}\frac{dy}{dx}\right)+V(x)y=\rho(x)zy,\ x>0,$$

is transformed into

$$\frac{d}{dx}\left(\begin{array}{c}w\\y\end{array}\right)=\left(\begin{array}{cc}0&V-\rho z\\m&0\end{array}\right)\left(\begin{array}{c}w\\y\end{array}\right).$$

Given any vector $(w_1, y_1)^T$ at x_1 , a unique $(w_2, y_2)^T$ at x_2 . Transformation matrix: $T(x, y) \in C^{2 \times 2}$.

$$T(x, x) = I, \text{ det } T(x_1, x_2) = 1,$$

$$T(x_2, x_3)T(x_1, x_2) = T(x_1, x_3),$$

$$T(x_1 + S, x_2 + S) = T(x_1, x_2).$$

- ∢ ≣ →

Notice that

$$\frac{\partial}{\partial x}T(x_1,x) = \begin{pmatrix} 0 & V(x) - \rho(x)z \\ m(x) & 0 \end{pmatrix} T(x_1,x).$$

But

$$T(x_1, x_2) \neq e^{\int_{x_1}^{x_2} \begin{pmatrix} 0 & V(x) - \rho(x)z \\ m(x) & 0 \end{pmatrix} dx}$$

except when $m \equiv m_0$, $V \equiv V_0$ and $\rho = \rho_0$. In this case

$$T(x_1, x_2) = e^{\begin{pmatrix} x_2 - x_1 \end{pmatrix} \begin{pmatrix} 0 & V_0 - \rho_0 Z \\ m_0 & 0 \end{pmatrix}}.$$

э

<ロ> <回> <回> <回> < 回</p>

FLOQUET SOLUTION

Consider T(0, S). It has two eigenvalues $e^{\pm \mu S}$ with $\Re \mu \leq 0$ since det T(x, y) = 1. If $\Re \mu < 0$, then two eigenvalues are distinct. Suppose $(c_{\pm}, d_{\pm})^T$ are the associated eigenvectors.

 $T(0,x)(c_{\pm},d_{\pm})^T$

are two linearly independent solutions. Besides,

$$e^{\mp\mu x}T(0,x)(c_{\pm},d_{\pm})^T$$

are periodic functions. Thus

$$T(0, x)(c_+, d_+)^T = e^{\mu x} e^{-\mu x} T(0, x)(c_+, d_+)^T$$

is an L^2 solution. L^2 solution $\leftrightarrow \Re \mu < 0 \leftrightarrow |e^{\mu S}| < 1$.

$$I(z) = \frac{y'(0)}{y(0)} = m(0)\frac{c_+}{d_+}.$$

(同) (ヨ) (ヨ)

EXAMPLE: $m(x) = m_0$, $V(x) = V_0$ and $\rho(x) = \rho_0$

In this case,

$$T(0,S) = e^{egin{array}{ccc} S & V_0 -
ho_0 Z \ m_0 & 0 \ \end{array}}.$$

is constant. The eigenvalues are $e^{\pm \mu S}$ with

$$\mu = -\sqrt[+]{m_0(V_0 - \rho_0 z)}$$
 if $\Im z \neq 0$ or $\Re z < \frac{V_0}{\rho_0}$

The eigenvector associated with $e^{\mu S}$ is

$$(c_+, d_+) = (\mu, m_0)^T.$$

Thus

$$I(z) = \mu = -\sqrt[4]{m_0\rho_0} \sqrt[4]{\frac{V_0}{\rho_0} - z}.$$

EXAMPLE: $m(x) = \rho(x) = 1$ and $V(x) = 2\cos(2x)$

July 24, 2007 15 / 48

EXAMPLE: $m(x) = \rho(x) = 1 + \cos(2x)/5$ and $V(x) = \sin(2x)$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 16

16 / 48

It turns out that those ending points of real intervals are nothing but the eigenvalues of the periodic characteristic problem:

Find $\lambda \in \mathbf{R}$ and $y \in C^{1}_{per}[0, 2S]$, such that

$$-\frac{d}{dx}\left(\frac{1}{m(x)}\frac{dy}{dx}\right)+V(x)y=\rho(x)\lambda y.$$

Those real points at which the Floquet's factor has a modulus less than 1 constitute a series of intervals

$$(-\infty, x_1), (x_2, x_3), \cdots$$

They are called stop bands.

Conclusion: for all z with $\Im z \neq 0$ or in the stop bands, periodic 2nd ODE has a nontrivial L^2 solution.

