Technische Universität Berlin Fakultät II – Institut für Mathematik PD Dr. Matthias Ehrhardt Dipl.-Math. Christian Kamm

11. Übungsblatt zur Vorlesung "Numerik partieller Differentialgleichungen" (Steifigkeitsmatrix, Triangulierung)

Abgabe der Lösungen zu den theoretischen Aufgaben bis Mo, 13.7. vor der Übung.

1. Aufgabe (3 Punkte)

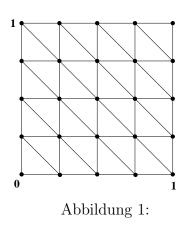
Zeigen Sie, daß die Steifigkeitsmatrix $A = (a_{ij}), a_{ij} = a(b_j, b_i)$ aus der Folgerung im Kapitel 6.4 (Galerkin-Verfahren) symmetrisch und positiv definit ist.

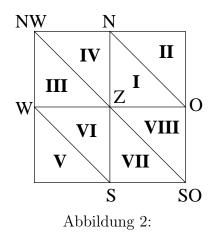
2. Aufgabe (4 Punkte (0.5+1+2+1))

Zu lösen sei die Poisson-Gleichung im Einheitsquadrat

$$-\Delta u = f$$
, in $\Omega = (0, 1)^2$
 $u = 0$ auf $\partial \Omega$.

Es werde $\bar{\Omega}$ mit einem gleichmäßigen Dreiecknetz der Maschenweite h, wie in Abb. 1, überzogen.





Wir wählen den Ansatzraum

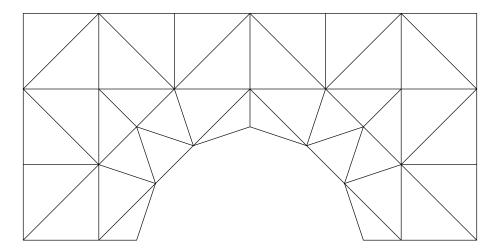
$$V_h := \{v \in C(\bar{\Omega}) : v \text{ ist in jedem Dreieck linear und } v = 0 \text{ auf } \partial\Omega\}.$$

a) Wie groß ist $N = \dim V_h$?

- b) $v \in V_h$ ist global durch die Werte an den N Gitterpunkten (x_j, y_j) gegeben. Wir wählen eine Basis $\{\psi_i\}_{i=1}^N$ mit $\psi_i(x_j, y_j) = \delta_{ij}$. Bestimmen Sie die Ableitungen der Basisfunktion ψ_Z in den Dreiecken.
- c) Berechnen Sie die Matrixelemente der Steifigkeitsmatrix.
- d) Wie sieht das resultierende Gleichungssystem aus?

3. Aufgabe (0.5 Punkte)

Ist die folgende Triangulierung zulässig?



4. Aufgabe (2 Punkte)

Man zeige, daß bei einer Triangulierung eines einfach zusammenhängenden Gebietes gilt

$$\#Dreiecke + \#Knoten - \#Kanten = 1.$$

Warum gilt das nicht für mehrfach zusammenhängende Gebiete?