Technische Universität Berlin Fakultät II – Institut für Mathematik PD Dr. Matthias Ehrhardt Dipl.-Math. Christian Kamm

3. Übungsblatt zur Vorlesung "Numerik partieller Differentialgleichungen" (ℓ^2 -Stabilität im von Neumannschen Sinne)

Abgabe der Lösungen zu den theoretischen Aufgaben bis Mo, 11.5. vor der Übung.

1. Aufgabe (2 Punkte)

Führen Sie die Stabilitätsuntersuchung des θ -Schemas aus der Vorlesung mithilfe der formalen Fourier-Stabilitätstechnik nach von Neumann durch.

2. Aufgabe (4 Punkte)

Zur Lösung der Wärmeleitungsgleichung

$$u_t = u_{xx},$$
 $0 < x < 1,$ $t > 0$
 $u(0,t) = u(1,t) = 0$

führt die Diskretisierung $D^{\scriptscriptstyle 0}_t u^n_j = D^{\scriptscriptstyle 2}_x u^n_j$ auf das folgende explizite 3-Level Schema

$$u_i^{n+1} = u_i^{n-1} + 2\gamma \left(u_{i+1}^n + u_{i-1}^n \right) - 4\gamma u_i^n,$$

wobei $\gamma=k/h^2$ das parabolische Schrittweitenverhältnis bezeichnet. Bestimmen Sie die Konsistenzordnung dieses Verfahrens. Ist dieses Verfahren ℓ^2 –stabil (im von Neumannschen Sinne)?

3. Aufgabe (4 Punkte)

Eine Modifikation des Verfahrens aus der 2. Aufgabe zur Lösung der Wärmeleitungsgleichung führt auf das *Dufort-Frankel Schema*

$$u_j^{n+1} = u_j^{n-1} + 2\gamma \left(u_{j+1}^n + u_{j-1}^n - u_j^{n+1} - u_j^{n-1} \right).$$

Untersuchen Sie die ℓ^2 -Stabilitätseigenschaften und die Konsistenzordnung dieses Verfahrens.