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Abstract. Nonlinear Black—Scholes equations have been increasatyigcting interest over
the last two decades, since they provide more accuratesvalutaking into account more realistic
assumptions, such as transaction costs, risks from an tegped portfolio, large investor's prefer-
ences or illiquid markets, which may have an impact on thekspoice, the volatility, the drift and
the option price itself.

This book consists of a collection of contributed chaptémsall-known outstanding scientists
working successfully in this challenging research areaisitusses concisely several models from
the most relevant class of nonlinear Black—Scholes equafior European and American options
with a volatility depending on different factors, such as #tock price, the time, the option price
and its derivatives. We will present in this book both ariabjttechniques and numerical methods
to solve adequately the arising nonlinear equations.

The purpose of this book is to give an overview on the curréstiesof-the-art research on
nonlinear option pricing. The intended audience is on the lmend graduate and Ph.D. students
of (mathematical) finance and on the other hand lecturer ehemaatical finance and and people
working in banks and stock markets that are interested intoels for option pricing.

1 Introduction

Nonlinear models im mathematical finance are becoming more and more importt sin
they take into account effects like the presence of transaction costbaeeand illiquid
market effects due to large traders choosing given stock-tradinggestémperfect repli-
cation and investor’s preferences and risk from unprotected porfolio

Due to transaction costs, illiquid markets, large investors or risks from protected
portfolio the assumptions in the classical Black—Scholes model becomelistizeznd
the model results in strongly or fully nonlinear, possibly degenerateppbeadiffusion—
convection equations, where the stock price, volatility, trend and optioe pray depend
on the time, the stock price or the option price itself.

In this chapter we will be concerned with several models from the mostartielass
of nonlinear Black—Scholes equations for European and American sptiitim a volatility
depending on different factors, such as the stock price, the time, thenqpiae and its
derivatives, where the nonlinearity results from the presence ofdctina costs.

In the following sections we will give a short introduction to option pricing.
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2 Financial Derivatives

The interest in pricing financial derivatives — among them in pricing optioasses from

the fact that financial derivatives, also called contingent claims, carséé to minimize
losses caused by price fluctuations of the underlying assets. Thissprotprotection is
called hedging There is a variety of financial products on the market, such as futures,
forwards, swaps and options. In this introductory chapter we will farug&uropean and
American Call and Put options.

Definition 2.1 AEuropean Call optiois a contract where at a prescribed time in the future,
known as the expiry or expiration da#e (¢ = 0 means 'today’), the holder of the option
may purchase a prescribed asset, known as the underlying asset anderlyingS(t), for

a prescribed amount, known as the exercise or strike pkiceThe opposite party, or the
writer, has the obligation to sell the asset if the holder chooses to buy it.

At the final timeT the holder of the European Call option will check the current price of the
underlying asset := S(T). If the price of the asset is greater than the strike piice, K,

then the holder will exercise the Call and buy the stock for the strike gficéfterwards,

the holder will immediately sell the asset for the prit@and make a profitoV = S — K.

In this case theash flow or the difference of the money received and spent, is positive and
the option is said to bm-the-moneylf S = K, the cash flow resulting from an immediate
exercise of the option is zero and the option is said tatbdae-moneyin caseS < K, the
cash flow is negative and the option is said tmhbeof-the-moneyin the last two cases the
holder will not exercise the Call option, since the assean be purchased on the market
for K or less thank, which makes the Call option worthless. Therefore, the value of the
European Call option at expiry, known as tbey-off functionis

V(Sv T) = (S - K)Jr’
with the notationf™ = max(f,0).

Definition 2.2 Reciprocally, aEuropean Put optiois the right to sell the underlying asset
S(t) at the expiry datél” for the strike priceK. The holder of the Put may exercise this
option, the writer has the obligation to buy it in case the holder chooses to sell it.

The Putis in-the-money iK' > S, at-the-money it = S and out-of-the-money i < S.
The pay-off function for a European Put option is therefore

V(S,T) = (K — S)*.

