Exact Absorbing Boundary Conditions for THE SCHRÖDINGER EQUATION WITH PERIODIC Potentials at Infinity

Chunxiong Zheng

Dept. of Mathematical Sciences
Tsinghua University
In collaboration with

Dr. Matthias Ehrhardt

Institut für Mathematik
Technische Universität Berlin

The LSE with Periodic Potentials at Infinity

Time-d problem reads:

$$
\begin{aligned}
& i u_{t}+u_{x x}=V(x) u, \\
& u(x, 0)=u_{0}(x) .
\end{aligned}
$$

$V(x)$: periodic at infinity; $u_{0}(x)$: locally supported.

Bound state problem:

$$
-u_{x x}+V(x) u=E u,
$$

E : real energy;
u : real L^{2} wave function.

Artificial Boundary Method

$$
\mathrm{t}=\mathrm{T}
$$

Whole definition domain
$\mathrm{t}=0$

Artificial Boundary Method

$$
\mathrm{t}=\mathrm{T}
$$

Initial wave packet

Artificial Boundary Method

Limit the computational domain by artificial boundaries!

$t=T$	Artificial Boundaries
	/
$t=0$	$\mathrm{X}=\mathrm{x}_{\mathrm{L}} \quad \mathrm{X}=\mathrm{x}_{\mathrm{R}}$

Artificial Boundary Method

Limit the computational domain by artificial boundaries!

Key point: how to design the absorbing boundary condition?

LSE IN THE FREQUENCY DOMAIN

Performing the Laplace transformation on

$$
i u_{t}+u_{x x}=V(x) u, x>0
$$

yields

$$
-\hat{u}_{x x}+V(x) \hat{u}=z \hat{u},
$$

with $z=i s$. Here s is the Laplace variable.
Suppose \hat{u}_{+}is a nontrivial L^{2} solution. We need to compute

$$
I(z):=\frac{\hat{u}_{+}^{\prime}(0)}{\hat{u}_{+}(0)} .
$$

$I(z)$: the impedance. $\hat{u}_{x}(0)=I(z) \hat{u}(0)$: exact ABC.

Outline

(1) Periodic second order ODE

(2) Computing the bound states for the Schrödinger operator
(3) Time-d LSE with periodic potentials at infinity
(4) Conclusion

OUTLINE

(1) Periodic second order ODE

(2) COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER OPERATOR

3 TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

(4) CONCLUSION

PERIODIC SECOND ORDER ODE

We consider a more general problem

$$
-\frac{d}{d x}\left(\frac{1}{m(x)} \frac{d y}{d x}\right)+V(x) y=\rho(x) z y, x>0
$$

where m, V and ρ are S-periodic, and

$$
0<M_{0} \leq m(x) \leq M_{1}<+\infty, \quad V(x) \geq V_{0}, \rho(x) \geq \rho_{0}>0 .
$$

Two questions:

(1) For what value of z, the ODE has a non-trivial L^{2} solution;
(2) In this case, what is the impedance? Notice that $\overline{l(z)}=I(\bar{z})$.

First order OdE system

By introducing $w=\frac{1}{m(x)} \frac{d y}{d x}$, the equation

$$
-\frac{d}{d x}\left(\frac{1}{m(x)} \frac{d y}{d x}\right)+V(x) y=\rho(x) z y, x>0,
$$

is transformed into

$$
\frac{d}{d x}\binom{w}{y}=\left(\begin{array}{cc}
0 & V-\rho z \\
m & 0
\end{array}\right)\binom{w}{y} .
$$

Given any vector $\left(w_{1}, y_{1}\right)^{T}$ at x_{1}, a unique $\left(w_{2}, y_{2}\right)^{T}$ at x_{2}. Transformation matrix: $T(x, y) \in \mathcal{C}^{2 \times 2}$.

$$
\begin{aligned}
& T(x, x)=I, \operatorname{det} T\left(x_{1}, x_{2}\right)=1, \\
& T\left(x_{2}, x_{3}\right) T\left(x_{1}, x_{2}\right)=T\left(x_{1}, x_{3}\right), \\
& T\left(x_{1}+S, x_{2}+S\right)=T\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

TRANSFORMATION MATRIX

Notice that

$$
\frac{\partial}{\partial x} T\left(x_{1}, x\right)=\left(\begin{array}{cc}
0 & V(x)-\rho(x) z \\
m(x) & 0
\end{array}\right) T\left(x_{1}, x\right)
$$

