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Summary. We present a way to efficiently treat the well-known transparent bound-
ary conditions for the Schrödinger equation. Our approach is based on two ideas:
firstly, to derive a discrete transparent boundary condition (DTBC) based on the
Crank-Nicolson finite difference scheme for the governing equation. And, secondly,
to approximate the discrete convolution kernel of DTBC by sum-of-exponentials for
a rapid recursive calculation of the convolution. We illustrate the efficiency of the
proposed method on several examples.

A much more detailed version of this article can be found in Arnold et al. [2003].

1 Introduction

Discrete transparent boundary conditions for the discrete 1D–Schrödinger
equation

−iR(ψj,n+1 − ψj,n) = ∆2 (ψj,n+1 + ψj,n) − wVj,n+ 1

2

(ψj,n+1 + ψj,n) , (1)

where ∆2ψj = ψj+1 − 2ψj + ψj−1, R = 4∆x2/∆t, w = 2∆x2, Vj,n+1

2

:=

V (xj, tn+ 1

2

), xj = j∆x, j ∈ ZZ; and V (x, t) = V− = const. for x ≤ 0; V (x, t) =

V+ = const. for x ≥ X, t ≥ 0, ψ(x, 0) = ψI (x), with supp ψI ⊂ [0, X], were
introduced in Arnold [1998]. The DTBC at e.g. the left boundary point j = 0
reads, cf. Thm. 3.8 in Ehrhardt and Arnold [2001]:

ψ1,n − s0ψ0,n =
∑n−1

k=1 sn−kψ0,k − ψ1,n−1, n ≥ 1. (2)

The convolution kernel {sn} can be obtained by explicitly calculating the

inverse Z–transform of the function ŝ(z) := z+1
z

ˆ̀
0(z), where ˆ̀

0(z) = 1 − iζ ±
√

−ζ(ζ + 2i), ζ = R
2
z−1
z+1

+ i∆x2V− (choose sign such that | ˆ̀0(z)| > 1).
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Using (2) in numerical simulations permits to avoid any boundary reflec-
tions and it renders the fully discrete scheme unconditionally stable, like the
Crank-Nicolson scheme (1) for the whole-space problem. However, the numer-
ical effort to evaluate the DTBC increases linearly in t and it can sharply raise
the total computational costs. A strategy to overcome this drawback is the
key issue of this paper.

2 Approximation by Sums of Exponentials

The convolution coefficients sn appearing in the DTBC (2) can either be
obtained from (lengthy) explicit formulas or evaluated numerically: sn ≈

ρnN−1
∑N−1

k=0 ŝ(ρeiϕk ) einϕk , n = 0, 1, . . ., N − 1. Here ϕk = 2πk/N , and
ρ > 1 is a regularization parameter. For the question of choosing ρ we refer
the reader to Arnold et al. [2003] and the references therein.

Our fast method to calculate the discrete convolution in (2) is based on
approximating these coefficients sn by the following ansatz (sum of exponen-
tials):

sn ≈ s̃n :=

{

sn, n = 0, . . . , ν − 1,
∑L

l=1 blq
−n
l , n = ν, ν + 1, . . . ,

(3)

where L, ν ∈ IN are fixed numbers. In order to find the appropriate constants
{bl, ql}, we fix L and ν in (3) (e.g. ν = 2), and consider the Padé approximation
PL−1(x)
QL(x)

for the formal power series: f(x) := sν + sν+1x + sν+2x
2 + . . . ,

|x| ≤ 1.

Theorem 1. Let the polynomial QL(x) have L simple roots ql with |ql| > 1,
l = 1, . . . , L. Then

s̃n =

L
∑

l=1

blq
−n
l , n = ν, ν + 1, . . . , (4)

where

bl := −
PL−1(ql)

Q′
L(ql)

qν−1
l 6= 0, l = 1, . . . , L. (5)

Remark 1. All our practical calculations confirm that the assumption of The-
orem 1 holds for any desired L, although we cannot prove this.