The pay-off functions for the European Call and Put option are plottédgnl from the
perspective of the holder. This perspective is calledahg position The perspective of
the writer, or theshort position is reversed and can be seen when the pay-off functions in
Fig. 1 are multiplied by-1. That means that the writer of a European Call option is taking
the risk of a potentially unlimited loss and must carefully design a strategy to cwafse

for this risk [27].
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Figure 1: Pay-off functions for European options with a strike pfice

While European options can only be exercised at the expiry’Hafanerican options
can be exercised at any time until the expiration. Since an American optioxd&schi least
the same rights as the corresponding European option, the value of aicAmeption
Vam can never be smaller than the value of a European opffth i.e.

Vam > Veur.

Whether the values are equal depends ordthielend yieldg, which describes the percent-
age rate of the returns on the underlying asset. Assuming that the undesigckS pays
no dividends, the values of a European and an American Call optiongaid & all the
other parameters remain the same (for details see [13, 34]). In caseAohamcan Put
option without dividend payments it can often be advantageous to exéroefere expiry,
so that the values of a European and an American Put can differ stiakyan

In the presence of a continuous dividend payment the fair gricg, 0) of both an
American Call and Put option is greater than the value of a European Galtosee Fig. 2.

— European Cail —Européan Put ||
— American Call — American Put
---Pay-Off V(S, T K - -- Pay—off V(S,T)]
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(@) American vs. European Call with dividends. (b) American vs. European Put option.

Figure 2: Schematical values of American vs. European optiohs-di.
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Furthermore, it should be mentioned that the value of a Call option on arlyinde
without a dividend payment is always greater than the value of a Call optian under-
lying with a dividend payment for both European and American options. Beoopean
and American Put options on an underlying without a dividend paymentatue Vs less
than on an underlying with a dividend payment. The influence of a divigraydnent is

summarized in Fig. 3.

Options, whose pay-offs only depend on the final value of the undegriggset, are
calledvanilla options. Options, whose pay-offs depend on the path of the underlggeg,a
are calledexotic or path-dependenbptions. Examples arAsian Barrier andlookback
options. In this chapter, we will be solely concerned with plain vanilla Etan@and Amer-

ican options.

V(S,0)

(a) European Call option with dividend yielgs

V(S,0)

(c) American Call option with dividend yields
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(b) European Put option with dividend yields
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(d) American Put option with dividend yields

Figure 3: The influence of a dividend yield.
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3 Linear Black—Scholes Equations

Option pricing theory has made a great leap forward since the develofi et Black—
Scholes option pricing model by Fischer Black and Myron Scholes in [3]9n31and
previously by Robert Merton in [25]. The solution of the famdlisear) Black—Scholes
equation[9]

0=V + %azsﬁfss +7rSVs =1V, (1)
whereS := S(t) > 0 andt € (0,7, provides both an option pricing formula for a

European option and a hedging portfolio that replicates the contingent cisinméng that
[27]:

e The price of the asset price or underlying asSdbllows a Geometric Brownian
motion, meaning that if¥’ := W (t) is a standard Brownian motion (see Appendix

A.6), thenS satisfies the following stochastic differential equation (SDE):

dS = pSdt + o SdW.

e Thetrend or drift 1 (measures the average rate of growth of the asset price), the
volatility o (measures the standard deviation of the returns) and the riskless interest

rater are constant fod < ¢ < T and no dividends are paid in that time period.

e The market isfrictionless thus there are no transaction costs (fees or taxes), the

interest rates for borrowing and lending money are equal, all partiesihaxediate
access to any information, and all securities and credits are availablg @tnanand
any size. That is, all variables are perfectly divisible and may take atytenber.
Moreover, individual trading will not influence the price.

e There are narbitrage opportunities, meaning that there are no opportunities of in-
stantly making a risk-free profit ("There is no such thing as free lunch")

Under these assumptions the marketasplete which means that any derivative and any
asset can be replicated or hedged with a portfolio of other assets in thetrntsek [31]).
Then, it is well-known that the linear Black—Scholes equation (1) can beftramed into
the heat equation and analytically solved to price the option [33]. Thealienivof the so-
lution can be found in [27], the formulae for the European Call and Putrptoce attached
in Appendix B.