But

$$
T\left(x_{1}, x_{2}\right) \neq e^{\int_{x_{1}}^{x_{2}}\left(\begin{array}{cc}
0 & V(x)-\rho(x) z \\
m(x) & 0
\end{array}\right) d x}
$$

except when $m \equiv m_{0}, V \equiv V_{0}$ and $\rho=\rho_{0}$. In this case

$$
T\left(x_{1}, x_{2}\right)=e^{\left(x_{2}-x_{1}\right)}\left(\begin{array}{cc}
0 & V_{0}-\rho_{0} z \\
m_{0} & 0
\end{array}\right) .
$$

Floquet solution

Consider $T(0, S)$. It has two eigenvalues $e^{ \pm \mu S}$ with $\Re \mu \leq 0$ since $\operatorname{det} T(x, y)=1$. If $\Re \mu<0$, then two eigenvalues are distinct. Suppose $\left(c_{ \pm}, d_{ \pm}\right)^{T}$ are the associated eigenvectors.

$$
T(0, x)\left(c_{ \pm}, d_{ \pm}\right)^{T}
$$

are two linearly independent solutions. Besides,

$$
e^{\mp \mu x} T(0, x)\left(c_{ \pm}, d_{ \pm}\right)^{T}
$$

are periodic functions. Thus

$$
T(0, x)\left(c_{+}, d_{+}\right)^{T}=e^{\mu x} e^{-\mu x} T(0, x)\left(c_{+}, d_{+}\right)^{T}
$$

is an L^{2} solution. L^{2} solution $\leftrightarrow \Re \mu<0 \leftrightarrow\left|e^{\mu S}\right|<1$.

$$
I(z)=\frac{y^{\prime}(0)}{y(0)}=m(0) \frac{c_{+}}{d_{+}}
$$

EXAMPLE: $m(x)=m_{0}, V(x)=V_{0}$ AND $\rho(x)=\rho_{0}$

In this case,

$$
T(0, S)=e^{s\left(\begin{array}{cc}
0 & V_{0}-\rho_{0} z \\
m_{0} & 0
\end{array}\right) .}
$$

is constant. The eigenvalues are $e^{ \pm \mu S}$ with

$$
\mu=-\sqrt[+]{m_{0}\left(V_{0}-\rho_{0} z\right)} \quad \text { if } \quad \Im z \neq 0 \text { or } \Re z<\frac{V_{0}}{\rho_{0}} .
$$

The eigenvector associated with e^{μ} is

$$
\left(c_{+}, d_{+}\right)=\left(\mu, m_{0}\right)^{T} .
$$

Thus

$$
I(z)=\mu=-\sqrt[+]{m_{0} \rho_{0}} \sqrt[+]{\frac{V_{0}}{\rho_{0}}-z}
$$

EXAMPLE: $m(x)=\rho(x)=1$ AND $V(x)=2 \cos (2 x)$

Modulus of $e^{\mu S}$ with respect to z.

EXAMPLE: $m(x)=\rho(x)=1+\cos (2 x) / 5$ AND $V(x)=\sin (2 x)$

Modulus part of $e^{\mu S}$ with respect to z.

Stop bands

It turns out that those ending points of real intervals are nothing but the eigenvalues of the periodic characteristic problem:

Find $\lambda \in \mathbf{R}$ and $y \in C_{p e r}^{1}[0,2 S]$, such that

$$
-\frac{d}{d x}\left(\frac{1}{m(x)} \frac{d y}{d x}\right)+V(x) y=\rho(x) \lambda y
$$

Those real points at which the Floquet's factor has a modulus less than 1 constitute a series of intervals

$$
\left(-\infty, x_{1}\right),\left(x_{2}, x_{3}\right), \cdots
$$

They are called stop bands.
Conclusion: for all z with $\Im z \neq 0$ or in the stop bands, periodic 2nd ODE has a nontrivial L^{2} solution.

EXAMPLE: $V(x)=0.2 \cos (2 x), m=\rho=1$

MAIN RESULT: A CONJECTURE

A careful observation reveals that

- Both turning points a_{i} and singular points b_{i} are eigenvalues of the characteristic problem;
- a_{i} is associated with an even eigenfunction;
- b_{i} is associated with an odd eigenfunction;
- The singularity behaves like $1 / \sqrt[+]{b_{i}-z}$;
- The solution around turning points behaves like $\sqrt[+]{a_{i}-z}$.

