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Abstract

In this paper, we find numerical solution for the American option pric-
ing problem. The Black-Scholes equation is transformed to the diffusion
equation on an unbounded domain. An artificial boundary is introduced
to limit this domain. The diffusion operator is discretized by using the
different schemes for the interior grid with different boundary condi-
tions. The considered high order compact schemes Method 1 proposed
by MacCartin, Method 2 proposed by Tangman and R3-Methods belong
to weighted scheme of the approximation for the pure heat equation.
Moreover, they coincide and this method is called the optimal weighted
scheme. This scheme is unconditionally stable and it has the fourth
order approximation in space and the second in time. Also, we com-
pare Crank-Nicolson and five-point two-level non-compact stencils with
compact method. They show worth numerical result in comparison with
high order compact method. The Crank-Nicolson scheme with different
boundary conditions is inferior to the non-compact Heun’s method. But
the Heun’s scheme is conditionally stable, which is a big disadvantage
for this scheme.
On the right boundary of the truncated computational domain we use
the Dirichlet boundary condition. The boundary conditions on the left
boundary have influence for the numerical solution of the heat equation.
The numerical results show that the combination of high order compact
schemes with Han and Wu boundary condition is more accurate to the
exact solution which obtained by using the Binomial method with large
number of the steps.
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Chapter 1

Introduction

In October 1997 Robert Merton, Myron Scholes were awarded by the ”Price
of Swedish Bank on the theory of A. Nobel for economics”. They derived
a classical mathematical formula for options and other derivatives pricing.
This formula is well-known as the Black-Scholes formula. It had a great
influence on the development of theory and practice of finance. Usage of
mathematical methods can’t completely describe real market behavior, but
it can estimate risk, premium and value of options or derivatives.

The specific character of investigation in financial markets often requires
considerably hard conditions to numerical methods. First of all, when using
large space steps of the grid we have to use stable implicit schemes. It
can avoid using too small time steps, which are typical for explicit schemes.
Efficiency is also a wanted property of numerical methods. This property
is inherent for schemes consisting of three points in space, which are called
compact schemes.

There are a lot of methods using compact finite difference schemes for
numerical pricing of options and derivatives. In [8] the authors considered
the pricing of American and European options. They apply a standard trans-
formation for Black-Scholes equation and obtain the heat equation. To solve
this problem they consider the Crandall-Douglas scheme, which is second-
order accurate in time and fourth-order accurate in space. If we restrict the
size of the time step, this scheme can achieve sixth-order accuracy. The au-
thors compare the Crandall-Douglas scheme with other theta-methods and
get result that this scheme induces a smaller error.

To solve the same problem for American options on the unbounded do-
main Han and Wu [5] introduce an artificial boundary, which separates the
domain into bounded and unbounded parts. They show that the accurate
solution can be obtained using the artificial boundary conditions. Also it
reduces the computational costs since a smaller computational domain can
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2 Chapter 1. Introduction

be used.
Tangman, Gopaul, Bhuruth [13] describe a new compact finite difference

method, which is an improvement of Han and Wu’s algorithm for American
options. They use a non-uniform grid. In the area near the spot prices the
grid becomes more dense, in the area of non-interest the grid is more coarse.
It allows to accurately locate the free boundary. They present the com-
putational results of this method, Han and Wu’s method and other known
algorithms. The results illustrate that their new method is faster and more
accurate.

Often artificial boundaries are incorporated to confine the computational
area. Ehrhardt introduces a new type of artificial boundary conditions -
discrete TBC (transparent boundary conditions) [3]. He compares this con-
ditions with Mayfield’s conditions [9], TBC and boundaries of Han and Wu
method and other artificial boundary conditions. Discrete TBCs yield more
accurate results than others and conserve the stability of the scheme.

Düring analyses the numerical solution of the non-linear Black-Scholes
equation [2]. He considers several compact finite difference schemes. These
schemes were introduced by Rigal [11] and called R3-schemes. Also Düring
investigates properties of these schemes. He found out the truncation errors.

In our thesis we apply different compact methods to American vanilla
options. We apply different artificial boundary conditions for these scheme.
We compare schemes with the same boundary conditions and initial data,
also we compare each scheme with different boundary conditions. We will
change the location of the left boundary to investigate its influence on the
accuracy.