For American options, in general, analytic valuation formulae are not alajlekcept
for a few special types, which we are not going to address in this chaptese types are
Calls on an asset that pays discrete dividendspgmpetualCalls and Puts — meaning Calls
and Puts with an infinite time to expiry [23].
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4 Nonlinear Black—Scholes Equations

It is quite easy to imagine that the restrictive assumptions mentioned in the &
tion 3 are never fulfilled in reality. Due to transaction costs (cf. [2, 5,,24fpe investor
preferences (cf. [11, 12, 26]) and incomplete markets (cf. [30hdtessumptions are likely
to become unrealistic and the classical model results in strongly or fully nanlipessibly
degenerate, parabolic convection—diffusion equations, where botrolidity o and the
drift . can depend on the tinmg the stock prices or the derivatives of the option pridé
itself.

In this chapter we will focus on several transaction cost models from trs¢ rate-
vant class of nonlinear Black—Scholes equations for European anddemeptions with
a constant drifix and a nonconstamiodified volatility function

o2 = 52(15, S, Vs, Vss).

Under these circumstances (1) becomes the followimglinear Black—Scholes equation
which we will consider for European options:

1.
0=V, + 502(75, S, Vs, Vss)S?*Vss + rSVs — 1V, (2

wheredS = uSdt +aSdW, S > 0andt € (0,7).

Studying the linear Black—Scholes equation (1) for an American Call optmridibe
redundant, since the value of an American Call option equals the valuewbpé&an Call
option if no dividends are paid and the volatility is constant.

In order to make the model more realistic, we will consider a modification of the non
linear Black—Scholes equation (2) for American options, whengays out acontinuous
dividendqSdt in a time stepit:

1_
0=V, + 502(@ S, Vs, Vss)S*Vss + (r — q)SVs — 1V, (3)

where S follows the dynamicsiS = (u — q)Sdt + SdW, S > 0,t € (0,T) and the
dividend yieldq is constant.

In the mathematical sense the nonlinear Black—Scholes equations (2)) amnd ¢alled
convection—diffusion equations. The second-order té&(t, S, Vs, Vss)S?Vss is re-
sponsible for theliffusion the first-order termSVs or (r — q) SV is called theconvection
term and—rV can be interpreted as theactionterm (see [27, 32]).

In the financial sense, the partial derivatives indicate the sensitivityeobption price
V' to the corresponding parameter and are caBeegleks The option delta is denoted by
A = Vg, the option gamma by = Vgg and the option theta b§ = V;. For a detailed
discussion of this issue we refer to [19].

5 Terminal and Boundary Conditions

In order to find a unique solution for the equation (2) we need to complete thdem by
stating the terminal and boundary conditions for both the European CaRanaption.
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Since American options can be exercised at any time before expiry, veetodmd
the optimal timet of exercise, known as theptimal exercise time At this time, which
mathematically is &topping timgsee Appendix A.5), the asset price reachesojtimal
exercise priceor optimal exercise boundar§(t). This leads to the formulation of the
problem for American options by dividing the domdih co[x [0, 7] of (3) into two parts
along the curves(t) and analyzing each of them (see Fig. 4). Sifgét) is not known in
advance but has to be determined in the process of the solution, the piisldatiedfree
boundary value problerf84].

t t
A
Theooooome- S — g/ S
hold \ exercise exercise . hold
: S50 SOf
! — S T I - S
0 Sp(T)  5¢(0) 0 Sp(0)  Sy(T)
(&) American Call. (b) American Put.

Figure 4: Exercising and holding regions for American options.

For different numerical approaches, the free boundary problerrfterican options
can be reformulated into linear complementary probleifCP), avariational inequality
and aminimization problenj13]. The most simple treatment is the formulation as a free
boundary problem [8, 14].

Even though we will focus on Call options in this chapter, we state the conslitarn
Put options for the sake of completeness.