We conjecture that

$$
I(z)=-\sqrt{m(0) \rho(0)} \sqrt[+]{-z+a_{0}} \prod_{r=1}^{+\infty} \frac{\sqrt[+]{-z+a_{r}}}{\sqrt[+]{-z+b_{r}}}
$$

for all symmetric m, V and ρ.

EXAMPLE: PERIODIC GAUSSIAN

 $V=\sum_{n=-\infty}^{+\infty} e^{-16(x-\pi / 2-n \pi)^{2}}, m=\rho=1$

EXAMPLE: PERIODIC GAUSSIAN PULSE

 $V=\sum_{n=-\infty}^{+\infty} e^{-16(x-\pi / 2-n \pi)^{2}}, m=\rho=1$

EXAMPLE: PERIODIC GAUSSIAN PULSE

 $V=\sum_{n=-\infty}^{+\infty} e^{-16(x-\pi / 2-n \pi)^{2}}, m=\rho=1$$$
I_{R}(z)=-\sqrt{m(0) \rho(0)} \sqrt[t]{-z+a_{0}} \prod_{r=1}^{R} \frac{\sqrt[t]{-z+a_{r}}}{\sqrt[f]{-z+b_{r}}} .
$$

Seg. One: $[-10,10]+10^{-13} i$. Seg. Two: $[-10,10]+i$. Seg. Three: $[-10,10]+10 i$.

ExAMPLE: $V=0, m=1, \rho=1+\cos (2 x) / 5$

EXAMPLE: $V=0, m=1, \rho=1+\cos (2 x) / 5$

$$
I_{R}(z)=-\sqrt{m(0) \rho(0)} \sqrt[+]{-z+a_{0}} \prod_{r=1}^{R} \frac{\sqrt[+]{-z+a_{r}}}{\sqrt[+]{-z+b_{r}}} .
$$

Seg. One: $[-10,10]+10^{-13} i$. Seg. Two: $[-10,10]+i$. Seg. Three: $[-10,10]+10 i$.

MAXIMUM GENERALIZATION

Numerical evidences have already shown that

$$
I(z)=-\sqrt{m(0) \rho(0)} \sqrt[+]{-z+a_{0}} \prod_{r=1}^{+\infty} \frac{+\sqrt{-z+a_{r}}}{\sqrt[+]{-z+b_{r}}} .
$$

when $\Im z \neq 0$. This result can be further generalized for those real z in the stop bands. In this case

$$
I(z)=\lim _{\text {real }} I \rightarrow 0 \text { I } I(z \pm) .
$$

Outline

(1) PERIODIC SECOND ORDER ODE

(2) COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER OPERATOR

3 TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

4 CONCLUSION

Computing the bound states for the SCHRÖDINGER OPERATOR

Suppose

$$
V(x)=\left\{\begin{array}{cc}
V_{p e r}^{L}, & x<x_{L}, \\
V_{\text {int }}, & x_{L}<x<x_{R}, \\
V_{p e r}^{R}, & x>x_{R}
\end{array}\right.
$$

$V_{p e r}^{L}$ and $V_{p e r}^{R}$ are periodic. Given E, we solve

$$
\begin{aligned}
& -u_{x x}+V(x) u=\Phi(E) u, x_{L}<x<x_{R}, \\
& -u_{x}=I_{L}(E) u, x=x_{L} \\
& u_{x}=I_{R}(E) u, x=x_{R}
\end{aligned}
$$

E lies in one of the stop bands. The energy associated with bound state satisfies $E=\Phi(E)$. Algorithm: Newton-Steffenson iterations

AN EXAMPLE

Consider

$$
V(x)=\left\{\begin{array}{cl}
2+2 \cos (\pi x), & |x|>1, \\
0, & |x|<1 .
\end{array}\right.
$$

AN EXAMPLE

AN EXAMPLE

$E_{0}=6.42647(-1) . E_{1}=4.88649 . E_{2}=1.20164(1)$.

