Bewertung von europäischen und amerikanischen Optionen

3. Vortrag - Mathematische Analyse / Beweise und Numerische Resultate

Claudia Münstermann, Christoph Lilke

Technische Universität Berlin Institut für Mathematik

1. Februar 2008

Inhaltsverzeichnis

- 1 Erinnerungen
- 2 europäische Optionen
 - europäischer Put
 - europäischer Call
- 3 amerikanische Optionen
 - Analysis
 - Hindernisproblem
 - Numerik
- 4 nichtlineare Modelle
 - Modelle mit Transaktionskosten
 - Leland's Modell
 - Barles' und Soner's Modell
 - Risk Adjusted Pricing Methodology (RAPM)
 - Vergleich
 - Quellen

Modellannahmen

Modellvoraussetzungen

• Kurs des Basiswerts $S_t := S(t)$ genügt der stochastischen DGL

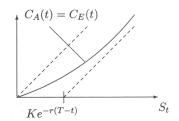
$$dS_t = \mu S_t dt + \sigma S_t dW(t)$$

mit μ ... Drift (Trend), σ ... Volatilität des Basiswerts S_t

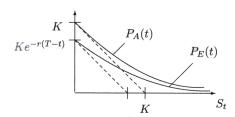
- arbitragefreier, liquider, friktionsloser Markt
- vollkommener Kapitalmarkt (Soll- = Habenzins $r \ge 0$)
- zeitkontinuierlicher Handel des Basiswerts
- beliebig teilbarer Basiswert
- keine Dividendenzahlungen auf den Basiswert S
- vollständige Information der Marktteilnehmer

Quantitativer Kurvenverlauf der Preise europäischer und amerikanischer Optionen

europäischer / amerikanischer Call



europäischer / amerikanischer Put



Black-Scholes-Gleichung (europäische Optionen)

Black-Scholes-Gleichung

der Preis einer europäischen Option V(S,t) genügt der partiellen (parabolischen) Differentialgleichung:

$$V_t + \frac{1}{2}\sigma^2 S^2 V_{SS} + rSV_S - rV = 0$$

mit

•
$$(S,t) \in (0,\infty) \times (0,T)$$

•
$$\sigma > 0 \dots$$
 Volatilität

End- / Randbedingungen eines europäischen Puts

Endbedingung

$$\forall S \in (0,\infty) : P(S,T) = (K-S)^+$$

Randbedingungen

 $\forall t \in (0, T)$:

•
$$P(S,t) \xrightarrow{S \to \infty} 0$$

•
$$P(0,t) = K \cdot e^{-r \cdot (T-t)}$$

europäischer Put

Lösung der Black-Scholes Gleichung

$$P(S,t) = S \cdot \phi(d_1) - K \cdot e^{-r \cdot (T-t)} \cdot \phi(d_2)$$

mit

•
$$(S,t) \in (0,\infty) \times [0,T)$$

•
$$\phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\frac{s^2}{2}} ds, x \in \mathbb{R}$$

(Verteilungsfunktion der Standardnormalverteilung)

•
$$d_{1,2} = \frac{\ln(\frac{S}{K}) + (r \pm \frac{\sigma^2}{2}) \cdot (T - t)}{\sigma \sqrt{T - t}}$$

Beweis:

Einsetzten der gefundenen Lösung in die Black-Scholes Gleichung

Numerik europäischer Put

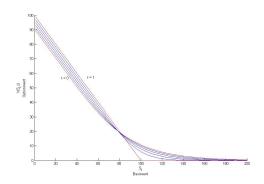


Abbildung: $t = 0, 0.2, ... 1, K = 100, T = 1, r = 0.1, \sigma = 0.4$

End- / Randbedingungen eines europäischen Calls

Endbedingung

$$\forall S \in (0,\infty): C(S,T) = (S-K)^+$$

Randbedingungen

 $\forall t \in (0, T)$:

•
$$C(S,t) \xrightarrow{S \to \infty} \infty$$

•
$$C(0, t) = 0$$

europäischer Call

Lösung der Black-Scholes Gleichung

$$C(S,t) = K \cdot e^{-r \cdot (T-t)} \cdot \phi(-d_2) - S \cdot \phi(-d_1)$$

mit

•
$$(S,t) \in (0,\infty) \times [0,T)$$

(Verteilungsfunktion der Standardnormalverteilung)