5.1 European Call Option

The valueV (S, t) of the European Call option is the solution to (2) on< S < oo,
0 <t < T with the following terminal and boundary conditions:

V(S,T)=(S - K)" for0 < S < oo
V(0,t) =0 foro<t<T 4
V(S,t) ~ 8 — Ke (Tt ass — oc.

5.2 European Put Option

Reciprocally, the valud’ (S, ¢) of the European Put option is the solution to (2)®nr<
S < 00,0 < t < T with the pay—off function for the Put as the terminal condition and the
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boundary conditions:

V(S,T) = (K —-S)* for0 < S < oo
V(0,t) = Ke 7T for0<t<T (5)
V(S,t) —0 ass — oc.

5.3 American Call Option

For the American Call option thgpatial domain is divided into two regions by tHeee
boundaryS,(t), the stopping regionS;(t) < S < oo, 0 < t < T, where the option is
exercised or dead with'(S,t) = S — K and thecontinuation regiord < S < Sy(t),

0 < t < T, where the option is held or stays alive and (3) is valid under the following
terminal and boundary conditions (see Fig. 4(a)):

V(S,T)=(S-K)" for0 < S < S¢(T)
V(0,t) =0 for0<t<T
V(Sy(t),t) = S(t) — K foro<t<T (6)
Vs(Sp(t),t) =1 foro<t<T
S#(T) = max(K,rK/q)

For the sake of simplicity we will assunre > ¢ in this chapter, and therefore we have
S¢(T') = rK/q for the American Call.

The structure of the value of an American Call can be seen Fig. 5(ajewenotice
that the free boundarg(¢) determines the position of the exercise. The exercising and
holding regions are illustrated in Fig. 4(a).

5.4 American Put Option

The American Put option is exercised in the stopping re@ieh S < S¢(t),0 <t < T
where it has the valu¥ (S, t) = K — S (see Fig. 4(b)). In the continuation regidn(t) <

S < 00,0 <t < T the Put option stays alive and (3) is valid under the following terminal
and boundary conditions:

V(S,T)=(K-9)"* for S¢(T) < S < oo
hm V(S,t)=0 for0<t<T
( r(t),t) = K — Sy(t) for0<t<T (7)
Vs(Sy(t),t) = —1 foro<t<T
S¢(T) = min(K,rK/q).

Since we assumed that> ¢, we haveS;(T') = K for the American Put. In Fig. 5(b) one
can see how the free boundaffy(t) determines the structure of an American Put.
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V(S,t) , V(S,t)

(&) American Call. (b) American Put.

Figure 5: Schematical valués(S, t) of American options.

6 Volatility Models

The essential parameter of the standard Black—Scholes model, thatiseatyadbservable

and is assumed to be constant, is the volatiity There have been many approaches to
improve the model by treating the volatility in different ways and usingoaified volatility
functiona(-) to model the effects of transaction costs, illiquid markets and large traders,
which is the reason for the nonlinearity of (2) and (3). We will first giveriaf overview of
several volatility models and then focus on the volatility models of transactida.cos

e The constant volatilitys in the standard Black—Scholes model can be replaced by
the estimated volatility from the former values of the underlying. This volatility is
known as thénistorical volatility [13].

e If the price of the option and the other parameters are known, which is e gate
for the European Call and Put options (see Appendix B), theintpéied volatility
can be calculated from those Black—Scholes formulae. The implied volatility is the
value o, for which (24) or (25) is true compared to the real market data. It @n b
calculated implicitly via the difference between the observed option pfiieom the
market data) and the Black—Scholes formulae (24) or (25), where ghafsneters
— except for the implied volatility — are taken from the market data (the stock price
S, the timet, the expiration dat&’, the strike price(, the interest rate the dividend
rateq).