In section 2 we introduce the Black-Scholes equation. We apply the stan-
dard transformation to obtain the heat equation. We construct a finite do-
main and cover it by the grid. We choose the number of the space steps from
the known parabolic mesh-ratio. Then we describe compact finite difference
schemes: Method 1 is the method proposed by McCartin and Labadie [8].
Method 2 is the method described by Tangman et al. [13]. Methods R3A
and R3B is proposed by Rigal in [11] and [2]. We distrain three types of
boundary conditions: Mayfield, Han and Wu and the discrete TBC.

In section 3 we perform the numerical tests for the methods and differ-
ent boundary conditions. Stability analysis and order of approximation are
presented in this section.

In section 4 we summarize all results from section 3 and conclude how
the different boundary conditions influence the properties of the schemes.



Chapter 2

Methods

Let us consider a financial market where risky assets (options, futures and
forward contracts) can be traded. An option is an agreement between two
sides: buyer and writer. The buyer has the right to exercise the option at
the expiry date by the strike price. The simplest type of options is a vanilla
option (Call or Put). Options are used to hedge the risk of portfolio and to
speculate.

The European option has an exact expiry date as against the Ameri-
can option which can be exercised at any time before maturity. Therefore
American options are more expensive and widely used on the markets.

2.1 The Black-Scholes equation

The Black-Scholes model is used to estimate the option value. To use this
model we introduce the following notations:

Suppose that the process {St}t≥0 is a geometric Brownian motion. There-
fore it satisfies the stochastic differential equation:

dSt

St

= (r −D)dt + σdWt, (2.1)

where {Wt}t≥0 is the Brownian motion.
For European option the Black-Scholes equation has the following form:

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0. (2.2)

Conditions for European Call option:
· Terminal condition: C(S, T ) = max(S − E, 0);

3



4 Chapter 2. Methods

Symbol Meaning

S Asset price
t Time
V(S,t) Value of option
C(S,t) Value of Call option
P(S,t) Value of Put option
E Exercise price
T Expiry date
r Interest rate
σ Volatility
D Continuous dividend yield
Sf Optimal exercise price

Figure 2.1: Notations.

· Boundary conditions: C(S = 0, t) = 0, t < T ;

C(S →∞, t) → Se−D(T−t).

Conditions for European Put option:

· Terminal condition: P (S, T ) = max(E − S, 0);

· Boundary conditions: P (S = 0, t) = Ee−r(T−t), t < T ;

P (S →∞, t) → 0.

In the case of American options we have the possibility of early exercise.
Sf (t) is the switching point: if 0 < S < Sf (t) then the option should be
exercised; if S > Sf (t) then the optimal strategy is to hold the option (in
this case the American option is transformed to a European option).

Therefore the free boundary problem for an American option is the fol-
lowing:

I.





0 ≤ S < Sf (t), early exercise is optimal

P = E − S,
∂V
∂t

+ 1
2
σ2S2 ∂2V

∂S2 + (r −D)S ∂V
∂S
− rV < 0,

II.





Sf (t) ≤ S < ∞, early exercise is not optimal

P > E − S,
∂V
∂t

+ 1
2
σ2S2 ∂2V

∂S2 + (r −D)S ∂V
∂S
− rV = 0.

Conditions for American Call option:

· Boundary condition: C(Sf (t), t) = max(Sf (t)− E, 0);

· Additional condition: ∂C
∂S

(Sf (t), t) = 1.
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Figure 2.2: American Put option

The boundary conditions for American Put option.
· Boundary condition: P (Sf (t), t) = max(E − Sf (t), 0);
· Additional condition: ∂P

∂S
(Sf (t), t) = −1.

2.2 The transformation of the Black-Scholes

equation to the heat equation

The following standard change of variables can be used to transform the
Black-Scholes equation to heat equation [14]

S = Eex, t = T − 2τ/σ2, V = Eυ(x, τ). (2.3)

After this substitution the Black-Scholes equation has the following form

∂υ

∂τ
=

∂2υ

∂x2
+ (k2 − 1)

∂υ

∂x
− k1υ.

In this formula we set k1 = 2r
σ2 and k2 = 2(r−D)

σ2 .
Now we can make one additional substitution of the dependent variables

υ(x, τ) = exp[−1

2
(k2 − 1)x− 1

4
((k2 − 1)2 + 4k1)τ ]u(x, τ). (2.4)
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Finally, the Black-Scholes equation (2.2) takes the form of the heat equa-
tion

∂u

∂τ
=

∂2u

∂x2
, (2.5)

where

τ ∈
[
0,

Tσ2

2

]
,

and
x ∈ (−∞, xf (τ)).

