Technische Universität Berlin Fakultät II – Institut für Mathematik PD Dr. M. Ehrhardt

8. Übungsblatt zur VL "Nichtlineare Partielle Differentialgleichungen" (Nichtlineare Wellengleichungen)

Die Bearbeitung der folgenden Aufgaben ist freiwillig! Die erreichten Punkte zählen als Bonuspunkte.

1. Aufgabe (5 Punkte)

Sei $u_0 \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$. Zeigen Sie ohne Anwendung des Interpolationssatzes 16.1 aus der Vorlesung, dass für die Lösung der freien Schrödinger-Gleichung

$$iu_t = \Delta u \text{ in } \mathbb{R}^n \times \mathbb{R},$$

 $u(t=0) = u_0$

die Ungleichung

$$||u(t)||_{L^{p'}(\mathbb{R}^n)} \le C(u_0)(4\pi t)^{\frac{n}{2}-\frac{n}{p}}, \quad \forall \, p \in [1,2]$$

gilt, wobei p' den konjugierten Index zu p bezeichne.

Hinweis. Benutzen Sie das Lemma 12.2 aus dem Skript über lineare PDGLen (auch auf der Web-Seite der Vorlesung erhältlich).

2. Aufgabe (5 Punkte)

Für die lineare Wellengleichung

$$u_{tt} = \Delta u \text{ in } \mathbb{R}^n \times \mathbb{R}, \quad n \ge 2,$$

 $u(t=0) = 0,$
 $u_t(t=0) = u_1$

gilt

$$||u(t)||_{L^q(\mathbb{R}^n)} \le C t^b ||u_1||_{L^p(\mathbb{R}^n)},$$

für geeignete Paare $(\frac{1}{p}, \frac{1}{q})$ (näheres dazu in W.A. Strauss: Nonlinear Wave Equations,..., S. 5).

a) Bestimmen Sie b=b(n,p,q) aus der Skalierung $x\to \lambda x,\, t\to \lambda t$ in der Wellengleichung.

b) In welchen L^p -Räumen müsste u_1 liegen, damit

$$||u(t)||_{L^2(\mathbb{R}^n)} \le C, \quad \forall t \in \mathbb{R}$$

gilt.

3. Aufgabe (5 Punkte)

Sei

$$\mathcal{E}(u) = \int_{\mathbb{R}^{n+1}} \left[-\frac{1}{2} (u_t)^2 + \frac{1}{2} |\nabla u|^2 + F(u) \right] dx dt,$$

gegeben, wobei F eine geignete Funktion mit F(0) = 0 ist (vgl. Beispiel 2 im Kapitel über Erhaltungsgrössen in der Vorlesung). Die entsprechende Euler-Lagrange-Gleichung ist die nichtlineare Wellengleichung (NLW) mit f(u) = F'(u). Zeigen Sie, dass die Ortsverschiebung

$$T_k(s): u(x,t) \mapsto u(x_1,\ldots,x_k+s,\ldots,x_n,t), \quad k \in \{1,\ldots,n\}$$

in der NLW zur Erhaltung des Impulses führt, wobei die Impulsdichte durch $p_k(u) = u_t \frac{\partial u}{\partial x_k}$ definiert ist.

4. Aufgabe (5 Punkte)

Zeigen Sie durch formale Rechnung, dass die lineare Wellengleichung

$$u_{tt} = \Delta u \text{ in } \mathbb{R}^3 \times \mathbb{R},$$
 $u(t=0) = u_0,$
 $u_t(t=0) = u_1$

durch

$$u(x,t) = \frac{\partial}{\partial t} \left\{ \frac{1}{4\pi t} \int_{S(t)} u_0 \, dS \right\} + \frac{1}{4\pi t} \int_{S(t)} u_1 \, dS$$

gelöst wird, wobei S(t) die Oberfläche der Sphäre mit Ursprung in x und Radius t ist. Hinweis. Dabei gilt

$$\frac{1}{t} \int_{S(t)} f \, dS := t \int_0^{\pi} \int_0^{2\pi} f(x + t\mathcal{I}) \sin \vartheta \, d\vartheta \, d\phi, \quad \mathcal{I} = (\sin \vartheta \cos \phi, \sin \vartheta \sin \phi, \cos \vartheta).$$