Considering options with different strike pric&Sbut otherwise identical parameters,
we see that the implicit volatility changes depending on the strike price. If the iitnplic
volatility for a certain strike pricex is less than the implicit volatility for both the
strike price greater and less than this effect is calledrolatility smile[22].
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¢ Replacing the constant volatility with the observed implicit volatilities at each stock
price and time leads to the term of theral volatility ¢ := &(S,t). Dupire [7]
examined the dependencies and expressed the local volatility as a furfétigplioit
volatilities.

e Hull and White [18] and Heston [15] developed a model, in which the volatility fo
lows the dynamics of a stochastic process. This is known asttichastic volatility

e The assumption, that each security is available at any time and any sizet or-tha
dividual trading will not influence the price, is not always true. Theref illiquid
markets and large trader effects have been modeled by several authdrs] Frey
and Stremme and later Frey and Patie [12] considered these effects aicthaml
come up with the result

~ o

7= 1-— pA(S)SVgs’

(8)

whereo the historical volatility,o constantA(.S) strictly convex functionA(S) > 1.
The function)\(.S) depends on the pay-off function of the financial derivative. For the
European Call option, Frey and Patie show th@f) is a smooth, slightly increasing
function for S > K. Bordag and Chmakova [4] assumed th&l) is constant
and solve the problem (2) with the modified volatility (8) explicitly using Lie-group
theory (see also [6]).

As the main scope of this general overview chapter, we draw our attenttbe sequel to
a more detailed description of several transaction cost models.

6.1 Transaction Costs

The Black—Scholes model requires a continuous portfolio adjustment én trdhedge the
position without any risk. In the presence of transaction costs it is likelthigadjustment
easily becomes expensive, since an infinite number of transactions edH@&4l Thus, the
hedger needs to find the balance between the transaction costs thguiedre rebalance
the portfolio and the implied costs of hedging errors. As a result to this "irepgtiedging,
the option might be over- or underpriced up to the extent where the rigklesobtained
by the arbitrageur is offset by the transaction costs, so that there is gie siquilibrium
price but a range of feasible prices.

It has been shown that in a market with transaction costs there is no reglipatifolio
for the European Call option and the portfolio is required to dominate ratharréplicate
the value of the option (see [2]). Soner, Shreve and C\Gtf8] proved that the minimal
hedging portfolio that dominates a European Call is the trivial one (hewidénly one share
of the stock that the Call is written on), so that efforts have been made tafimdternate
relaxation of the hedging conditions to better replicate the pay-offs ofatese securities.
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6.2 The model of Leland

Leland’s idea [24] of relaxing the hedging conditions is to trade at distirees, which
promises to reduce the expenses of the portfolio adjustment. He assunmiie ttrahsac-
tion costx|A|S/2, wherex denotes the round trip transaction cost per unit dollar of the
transaction and\ the number of assets boughk (> 0) or sold (A < 0) at pricesS, is
proportional to the monetary value of the assets bought or sold. Novidesresreplicating
portfolio with A units of the underlying and thieond B (a certificate of debt issued by
a government or a corporation guaranteeing paynieptus interest by a specified future
date):

IMI=AS+ B.

After a small change in time of the sizé the change in the portfolio becomes
STL = ASS + rBSt — gm\s, (9)

wheredS is the change in pricé, so that the first term represents the change in value,
the second term represents the bond growtt itime andd A represents the change in the
number of assets, so that the last term becomes the transaction cost drtéotmrhange.

We apply 1td’s lemma (see 23 in Appendix A.7) to the value of the optiar= V (S, t)
and get

2
5V = VoS + (Vi + %521/55)&. (10)

Assuming that the optiolr is replicated by the portfolidl, their values have to match at
all times and there can be no risk-free profit. With this no-arbitrage argimeget

oIl = 6V.