•
$$d_{1,2} = \frac{\ln(\frac{S}{K}) + (r \pm \frac{\sigma^2}{2}) \cdot (T - t)}{\sigma \sqrt{T - t}}$$

Beweis:

über Put-Call-Parität

Numerik europäischer Call

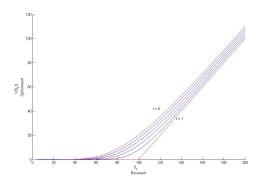


Abbildung:
$$t = 0, 0.2, ...1, K = 100, T = 1, r = 0.1, \sigma = 0.4$$

Numerik europäische Option

numerische Auswertung der Black-Scholes Formel

Wie wird die Verteilungsfunktion der Standardnormalverteilung ausgewertet?

$$\phi(x)=rac{1}{\sqrt{2\pi}}\cdot\int\limits_{-\infty}^{x}\,\mathrm{e}^{-rac{s^{2}}{2}}ds$$
 , $x\in\mathbb{R}$

mit Hilfe des Gaußschen Fehlerintegrals:

$$erf(z) := rac{2}{\sqrt{\pi}}\int\limits_0^z e^{-t^2}dt$$

Numerik europäische Option

Beweis

da $\phi(0) = \frac{1}{2}$ gilt:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{x} e^{-\frac{s^{2}}{2}} ds = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \cdot \int_{0}^{x} e^{-\frac{s^{2}}{2}} ds$$

$$= \frac{1}{2} + \frac{1}{\sqrt{\pi}} \cdot \int_{0}^{\frac{x}{\sqrt{2}}} e^{-t^{2}} dt = \frac{1}{2} \cdot (1 + \frac{2}{\sqrt{\pi}} \cdot \int_{0}^{\frac{x}{\sqrt{2}}} e^{-t^{2}} dt)$$

$$= \frac{1}{2} \cdot (1 + erf(\frac{x}{\sqrt{2}}))$$

Erinnerung

Wert einer amerikanischen Option

•
$$C_{eu}(S,0) = C_{am}(S,0)$$

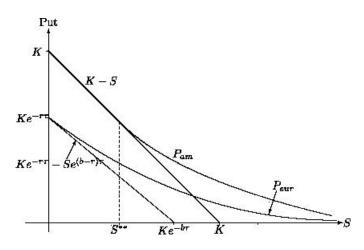
•
$$P_{eu}(S,0) \leq P_{am}(S,0)$$

⇒ nur noch Betrachtung eines amerikanischen Puts

• Existenz eines optimalen Ausübungspreises $S_f(t)$ (freier Randwert, welcher zusätzlich bestimmt werden muss)

freies Randwertproblem

- $\{(S,t)|0 \le S < S_f(t) \le K; 0 \le t < T\}$ (vorzeitige Ausübung der Option) $\Rightarrow P(S,t) = (K-S)^+$
- $\{(S,t)|S_f(t) \leq S \leq \infty; 0 \leq t < T\}$ (Option wird nicht ausgeübt) $\Rightarrow P(S,t) > (K-S)^+$



freies Randwertproblem

- falls $0 \le S < S_f(t) \le K$: P(S,t) = K - S (innerer Wert)
- falls $S_f(t) \leq S \leq \infty$ P(S, t) genügt der Black-Scholes Gleichung

Herleitung der Randbedingungen

- $P(S,t) \xrightarrow{S \to \infty} 0$
- Stetigkeit von P(S, t) an der Stelle $S_f(t)$ $\Rightarrow P(S_f(t), t) = (K - S_f(t))$

aber: $S_f(t)$ unbekannt \Rightarrow weitere Randbedingungen nötig:

• Stetigkeit der Ableitung von P(S, t) an der Stelle $S_f(t)$

$$\Rightarrow \frac{\partial \bar{P}(S,t)}{\partial S} = \frac{\partial (K-S)}{\partial S} = -1 \text{ auf } S < S_f(t)$$

$$\Rightarrow P_S(S_f(t),t) = -1$$

Wert eines amerikanischen Puts

Berechnung aus

• für
$$S \leq S_f(t) \leq K$$

 $P(S, t) = K - S$

• für
$$S > S_f(t)$$

 $P_t + \frac{1}{2}\sigma^2 S^2 P_{SS} + rSP_S - rP = 0$

Endbedingung

$$\forall S \in (0,\infty)$$
:

$$P(S,T)=(K-S)^+$$

Randbedingungen

 $\forall t \in (0, T)$:

