11. Übungsblatt zur Vorlesung "Asymptotische Analysis"

(Langsam variierende Koeffizienten und erzwungene Bewegung nahe Resonanz)

1. Aufgabe (10 Punkte (4+3+3))

Betrachten Sie den langsam variierenden ungedämpften Oszillator aus der Vorlesung:

$$y'' + k^{2}(\varepsilon t)y = 0$$
, für $t > 0$, wobei $y(0) = a$, $y'(0) = b$.

a) Man entwickle $k(\varepsilon t)$ mit Hilfe des Satzes von Taylor (für ε klein) und wende dann eine Standard-Mehrskalentransformation: $t_1 = t, t_2 = \varepsilon^{\alpha} t$ an. Wie verhält sich der erste Term im Vergleich zu

$$y \sim \frac{1}{\sqrt{k(\varepsilon t)}} \left(\alpha_0 \sin\left(\int_0^t k(\varepsilon \tau) d\tau \right) \beta_0 \cos\left(\int_0^t k(\varepsilon \tau) d\tau \right) \right) ? \tag{*}$$

Für welches Zeitintervall gilt diese Entwicklung?

b) Zeigen Sie, daß die schnelle Zeitskala

$$f(t,\varepsilon) = \int_0^t k(\varepsilon\tau) \, d\tau$$

die folgenden Bedingungen erfüllt.

- (i) $f(t,\varepsilon)$ ist positiv und wächst mit t,
- (ii) $\varepsilon t \ll f$ für $\varepsilon \downarrow 0$,
- (iii) $f(t,\varepsilon)$ ist glatt.

Ist es nötig, daß $f(0,\varepsilon) = 0$ gilt?

c) Ändert sich (*), wenn man anstatt von $t_2 = \varepsilon t$ die Zeitskala $t_2 = \varepsilon t_1$ nimmt?

Abgabe der Lösungen zu den theoretischen Aufgaben am Do. 27.1. vor der Vorlesung.