Matching the terms in (9) and (10) we gat= Vs and

2
rBot — gyams = (Vi + %SQVSS)&S. (11)
Leland shows that )
gm\sz %Le52\V55\5t, (12)

whereLe denotes théeland numberwhich is given by

2 K
Le = \/;<am) 49

with 6t being the transaction frequency (interval between successive rmevisfahe port-
folio) and k the round trip transaction cost per unit dollar of the transaction. Pluggdg (
andB =11 — AS =V — SVg into the equation (11) becomes

O'2 0'2
rV —rSVs — 5 Le S?|Vss| = Vi + ESQVSS. (14)
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Therefore, Leland deduces that the option price is the solution of the panlBlack—
Scholes equation

1.
0=V, + 502521/55 +rSVg — 1V,

with the modified volatility

72 = o2 (1 + Le sign(V55)>, (15)

whereo represents the historical volatility ai@ the Leland number. It follows from the
definition of the Leland number (13) that the more frequent the rebalaijéirgmaller),
the higher the transaction cost and the greater the value of

Itis known thatl’sg > 0 for European Puts and Calls in the absence of transaction costs.
Assuming the same behavior in the presence of transaction costs, eg@atlmecémes
linear with an adjusted constant volatilii} = o2(1 + Le) > o2.

Leland’s model has played a significant role in financial mathematics, ewaghfit has
been partly criticized by e.g. Kabanov and Safarian in [21], who proaelteland’s result
has a hedging error. The restriction of his model is the convexity of thetires option
price V' (henceVsg > 0) and the possibility to only consider one option in the portfolio.
Hoggard, Whalley and Wilmott studied equation (2) with the modified volatility (©5) f
several underlyings in [17]. An extension to this approach to genasabffs is obtained
by Avellaneda and Paras [1].

6.3 Barles and Soner

In [2] Barles and Soner derived a more complicated model by following legeautility
function approach of Hodges and Neuberger [16]. Consider theepsoof bonds owned
X (s) and the process of shares owrEds). Let the trading strategyL(s), M (s)) be

a pair of nondecreasing processes Wwitft) = M (¢t) = 0, which are interpreted as the
cumulative transfers, measured in shares of sté¢k) is measured in shares from bond to
stock andV/(s) is measured in shares from stock to bond. A€t (0, 1) be the proportional
transaction cost. The processE$s) andY (s) start with the initial values: andy, s €
[t,T] and evolve according to

X(s) —w—/ S(T)(1 4 k) dL(T /S (1 —k)dM(T) (16)

and
Y(s) =y + L(s) — M(s). 17

The first integral in (16) represents buying shares of stock at a pieceased by the pro-
portional transaction cost, the second integral represents selling dtacteduced price
of the transaction cost. In (17) we add the amount of the stocks boudhdudntract the
amount for the stocks sold to the initial amount of stocks owned.
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According to the utility maximization approach of Hodges and Neuberger, [hé]
price of a European Call option can be obtained as the difference betiveenaximum
utility of the terminal wealth when there is no option liability and when there is such a
liability. Following this approach, Barles and Soner considered two optimizptiziniems.

Let theexponential utility functioe

U(&) =1- 6_767 5 € R>

wherey > 0 is therisk aversion factar The first value function is the expected utility from
the final wealth without any option liabilities taken over the transfer prosesse

Vi(z,y,S(t),t) .= sup E[U(X(T)+Y(T)S(T))],
L(-),M()
the second one is the expected utility from the final wealth assuming that veesbhbl/vV
European Call options taken over the transfer processes

Va(z,y,S(t),t) ;== sup E[U(X(T)+Y(T)S(T)— N(S(T)— K)*)].
L(-),M(")
Hodges and Neuberger postulate that the price of each option is equalrt@iimal solu-
tion A of the algebraic equation

Vo(x + NA,y, S(t),t) = L(.s)uj\[/;(') ElU(X(T)+ NA +Y(T)S(T)
— N(8(T) - K)")]
= sup E[U(X(T)+Y(T)S(T))]
L(-),M(")
= Vl(x7y75<t)vt)7

which means that the option prideequals the increment of the initial capital at timinat
is needed to cope with the option liabilities arising/atBy a linearity argument sellingy
options with risk aversion factor of yields the same price as selling one option with risk
aversion factory V. This leads to performing an asymptotic analysig & — oo. Hence,
we consider

UE)=1-eM

and

Then, we have
U(§)=1-c%, EeR

Our optimization problems become

1
Vi(z,y,S(t),t) =1— inf Ele :XMHY(D)ST)
(@9, 5(0),1) L(),M(") | ]
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and
Valz,y,S(t),t) =1 — inf Ele~: XOFYDST)~(ST)-K)),
L(-),M ()