Remark 2. According to the definition of the Padé algorithm the first 2L+ν−1
coefficients are reproduced exactly: s̃n = sn for n = ν, ν + 1, . . . , 2L + ν − 1.
For the remaining s̃n with n > 2L + ν − 1, the following estimate holds:
|sn− s̃n| = O(n− 3

2 ). A typical graph of |sn| and |sn− s̃n| versus n for L = 20
is shown in Fig. 1 (note the different scaling for both graphs).
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Fig. 1. Convolution coefficients sn (left axis, dashed line) and error |sn − s̃n| of the
convolution coefficients (right axis); ∆x = 1/160, ∆t = 2 · 10−5, V ≡ 0 (L = 20).

3 The Transformation Rule

A nice property of the considered approach consists of the following: once the
approximate convolution coefficients {s̃n} are calculated for particular dis-
cretization parameters {∆x, ∆t, V }, it is easy to transform them into appro-
priate coefficients for any other discretization. We shall confine this discussion
to the case ν = 2:

Transformation rule 3.1 For ν = 2, let the rational function

ˆ̃s(z) = s0 +
s1
z

+

L
∑

l=1

bl
qlz − 1

1

qlz
(6)

be the Z–transform of the convolution kernel {s̃n}
∞
n=0 from (3), where {s̃n} is

assumed to be an approximation to a DTBC for the equation (1) with a given
set {∆x, ∆t, V }.
Then, for another set {∆x?, ∆t?, V?}, one can take the approximation

ˆ̃s?(z) := s?0 +
s?1
z

+

L
∑

l=1

b?l
q?l z − 1

1

q?l z
, (7)

where

q?l :=
qlā− b̄

a− qlb
, b?l := blql

aā− bb̄

(a− qlb)(qlā − b̄)

1 + q?l
1 + ql

, (8)
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a := 2
∆x2

∆t
+ 2

∆x2
?

∆t?
+ i(∆x2V −∆x2

?V?), (9)

b := 2
∆x2

∆t
− 2

∆x2
?

∆t?
− i(∆x2V −∆x2

?V?). (10)

s?0, s
?
1 are the exact convolution coefficients for the parameters {∆x?,∆t?, V?}.

While the Padé–algorithm provides a method to calculate approximate
convolution coefficients s̃n for fixed parameters {∆x,∆t, V }, the Transforma-
tion rule yields the natural link between different parameter sets {∆x?, ∆t?,
V?} (and L fixed).

Example 1. For L = 10 we calculated the coefficients {bl, ql} with the parame-
ters ∆x = 1, ∆t = 1, V = 0 and then used the Transformation 3.1 to calculate
the coefficients {b∗l , q

∗
l } for the parameters ∆x∗ = 1/160, ∆t∗ = 2 ·10−5, V∗ =

4500. Fig. 2 shows that the resulting convolution coefficients s̃∗n are in this
example even better approximations to the exact coefficients sn than the co-
efficients s̃n, which are obtained directly from the Padé algorithm discussed in
Theorem 1. Hence, the numerical solution of the corresponding Schrödinger
equation is also more accurate (cf. Fig. 5).

The Maple code that was used to calculate the coefficients ql, bl in the
approximation (3) including the explicit formulas in Transformation rule 3.1
can be downloaded from the authors’ homepages.
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Fig. 2. Approximation error of the approximate convolution coefficients for ν = 2,
∆x = 1/160, ∆t = 2·10−5, V = 4500: The error of s̃∗n (- - -) obtained from the trans-
formation rule and the error of s̃n (—) obtained from a direct Padé approximation
of the exact coefficients sn.
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4 Fast Evaluation of the Discrete Convolution

Given the approximation (3) of the discrete convolution kernel appearing in
the DTBC (2), the convolution

C(n)(u) :=

n−ν
∑

k=1

uk s̃n−k, s̃n =

L
∑

l=1

blq
−n
l , |ql| > 1, (11)

of a discrete function uk, k = 1, 2, . . . , can be calculated efficiently by recur-
rence formulas, cf. Sofronov [1998]:

Theorem 2. The function C(n)(u) from (11) for n ≥ ν + 1 is represented by

C(n)(u) =

L
∑

l=1

C
(n)
l (u), (12)

where

C
(n)
l (u) = q−1

l C
(n−1)
l (u) + blq

−ν
l un−ν for n ≥ ν + 1, C

(ν)
l (u) ≡ 0. (13)

This recursion drastically reduces the computational effort of evaluating DT-
BCs for long–time computations (n � 1): O(L∗n) instead of O(n2) arithmetic
operations.