July 24, 2007 17 / 48

< ロ > < 同 > < 回 > < 回 > < 回 > <

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 18 / 48

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 19 / 48

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 21 / 48

A careful observation reveals that

- Both turning points *a_i* and singular points *b_i* are eigenvalues of the characteristic problem;
- *a_i* is associated with an even eigenfunction;
- *b_i* is associated with an odd eigenfunction;
- The singularity behaves like $1/\sqrt[4]{b_i z}$;

• The solution around turning points behaves like $\sqrt[4]{a_i - z}$. We conjecture that

$$I(z) = -\sqrt{m(0)\rho(0)} \sqrt[+]{-z+a_0} \prod_{r=1}^{+\infty} \frac{\sqrt[+]{-z+a_r}}{\sqrt[+]{-z+b_r}}$$

for all symmetric m, V and ρ .

EXAMPLE: PERIODIC GAUSSIAN $V = \sum_{n=-\infty}^{+\infty} e^{-16(x-\pi/2-n\pi)^2}, m = \rho = 1$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 23 / 48

э

< 🗇 🕨

EXAMPLE: PERIODIC GAUSSIAN PULSE $V = \sum_{n=-\infty}^{+\infty} e^{-16(x-\pi/2-n\pi)^2}, m = \rho = 1$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

EXAMPLE: PERIODIC GAUSSIAN PULSE $V = \sum_{n=-\infty}^{+\infty} e^{-16(x-\pi/2-n\pi)^2}, m = \rho = 1$

Seg. One: [-10, 10] + 10⁻¹³*i*. Seg. Two: [-10, 10] + *i*. Seg. Three: [-10, 10] + 10*i*.

July 24, 2007 25 / 48

EXAMPLE: $V = 0, m = 1, \rho = 1 + \cos(2x)/5$

э

<ロ> <回> <回> <回> < 回</p>

EXAMPLE: $V = 0, m = 1, \rho = 1 + \cos(2x)/5$

Seg. One: [-10, 10] + 10⁻¹³*i*. Seg. Two: [-10, 10] + *i*. Seg. Three: [-10, 10] + 10*i*.

July 24, 2007 27 / 48

< fi ▶ < li ▶

Numerical evidences have already shown that

$$I(z) = -\sqrt{m(0)\rho(0)} \sqrt[+]{-z+a_0} \prod_{r=1}^{+\infty} \frac{\sqrt[+]{-z+a_r}}{\sqrt[+]{-z+b_r}}.$$

when $\Im z \neq 0$. This result can be further generalized for those real *z* in the stop bands. In this case

$$I(z) = \lim_{\text{real } \epsilon \to 0} I(z \pm \epsilon).$$

- ∃ →

PERIODIC SECOND ORDER ODE

2 COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER OPERATOR

3 TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

4 CONCLUSION

< 同 ▶ < 三 ▶

COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER OPERATOR

Suppose

$$V(x) = \begin{cases} V_{per}^L, & x < x_L, \\ V_{int}, & x_L < x < x_R, \\ V_{per}^R, & x > x_R. \end{cases}$$

 V_{per}^{L} and V_{per}^{R} are periodic. Given *E*, we solve

$$-u_{xx} + V(x)u = \Phi(E)u, \ x_L < x < x_R,$$

 $-u_x = I_L(E)u, \ x = x_L,$
 $u_x = I_R(E)u, \ x = x_R.$

E lies in one of the stop bands. The energy associated with bound state satisfies $E = \Phi(E)$. Algorithm: Newton-Steffenson iterations

30 / 48

AN EXAMPLE

Consider

$$V(x) = \left\{egin{array}{cc} 2+2\cos(\pi x), & |x|>1,\ 0, & |x|<1. \end{array}
ight.$$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

æ. July 24, 2007 31 / 48

* 臣

AN EXAMPLE

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

 $E_0 = 6.42647(-1)$. $E_1 = 4.88649$. $E_2 = 1.20164(1)$.