For analysis simplification Barles and Soner defing: R x (0,00) x (0,7') — R by
Vile,y,5(1),1) = 1 — ¢~ ¢ (#H0SO-210:50.0)

and
Va(a, g, S(t), 1) = 1 — et (+0S80—2250)0)

Then
Zl(yvs(t)7T) =0 and 22(y>5(t)7T) = (S(T) - K)+

and the option price

A(:L’,y, S(t)at; é: 1) = 22(y7 S(t>7t) - Zl(ya S(t)7t>'

By the theory of stochastic optimal control [10], Barles and Soner stat¢hth&alue func-
tionsV; andV; are the unique solutions of the dynamic programming equation

1
min{—V; + 502521/55 —7SVs, =V, + S(1 + &)V, V, — S(1 — k)V,} = 0,

which leads to a dynamic programming equation£pand z2, which are independent of
the variabler.

Supposing that the proportional transaction cost equal toa+/c for some constant
a > 0, they prove that as — 0 andx — 0

z1—0 and z —V,

whereV is the unique (viscosity) solution of the nonlinear Black—Scholes equation
1.
0=V, + 502521/525 +7SVs —1rV,

where
72 =o? (1 + \Il(eT(T_t)aQSQVSS)). (18)

Hereo denotes the historical volatility, = x//c and¥(z) is the solution to the following
nonlinear ordinary differential equation (ODE)

U(zr)+1

V)= et -

, x #£0, (19a)

with the initial condition
v(0) =0. (19b)
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The analysis of this ODE (19) by Barles and Soner in [2] implies that

lim Piw) =1 and lim ¥(z)=-1. (20)

r—00 X r——00

The property (20) encourages to treat the functign) as the identity for large arguments
and therefore to simplify the calculations. In this case the volatility becomes

52 =021+ " T9425%V55). (21)

The existence of a viscosity solution to (2) for European options with theiNylgiven
by (18) is proved by Barles and Soner in [2] and their numerical resulisdte an eco-
nomically significant price difference between the standard Black—Sshodelel and the
nonlinear model with transaction costs.

6.4 Risk Adjusted Pricing Methodology

In this model, proposed by Kratka in [22] and improved by J&kdand Sesovit in [20],

the optimal time-lagit between the transactions is found to minimize the sum of the rate
of the transaction costs and the rate of the risk from an unprotected|moritbat way the
portfolio is still well protected with the Risk Adjusted Pricing Methodology (RAPahd
themodified volatilityis now of the form

2
M
&2 202(1+3(C

1
SVss)3 |, 22
5 55) > (22)
whereM > 0 is the transaction cost measure &nd> 0 the risk premium measure.
It is worth mentioning that these nonlinear transaction cost models that arebeels

above are all consistent with the linear model if the additional parametetsafwaction
costs are equal to zero and vanisle,(¥(-), M).

Conclusion

In this chapter we provided a profound overview over nonlinear Bl&ckeles equations
for European and American options.

We introduced the reader to the financial terminology and to Black—Schaolediens
and presented several reasons for their nonlinearity and focuslked nanlinearity resulting
from a modified volatility function due to transaction costs. Here we focuseskugeral
transaction cost models, including Leland’ model, Barles’ and Soner'simthe identity
model and the Risk Adjusted Pricing Methodology.
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Appendix

A Stochastics

In this chapter, we used several terms and concepts of probability thedrgtochastics.
Thus, we recall some definitions (see e.g. [13,27, 28] and the refse¢herein).

A.1 Probability Space

Let Q2 be asample spaceepresenting all possible scenarios (e.g. all possible paths for the
stock price over time). A subset 6fis aneventandw € 2 asample point

Definition A.1 Let{2 be a nonempty set anfl be a collection of subsets 6f F is called
a o-algebra(not related to the volatility), if

) Qe F,

i) whenever a setl belongs taF, its complement© also belongs tgF and

oo
n=

iif) whenever a sequence of sets,, n € N belongs toF, their union
belongs taF.