•
$$P(S,t) \xrightarrow{S \to \infty} 0$$

•
$$P(S_f(t), t) = K - S_f(t)$$

•
$$P_S(S_f(t), t) = -1$$

Wert eines amerikanischen Puts

Umformulierung des Problems, so dass $S_f(t)$ nicht mehr auftaucht

 $\Rightarrow \text{ freies Komplementarit\"{a}tsproblem}$

(veranschaulicht am Hindernisproblem)

Idee

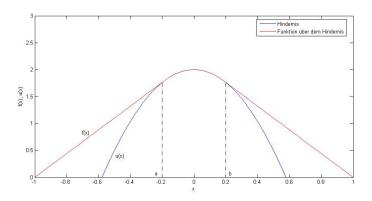


Abbildung: Seil f(x) über einem Hindernis u(x)

Voraussetzungen

gegeben

Hindernis u(x) mit

•
$$u(x) \in C^2(-1,1)$$

•
$$u > 0$$
 in $(a, b) \subset [-1, 1]$

•
$$u'' < 0$$
 in (a, b)

•
$$u(-1) < 0$$
 und $u(1) < 0$

gesucht

Funktion f(x), deren Graph ein Seil mit minimaler Seillänge über dem Hindernis u(x) darstellt

- $f(x) \in C^1(-1,1)$
- f(-1) = 0 und f(1) = 0
- $f \ge u$ in (-1,1)
- f'' = 0 in (-1, a) und (b, 1)
- f = u in (a, b)

Hindernisproblem

Problem

- a, b unbekannt, nicht gegeben, implizit durch das Problem definiert
- ⇒ freies Randwertproblem / Hindernisproblem

Ziel

Umformulierung des Problems, so dass die freien Randbedingungen a, b nicht mehr explizit auftauchen

Umformulierung Hindernisproblem

Eigenschaften von f

Umformulierung der obigen Eigenschaften von f:

• für
$$x \in (-1, a)$$
: $f > u$ und $f'' = 0$

• für
$$x \in (a, b)$$
: $f'' = u'' < 0$

• für
$$x \in (b, 1)$$
: $f > u$ und $f'' = 0$

und damit:

•
$$f > u \Rightarrow f'' = 0$$

•
$$f = u \Rightarrow f'' < 0$$

lineares Komplementaritätsproblem

Umformulierung des freien Randwertproblems als lineares Komplementaritätsproblem:

lineares Komplementaritätsproblem

Suche $f \in C^1(-1,1)$ mit:

•
$$f'' \cdot (f - u) = 0$$
 in $(-1, 1)$

•
$$-f'' \ge 0$$
 in $(-1,1)$

•
$$f - u \ge 0$$
 in $(-1, 1)$

•
$$f(-1) = f(1) = 0$$

lineares Komplementaritätsproblem

Wert eines amerikanischen Puts bestimmt sich als Lösung des folgenden Systems:

•
$$(P - (K - S)^+) \cdot (P_t + \frac{1}{2}\sigma^2 S^2 P_{SS} + rSP_S - rP) = 0$$

•
$$-(P_t + \frac{1}{2}\sigma^2 S^2 P_{SS} + rSP_S - rP) \ge 0$$

•
$$P - (K - S)^+ \ge 0$$

mit Endbedingung

•
$$P(S,T) = (K-S)^+$$
 für $S > 0$

mit Randbedingungen

•
$$P(0, t) = K \text{ für } 0 < t < T$$

•
$$P(S, t) \xrightarrow{S \to \infty} 0$$
 für $0 < t < T$

Numerik amerikanischer Put

weitere Schritte

- Transformation des o.g. Systems f
 ür numerische Betrachtung
- Approximation des (neuen, transformierten) Lösungsgebiets $\mathbb{R} \times (0,T)$ mittels Finiter Differenzen
- Anwendung des SOR-Verfahrens (successive overrelaxation)
- Rücktransformation