5 Numerical Examples

In this section we shall present two examples to compare the numerical results
from using our approach of the approximated DTBC, i.e. the sum-of-expo-
nentials-ansatz (3) (with ν = 2) to the solution using the exact DTBC (2).

Example 2. As an example, we consider (1) on 0 ≤ x ≤ 1 with V− = V+ =
0, and initial data ψI(x) = exp(i50x − 30(x − 0.5)2). The time evolution
of the approximate solution |ψa(x, t)| using the approximated DTBC with
convolution coefficients {s̃n} and L = 10, L = 20, respectively, is shown in
Fig. 3 (observe the viewing angle).

While one can observe some reflected wave when using the approximated
DTBC with L = 10, there are almost no reflections visible when using the
approximated DTBC with L = 20.

The goal is to investigate the long–time stability behaviour of the approx-
imated DTBC with the sum-of-exponentials ansatz. The reference solution
ψref with ∆x = 1/400, ∆t = 2 · 10−5 is obtained by using exact DTBCs (2)
at the ends x = 0 and x = 1. We vary the parameter L = 10, 20, 30, 40 in
(3), find the corresponding approximate DTBCs, and show the relative error

of the approximate solution, i.e.
||ψa−ψref ||L2

(t)

||ψI ||L2

. The result up to n = 15000
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Fig. 3. Time evolution of |ψa(x, t)|: The approximate convolution coefficients con-
sisting of L = 10 discrete exponentials give rise to a reflected wave (upper figure).
Using L = 20 discrete exponentials make reflections almost invisible (lower figure).

is shown in Fig. 4. Larger values of L clearly yield more accurate coefficients
and hence a more accurate solution ψa. Fig. 4 also shows the discretization

error, i.e.
‖ψref−ψan‖L2

(t)

‖ψI‖L2

, where ψan, the analytic solution of this example is

explicitly computable.

Example 3. The second example considers (1) on [0, 2] with zero potential in
the interior (V (x) ≡ 0 for 0 < x < 2) and V (x) ≡ 4500 outside the computa-
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Fig. 4. Error of the approximate solution ψa(t) with approximate convolution coef-
ficients consisting of L = 10, 20, 30, 40 discrete exponentials and discretization error.
ψref is the relative error of ψref . The error-peak between t = 0.01 and t = 0.02
corresponds to the first reflected wave.

tional domain. The initial data is taken as [ψI(x) = exp(i100x− 30(x− 1)2)],
and this wave packet is partially reflected at the boundaries. We use the
rather coarse space discretization ∆x = 1/160, the time step ∆t = 2 · 10−5,
and the exact DTBC (2). The value of the potential is chosen such that at time
t = 0.08, i.e. after 4000 time steps 75% of the mass (‖ψ(., t)‖2

2) has left the
domain. Fig. 5 shows the time decay of the discrete `2-norm ‖ψ(., t)‖2 and the
temporal evolution of the error ‖eL(., t)‖2 := ‖ψa(., t) − ψref (., t)‖2/||ψ

I||L2

when using an approximated DTBC with L = 20, 30, 40. Additionally, we cal-
culated for L = 20 the coefficients {bl, ql} for the “normalized parameters”
∆x = 1,∆t = 1, V = 0 and then used the Transformation rule 3.1 to calculate
the coefficients {b∗l , q

∗
l } for the desired parameters.

6 Conclusion

For numerical simulations of the Schrödinger equation one has to introduce
artificial (preferable transparent) boundary conditions in order to confine the
calculation to a finite region. Such TBCs are non-local in time (of convolu-
tion form). Hence, the numerical costs (just) for evaluating these BCs grow
quadratically in time. And for long-time calculations it can easily outweigh
the costs for solving the PDE inside the computational domain.

Here, we presented an efficient method to overcome this problem. We con-
struct approximate DTBCs that are of a sum-of-exponential form and hence
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only involve a linearly growing numerical effort. Moreover, these BCs yield
very accurate solutions, and it was shown in Arnold et al. [2003] that the
resulting initial-boundary value scheme is conditionally `2-stable on [0, T ] as
∆t→ 0 (e.g. for 0 < ∆t < ∆t0 and ∆x = ∆x0 = const.).
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