The next formula can be used to obtain the value of the option V (S, t),
which we are looking for

V (S, t) = E
(k2+1)

2 S
1−k2

2 exp(−σ2

8
((k2 − 1)2 + 4k1)(T − t))×

u

(
ln

S

E
,
σ2(T − t)

2

)
. (2.6)

For the European and American options the conditions will be changed
under this transformation and become the following form [14].

Conditions after the transformation (2.6) for thr European Call option:
· the initial condition

u(x, 0) = u0(x) = e
1
2
(k2−1)x max(ex − 1, 0);

· the boundary condition

lim
x→−∞

u(x, τ) = 0;

· the far-field condition

lim
x→∞

u(x, τ) = exp(
1

2
(k2 +1)x+

1

4
(k2 +1)2τ)− exp(

1

2
(k2−1)x+

1

4
(k2−1)2τ).

The boundary and terminal conditions after transformation for the Eu-
ropean Put option:

· the initial condition

u(x, 0) = u0(x) = e
1
2
(k2−1)x max(1− ex, 0);

· the near-field condition

lim
x→−∞

u(x, τ) = exp(
1

2
(k2−1)x+

1

4
(k2−1)2τ)−exp(

1

2
(k2+1)x+

1

4
(k2+1)2τ);
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· the far-field condition

lim
x→∞

u(x, τ) = 0.

For the American options this transformation modify the free boundary
problem to the following parabolic variational inequality [14].

For the American Call option

∂u

∂τ
− ∂2u

∂x2
≥ 0, u(x, τ)− g(x, τ) ≥ 0; (2.7)

(
∂u

∂τ
− ∂2u

∂x2

)
(u(x, τ)− g(x, τ)) = 0; (2.8)

g(x, τ) = e
1
4
((k2−1)2+4k1)τ ·max(e

1
2
(k2+1)x − e

1
2
(k2−1)x, 0); (2.9)

u(x, 0) = u0(x) = g(x, 0); (2.10)

lim
x→±∞

u(x, τ) = lim
x→±∞

g(x, τ). (2.11)

For the American Put option

∂u

∂τ
− ∂2u

∂x2
≥ 0, u(x, τ)− g(x, τ) ≥ 0;

(
∂u

∂τ
− ∂2u

∂x2

)
(u(x, τ)− g(x, τ)) = 0,

g(x, τ) = e
1
4
((k2−1)2+4k1)τ ·max(e

1
2
(k2−1)x − e

1
2
(k2+1)x, 0),

u(x, 0) = u0(x) = g(x, 0);

lim
x→±∞

u(x, τ) = lim
x→±∞

g(x, τ).

2.3 The grid construction

For a numerical solution of the Black-Scholes equation we need to discretise
the problem on a bounded computational domain a < x < b. For our
calculation we use a uniform grid.

Let

Ωτ = {τn ∈ R+ : τn = n∆τ, n = 0, 1, ..., N, ∆τ =
T

σ2N
},

Ωx = {xj ∈ R : xj = a + j∆x, j = 0, 1, ...,M, ∆x =
b− a

M
},
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Figure 2.3: A uniform 2D grid,∆x is the space step, ∆τ is the time step.

be a discrete computational domain with boundaries a < 0 and b > 0 in
space and with boundaries t = 0 and t = T

σ2 in time. We choose a and b to
degrade the approximation error, see Figure 2.3.

Also we introduce a (M−1)× (N−1) matrix U of unknown values of the
function u(x, τ) at the interior grid points, i.e. un

j = u(xj, τn), j = 1, .., M−1,
n = 1, .., N−1. To calculate the values of the function u(x, τ) at the boundary
points we use the initial and boundary conditions, which will be described
below.

The compact methods use only a small amount of points on one time
level. We consider in the sequel two-level three-point schemes.

2.4 The description of the method 1

Here we describe a fast numerical method for the Black-Scholes equation for
American options proposed by Han and Wu [5].