1 A, also

In our financial scenariaF represents the space of events that are observable in the market
and therefore, all the information available until the timean be regarded ascaalgebra

F:. Itis logical thatF; C F; for ¢t < s, since the information that has been availabie

still available ats.

Definition A.2 Let{) be a nonempty set aifl be ac-algebra of subsets 6. Aprobability
measureP is a function that assigns a number|[in 1] to every sed € F. The number is
called theprobability of A and is writtenP(A). We require:

e P(Q)=1and

e whenever a sequence of disjoint sdtg n € N belongs taF, then
P< U An> = P(Ay).
n=1 n=1
The tripel(Q2, F, P) is called aprobability space

A.2 Random Variable

Definition A.3 A real-valued functionX on {2 is called arandom variabléf the sets
(X <z} ={we: X(w) <z} =X"Y]—o0,2])

are measurable for alt € R. Thatis,{X <z} € F.
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A.3 Stochastic Process

Definition A.4 A (continuous}tochastic procesk (t) = X (-, ), t € [0, 0o, is a family of
random variablesX : © x [0, co[— R with ¢ — X (w, t) continuous for allv € .

A.4 1t6 Process

Definition A.5 AnItd processs a stochastic process of the form
dX = a(X,t)dt + b(X,t)dW,

which is equivalent to

X(t) = X(0)+ /Ota(X, s)ds + /Otb(X, s)dW,

whereX (0) is nonrandomJV (t) is a standard Wiener process-) andb(-) are sufficiently
regular functions and the integrals are It6 integrals.

A.5 Stopping Time

Definition A.6 A stopping time is a random variable taking values [, oo] and satisfy-
ing
{t<s}eF, Vs>0.

A.6 Brownian Motion

Definition A.7 A Brownian motionor Wiener process a time-continuous stochastic pro-
cessW (t) with the properties:

e W(0) =0.

W (t) ~ N(0,t) for all t > 0. That is, for eacht the random variabléV (¢) is nor-
mally distributed with meaR [ (¢)] = 0 and varianceVar[W ()] = E[W?(t)] = t.

AllincrementsAW (t) := W (t+ At) — W (t) on non-overlapping time intervals are
independent. That i)/ (t2) — W (t1) and W (t4) — W (t3) are independent for all
0<t <ty <t3z<iy.

W (t) depends continuously an
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A.7 1t6’'s Lemma

Theorem A.8 Consider a functio/(S,t) : R x [0, c0[— Rwith V € C%1(R x [0, 0o])
and suppose thaf(¢) follows the It process

dS = a(S, t)dt + b(S, t)dW,

whereW (t) is a standard Wiener process. The&hfollows an Itd process with the same
Wiener proces$V (t):

1
dV = (aVs + §b2VSS + Vp)dt + bVsdW, (23)
wherea := a(S,t) andb := b(S, ).

If we consider a special case, whei€5,t) = 1S andb(S,t) = 05, thenS(t) follows
the Geometric Brownian motion, whevE(¢) is a standard Wiener process, and we have

dS = pSdt + o SdW.

Then, 1t6’s Lemma yields
1
dV = (uSVs + 502521/55 + Vi)dt + o SVsdW

1
= (502521/55 + Vi) dt + VsdS.

B Pricing Formulae

Theorem B.1 The solution to the linear Black—Scholes equatibywith the terminal and
boundary condition$4), or the value of th&uropean Calbption, is given by

V(S,t) = Se 1 TN (dy) — Ke " TN (dy), (24)
where
5o ln(%) +(r—q+F)T—-1)
L oI —t
o @) g 5T
2 oI —t

and N (z) is the standard normal cumulative distribution function

1 v y?
N(x):m/ e” 7 dy, z €R.

Respectively, the value of teeropean Pubption is the solution to the linear Black—Scholes
equation(1) with the terminal and boundary conditios) and is given by

V(S,t) = Se T ON(dy) — Ke "TIN(dy). (25)
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