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

э

PERIODIC SECOND ORDER ODE

2 COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER OPERATOR

3 TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

4 CONCLUSION

・ 同 ト ・ ヨ ト ・ ヨ

TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

The equation reads

$$iu_t + u_{xx} = V(x)u.$$

We have z = is. The right ABC reads

$$\hat{u}_x(x_R,s) = -\sqrt[+]{-is+a_0}\prod_{r=1}^{+\infty}rac{\sqrt[+]{-is+a_r}}{\sqrt[+]{-is+b_r}}\,\hat{u}(x_R,s),\; \Re s>0.$$

Introduce a sequence of auxiliary functions

$$\hat{w}_k(s) \stackrel{\text{def}}{=} \prod_{r=k}^{+\infty} rac{\sqrt[4]{-is+a_r}}{\sqrt[4]{-is+b_r}} \hat{u}(x_R,s), \ k=1,2,\cdots,$$

Then the exact ABC is rewritten as

$$\hat{u}_{x}(x_{R},s) + \sqrt[+]{-is+a_{0}} \hat{w}_{1}(s) = 0,$$

 $\sqrt[+]{-is+b_{k}} \hat{w}_{k} = \sqrt[+]{-is+a_{k}} \hat{w}_{k+1}, \ k = 1, 2, \cdots.$

In the physical space, it becomes

$$\begin{aligned} & u_{X}(x_{R},t) + e^{-i\pi/4} e^{-ia_{0}t} \partial_{t}^{\frac{1}{2}} \left(e^{ia_{0}t} w_{1}(t) \right) = 0, \\ & e^{-ib_{k}t} \partial_{t}^{\frac{1}{2}} (e^{ib_{k}t} w_{k}) = e^{-ia_{k}t} \partial_{t}^{\frac{1}{2}} (e^{ia_{k}t} w_{k+1}), \ k = 1, 2, \cdots. \end{aligned}$$

Two questions:

- The sequence of *w_k* should be truncated;
- $\partial_t^{\frac{1}{2}}$ should be evaluated efficiently.

The potential is

$$V = 2\cos(2x), x \in \mathbf{R},$$

and the initial function is

$$u_0(x)=e^{-x^2+2ix}.$$

The computational domain is $[-2\pi, 2\pi]$. Algorithm: Crank-Nicolson+2nd central difference+2nd discretization of $\partial_t^{\frac{1}{2}}$ +Fast evaluation

ACCURACY TEST

Here, *NL* and *NR* stand for the numbers of auxiliary functions at the left and right boundary points, respectively.

э

Image: A math a math

INTERACTION OF A WAVE PACKET WITH PERIODIC POTENTIALS

The potential is set as

$$V(x)= \left\{egin{array}{ll} 2q_L\cosrac{2\pi(x+2\pi)}{S_L}, & x\in\left(-\infty,-2\pi+rac{S_L}{4}
ight),\ 0, & x\in\left(-2\pi+rac{S_L}{4},2\pi-rac{S_R}{4}
ight),\ 2q_R\cosrac{2\pi(x-2\pi)}{S_R}, & x\in\left(2\pi-rac{S_R}{4},+\infty
ight). \end{array}
ight.$$

The initial function is

$$u_0(x)=e^{-x^2+8ix}.$$

э

CASE A

$$S_L = S_R = \pi, \ q_L = q_R = 5.$$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 40 / 48

æ

・ロト ・回 ト ・ヨト ・ヨ

CASE B

$$S_L = S_R = \pi, \ q_L = q_R = 20.$$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 41 / 48

æ

・ロト ・回 ト ・ヨト ・ヨ

CASE C

$$S_L = S_R = \pi, \ q_L = q_R = 50.$$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 42 / 48

æ

æ

<ロ> <同> <同> <同> < 同>

CASE D

$$S_L = S_R = \pi, \ q_L = q_R = 100.$$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 43 / 48

< 17 >

CASE E

$$S_L = S_R = \pi, \ q_L = 5, \ q_R = 100.$$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 44 / 48

æ

* 臣

・ロト ・回ト ・ヨト

CASE F

$$S_L = S_R = \frac{\pi}{20}, \ q_L = q_R = 200.$$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

* 臣 July 24, 2007 45 / 48

æ

・ロト ・回ト ・ヨト

 $CASE\;G$

$$S_L = S_R = \frac{\pi}{20}, \ q_L = q_R = 1000.$$

C. Zheng (Math Tsinghua)

ABC for Periodic Schrödinger's Equation

July 24, 2007 46 / 48

< 17 >

D PERIODIC SECOND ORDER ODE

- 2 COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER OPERATOR
- **3** TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

Conclusion

< E

< 同 > < 三 >

- Periodic second order ODE problem has been studied;
- The impedance is explicitly given when the coefficients are symmetric;
- A method for computing bound states of the Schrödinger operator has been proposed;
- Exact ABC for the time-d Schrödinger equation with periodic potentials has been presented and implemented;
- Currently under working: more general periodic structure problems;
- Unsolved task: prove the proposed conjecture theoretically;
- More challenging: high-dimensional periodic structure problems.

< ロ > < 同 > < 回 > < 回 >