Outline

(1) PERIODIC SECOND ORDER ODE

(2) COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER
OPERATOR

(3) TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

4 CONCLUSION

TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

The equation reads

$$
i u_{t}+u_{x x}=V(x) u
$$

We have $z=$ is. The right $A B C$ reads

$$
\hat{u}_{x}\left(x_{R}, s\right)=-\sqrt[+]{-i s+a_{0}} \prod_{r=1}^{+\infty} \frac{\sqrt[+]{-i s+a_{r}}}{\sqrt[+]{-i s+b_{r}}} \hat{u}\left(x_{R}, s\right), \Re s>0
$$

Introduce a sequence of auxiliary functions

$$
\hat{w}_{k}(s) \stackrel{\text { def }}{=} \prod_{r=k}^{+\infty} \frac{\sqrt[+]{-i s+a_{r}}}{\sqrt[+]{-i s+b_{r}}} \hat{u}\left(x_{R}, s\right), k=1,2, \cdots
$$

Then the exact $A B C$ is rewritten as

$$
\begin{aligned}
& \hat{u}_{x}\left(x_{R}, s\right)+\sqrt[+]{-i s+a_{0}} \hat{w}_{1}(s)=0 \\
& \sqrt[+]{-i s+b_{k}} \hat{w}_{k}=\sqrt[+]{-i s+a_{k}} \hat{w}_{k+1}, k=1,2, \cdots
\end{aligned}
$$

TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

In the physical space, it becomes

$$
\begin{aligned}
& u_{x}\left(x_{R}, t\right)+e^{-i \pi / 4} e^{-i a_{0} t} \partial_{t}^{\frac{1}{2}}\left(e^{i a_{0} t} w_{1}(t)\right)=0, \\
& e^{-i b_{k} t} \partial_{t}^{\frac{1}{2}}\left(e^{i b_{k} t} w_{k}\right)=e^{-i a_{k} t} \partial_{t}^{\frac{1}{2}}\left(e^{i a_{k} t} w_{k+1}\right), k=1,2, \cdots .
\end{aligned}
$$

Two questions:

- The sequence of w_{k} should be truncated;
- $\partial_{t}^{\frac{1}{2}}$ should be evaluated efficiently.

ACCURACY TEST

The potential is

$$
V=2 \cos (2 x), x \in \mathbf{R}
$$

and the initial function is

$$
u_{0}(x)=e^{-x^{2}+2 i x}
$$

The computational domain is $[-2 \pi, 2 \pi]$.
Algorithm: Crank-Nicolson+2nd central difference+2nd discretization of $\partial_{t}^{\frac{1}{2}}+$ Fast evaluation

ACCURACY TEST

Here, $N L$ and $N R$ stand for the numbers of auxiliary functions at the left and right boundary points, respectively.

INTERACTION OF A WAVE PACKET WITH PERIODIC POTENTIALS

The potential is set as

$$
V(x)=\left\{\begin{aligned}
2 q_{L} \cos \frac{2 \pi(x+2 \pi)}{S_{L}}, & x \in\left(-\infty,-2 \pi+\frac{S_{L}}{4}\right), \\
0, & x \in\left(-2 \pi+\frac{S_{L}}{4}, 2 \pi-\frac{S_{R}}{4}\right), \\
2 q_{R} \cos \frac{2 \pi(x-2 \pi)}{S_{R}}, & x \in\left(2 \pi-\frac{S_{R}}{4},+\infty\right)
\end{aligned}\right.
$$

The initial function is

$$
u_{0}(x)=e^{-x^{2}+8 i x}
$$

CASE A

$$
S_{L}=S_{R}=\pi, q_{L}=q_{R}=5 .
$$

CASE B

$$
S_{L}=S_{R}=\pi, q_{L}=q_{R}=20 .
$$

CASE C

$$
S_{L}=S_{R}=\pi, q_{L}=q_{R}=50 .
$$

CASE D

$$
S_{L}=S_{R}=\pi, q_{L}=q_{R}=100 .
$$

CASE E

$$
S_{L}=S_{R}=\pi, q_{L}=5, q_{R}=100 .
$$

CASE F

$$
S_{L}=S_{R}=\frac{\pi}{20}, q_{L}=q_{R}=200
$$

CASE G

$$
S_{L}=S_{R}=\frac{\pi}{20}, q_{L}=q_{R}=1000
$$

OUTLINE

(1) PERIODIC SECOND ORDER ODE

(2) COMPUTING THE BOUND STATES FOR THE SCHRÖDINGER
OPERATOR

3 TIME-D LSE WITH PERIODIC POTENTIALS AT INFINITY

(4) CONCLUSION

CONCLUSION

- Periodic second order ODE problem has been studied;
- The impedance is explicitly given when the coefficients are symmetric;
- A method for computing bound states of the Schrödinger operator has been proposed;
- Exact ABC for the time-d Schrödinger equation with periodic potentials has been presented and implemented;
- Currently under working: more general periodic structure problems;
- Unsolved task: prove the proposed conjecture theoretically;
- More challenging: high-dimensional periodic structure problems.