Numerik amerikanischer Put

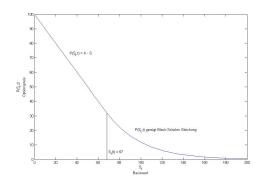


Abbildung: $t = 0, K = 100, T = 1, r = 0.1, \sigma = 0.4$

Veränderung der Modellvoraussetzungen

Modellannahmen

• Kurs des Basiswerts $S_t := S(t)$ genügt der stochastischen DGL

$$dS_t = \mu S_t dt + \sigma S_t dW(t)$$

mit μ ... Drift (Trend), σ ... Volatilität des Basiswerts S_t

- arbitragefreier, liquider, friktionsloser Markt
- vollkommener Kapitalmarkt (Soll- = Habenzins $r \ge 0$)
- zeitkontinuierlicher Handel des Basiswerts
- beliebig teilbarer Basiswert
- keine Dividendenzahlungen auf den Basiswert S
- vollständige Information der Marktteilnehmer

Problem

- bisher: Black-Scholes Gleichung ohne Transaktionskosten
 - ⇒ zur vollständigen Risikoabsicherung ständige Portfolioumschichtung optimal
- jetzt: Einbeziehung von Transaktionskosten
 - \Rightarrow je öfter Portfolio umgeschichtet wird, desto höher werden die Kosten
 - \Rightarrow Trade-Off zwischen Häufigkeit der Portfolioumschichtung und Kosten für selbige
 - ⇒ Auswirkungen auf Optionspreis

Modifizierung der Black-Scholes-Gleichung

Modifizierung der Black-Scholes-Gleichung

modifizierte Volatilität:

$$\tilde{\sigma}^2 := \tilde{\sigma}^2(t, S, V_S, V_{SS}, \sigma)$$

modifizierte Black-Scholes-Gleichung:

$$V_t + \frac{1}{2}\tilde{\sigma}^2(t, S, V_S, V_{SS}, \sigma)S^2V_{SS} + rSV_S - rV = 0$$

$$\mathsf{mit}\; (S,t) \in (0,\infty) \times (0,T)$$

nichtlineare Black-Scholes-Gleichung

Leland's Modell

modifizierte Volatilität

$$\tilde{\sigma}^2 = \sigma^2 \cdot (1 + Le \cdot sign(V_{SS}))$$

mit

- \bullet σ ... Volatilität des Aktienkurses S
- $Le = \sqrt{\frac{2}{\pi}} \cdot \frac{\kappa}{\sigma \sqrt{\delta t}}$... Leland Zahl
- δt ... Frequenz der Transaktionen (Intervalllänge)
- $\kappa = \frac{S_{ask} S_{bid}}{S}$... Transaktionskosten mit $S = \frac{S_{ask} + S_{bid}}{2}$

Leland's Modell

Ergebnis

unter der Annahme $V_{SS} > 0$ gilt:

$$\tilde{\sigma}^2 = \sigma^2 \cdot (1 + Le) > \sigma^2$$

$$\Rightarrow V_{Le}(S,0) > V(S,0)$$

Barles' und Soner's Modell

modifizierte Volatilität

$$\tilde{\sigma}^2 = \sigma^2 \cdot (1 + \psi(e^{r \cdot (T-t)} \cdot a^2 \cdot S^2 \cdot V_{SS}))$$
 mit

- \bullet σ ... Volatilität des Aktienkurses S
- $a = \frac{\kappa}{\sqrt{\epsilon}} \text{ mit } \epsilon > 0$
- $\kappa = \frac{S_{ask} S_{bid}}{S}$... Transaktionskosten mit $S = \frac{S_{ask} + S_{bid}}{2}$
- $\psi(x)$ genügt folgender Differentialgleichung:

$$\psi'(x) = \frac{\psi(x) + 1}{2 \cdot \sqrt{x \cdot \psi(x)} - x}, \ x \neq 0$$

mit Anfangswert: $\psi(0) = 0$

Barles' und Soner's Modell

Ergebnis

Analyse der Differentialgleichung:

$$\psi'(x) = \frac{\psi(x) + 1}{2 \cdot \sqrt{x \cdot \psi(x)} - x}, \ x \neq 0$$

mit Anfangswert $\psi(0) = 0$ ergab:

$$\lim_{x \to \infty} \frac{\psi(x)}{x} = 1 \text{ und } \lim_{x \to -\infty} \psi(x) = -1$$