5. Aufgabe (5 Punkte)

Zeigen Sie, dass aus der stetigen Einbettung $H^1(\mathbb{R}^n) \hookrightarrow L^q(\mathbb{R}^n)$ für

- $\bullet \ n \ge 3, \quad 2 \le q \le \frac{2n}{n-2};$
- n=2, $2 < q < \infty$;

•
$$n=1, 2 \le q \le \infty$$

die Sobolev-Ungleichung

$$||u||_{L^{q}(\mathbb{R}^{n})} \le C(q,n)||u||_{L^{2}(\mathbb{R}^{n})}^{1-\alpha}||\nabla u||_{L^{2}(\mathbb{R}^{n})}^{\alpha} \quad \text{mit} \quad \alpha = \frac{n}{2}\left(1-\frac{2}{q}\right)$$

folgt.

Hinweis. Skalieren Sie $x \mapsto \lambda x$ um, und minimieren Sie in λ .

6. Aufgabe (4 Punkte)

Sei $\Omega \subseteq \mathbb{R}^n$ und R > 0. Zeigen Sie, dass

$$Y := \{ f \in H^1(\Omega) \mid ||f||_{H^1(\Omega)} \le R \}$$

eine (bzgl. der L^2 -Norm) abgeschlossene Teilmenge von $L^2(\Omega)$ ist.

7. Aufgabe (6 Punkte)

Zeigen Sie, dass die Schrödinger-Poisson-Gleichung

$$i\psi_t + \Delta\psi + f(\psi) = 0 \text{ in } \mathbb{R}^3 \times \mathbb{R},$$

 $\psi(t=0) = \psi_0 \in H^1(\mathbb{R}^3),$

mit $f(\psi) = \frac{1}{4\pi} \left(|\psi|^2 * \frac{1}{|x|} \right) \psi$, eine eindeutige Lösung $\psi \in C(\mathbb{R}; H^1(\mathbb{R}^3))$ besitzt. Bemerkung. $V[\psi] := \frac{1}{4\pi} \left(|\psi|^2 * \frac{1}{|x|} \right)$ löst die *Poisson*-Gleichung $\Delta V = |\psi|^2$.

Hinweis. Zeigen Sie zunächst mit Hilfe der verallgemeinerten Young-Ungleichung (siehe VL-Skript) und der Sobolev-Einbettung $W^{1,p}(\mathbb{R}^n) \hookrightarrow C_B(\mathbb{R}^n)$ für p > n, dass $f: H^1(\mathbb{R}^3) \to H^1(\mathbb{R}^3)$ eine lokal Lipschitz-stetige Funktion ist. Benutzen Sie anschliessend folgenden Satz 6.1.4 aus A. PAZY, Semigroups of linear operators and applications to partial differential equations, Springer, 1983:

Let X be a Banach space and $f:[0,\infty)\times X\to X$ be continuous in t for $t\geq 0$ and locally Lipschitz continuous in u, uniformly in t on bounded intervals. If -A is the infinitesimal generator of a strongly continuous semigroup T(t) on X then for every $u_0\in X$ there is a $t_{\max}\leq \infty$ such that the initial value problem

$$u_t(t) + Au(t) = f(t, u(t)), \quad t \ge 0$$

 $u(0) = u_0.$

has a unique mild solution u on $[0, t_{max})$. Moreover, if $t_{max} < \infty$ then

$$\lim_{t \uparrow t_{\text{max}}} \|u(t)\|_X = \infty.$$

Die Erhaltungen von $\|\psi(t)\|_{L^2(\mathbb{R}^3)}$ und

$$E(\psi(t)) = \|\nabla \psi(t)\|_{L^{2}(\mathbb{R}^{3})}^{2} + \frac{1}{2} \|\nabla V(t)\|_{L^{2}(\mathbb{R}^{3})}^{2}$$

liefern dann die a-priori-Abschätzungen.