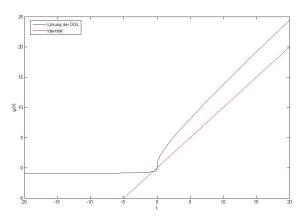
$$\Rightarrow \psi(x) = x \text{ falls } x \text{ groß genug}$$

$$\Rightarrow \tilde{\sigma}^2 = \sigma^2 \cdot (1 + e^{r \cdot (T - t)} \cdot a^2 \cdot S^2 \cdot V_{SS}) > \sigma^2$$

$$\Rightarrow V_{BS}(S,0) > V(S,0)$$

Barles' und Soner's Modell

Lösung der o.g. Differentialgleichung unter Benutzung von ode45



RAPM

modifizierte Volatilität

$$\tilde{\sigma}^2 = \sigma^2 \cdot (1 + 3 \cdot \sqrt[3]{\frac{C^2 \cdot M}{2\pi} \cdot S \cdot V_{SS}})$$
 mit

- \bullet σ ... Volatilität des Aktienkurses S
- M ... Risikoprämienmaß
- $C = rac{S_{ask} S_{bid}}{S}$... Transaktionskosten mit $S = rac{S_{ask} + S_{bid}}{2}$

RAPM

Ergebnis

unter der Annahme $V_{SS} > 0$ gilt:

$$\tilde{\sigma}^2 > \sigma^2$$

$$\Rightarrow V_{RAPM}(S,0) > V(S,0)$$

Parameter

Parameterfestlegung

im Folgenden gelten folgende Parameter:

- r = 0.1
- $\sigma = 0.2$
- K = 100
- *T* = 1 (ein Jahr)
- Plot der Differenz $C_{nichtlinear}(S_t, t) C_{linear}(S_t, t)$ eines europäischen Calls
- 2 Plot eines europäischen Calls mit und ohne Transaktionskosten

Leland's Modell vs. lineares Modell

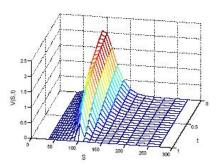


Abbildung: $\delta t = 0.01, \kappa = 0.05$

Barles' und Soner's Modell vs. lineares Modell

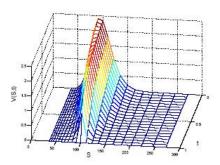


Abbildung: a = 0.02

Barles' und Soner's Modell mit $\psi(x) = x$ vs. lineares Modell

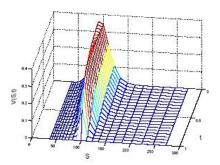


Abbildung: a = 0.02

RAPM Modell vs. lineares Modell

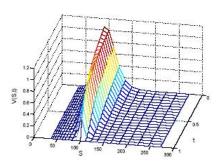
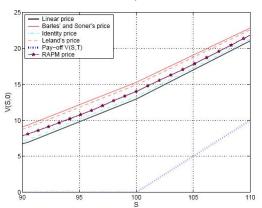


Abbildung: M = 0.01, C = 30

Vergleich aller Modelle

Preis eines europäischen Calls



Paper

- "On the numerical solution of nonlinear Black-Scholes equations"
 Julia Ankudinova
- "On the Risk-Adjusted Pricing-Methodology-based valuation of Vanilla Options and Explanation of the volatility smile" Martin Jandačka und Daniel Ševčovič
- "Option Pricing and Replication with Transactions Costs" Hayne E. Leland
- "On Leland's strategy of Option Pricing with Transaction Costs"
 - Kabanov Yu. M. und Safarian M. M.

Bücher und sonstiges

- "Finanzderivate mit MATLAB" Michael Günther, Ansgar Jüngel vieweg Verlag
- "Einführung in die Statistik der Finanzmärkte"
 Jürgen Franke, Wolfgang Härdle, Christian Hafner
 Springer Verlag
- Vorlesung Finanzmathematik 1 im WS 2007/08 an der TU Berlin
 Prof. Jochen Blath

Gibt es noch Fragen???