On the a-priori unknown free boundary of the early exercise Sf (t) the
solution of the Black-Scholes equation for an American Call option (2.2)
should satisfy the following boundary conditions

C(Sf (t), t) = h(Sf (t)),
∂C

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T,

where h(S) = max(S − E, 0).

After the standard transformation (2.3) for the Black-Scholes equation
we obtain the dimensionless heat equation with the boundary and initial
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Figure 2.4: The stencil for a high order compact scheme, j is numerate the
space steps and n is the time levels.

conditions (2.7) - (2.11) instead of the free boundary value problem. The
boundary conditions are changed to the following form:

u(xf (τ), τ) = g(xf (τ), τ),

αu(xf (τ), τ) +
∂u(xf (τ), τ)

∂x
= e(1−α)xf (τ)−βτ , 0 < τ ≤ σ2T

2
,

where the free boundary xf (τ) is strictly positive for 0 < τ ≤ σ2T
2

and
parameters α and β have the form

α = −
2
σ2 (r −D)− 1

2
;

β = −α2 − 2r

σ2
.

We consider the problem

∂u

∂τ
=

∂2u

∂x2
, −∞ < x ≤ xf (τ), (2.12)

u(x, 0) = g(x, 0), −∞ < x ≤ xf (0), (2.13)

u(xf (τ), τ) = g(xf (τ), τ), (2.14)
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αu(xf (τ), τ) +
∂u(xf (τ), τ)

∂x
= e(1−α)xf (τ)−βτ , 0 ≤ τ ≤ σ2T

2
, (2.15)

u(x, τ) → 0, x → −∞ (2.16)

on the a-priory unknown unbounded domain Ω. This domain can be pre-
sented as follows

Ω = {(x, τ)| −∞ < x < xf (τ), 0 < τ ≤ σ2T

2
}.

We introduce an artificial boundary Γa at x = a

Γa = {(x, τ)|x = a, 0 < τ ≤ σ2T

2
}.

This boundary Γa separates the region Ω into two different areas: a
bounded (’interior’) domain Ωi and an unbounded (’exterior’) domain Ωe,
which can be written in the following form

Ωi = {(x, τ)|a < x < xf (τ), 0 < τ ≤ σ2T

2
},

Ωe = {(x, τ)| −∞ < x < a, 0 < τ ≤ σ2T

2
}.

We reduce the problem (2.12) - (2.16) on the bounded area Ωi. It means
that we have to find the corresponding boundary conditions on the artificial
boundary Γa. The solution u(x, τ) for the problem (2.12) - (2.16) on the
unbounded area Ωe satisfies

∂u

∂τ
=

∂2u

∂x2
, −∞ < x < a, 0 < τ ≤ σ2T

2
, (2.17)

u(x, 0) = 0, −∞ < x < a. (2.18)

If we know the value u(x, τ) on the artificial boundary Γa

u(a, τ) = φ(τ), (2.19)

where φ(0) = 0, then the problem (2.17) - (2.19) has the following solution
[14]

u(x, τ) = −(x− a)√
π

∫ τ

0

e−
(x−a)2

4(τ−λ)
φ(λ)dλ

(τ − λ)3/2
. (2.20)

In formula (2.20) the following substitution has been made

µ =
(x− a)

2
√

τ − λ
,
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then it can be rewritten

u(x, τ) =
2√
π

∫ (x−a)

2
√

τ

−∞
e−µ2

φ(τ − (x− a)2

4µ2
)dµ.

After this we can find the partial derivatives

∂u(x, τ)

∂x
=

2√
π

φ(0)e−
(x−a)2

4τ
1

2
√

τ

+
2√
π

∫ (x−a)

2
√

τ

−∞
φ′(τ − (x− a)2

4µ2
)(−x− a

2µ2
)e−µ2

dµ

= − 2√
π

∫ (x−a)

2
√

τ

−∞
φ′(τ − (x− a)2

4µ2
)(

x− a

2µ2
)e−µ2

dµ.

It means
∂u(x, τ)

∂x
=

1√
π

∫ τ

0

e−
(x−a)2

4(τ−λ)
φ′(λ)dλ√

τ − λ
.

The value of this partial derivative in point x = a

∂u

∂x
|x=a =

1√
π

∫ τ

0

∂u(a, λ)

∂λ

dλ√
t− λ

. (2.21)

The formula (2.21) is the exact boundary condition for the problem (2.12)
- (2.16) on the artificial boundary Γa. By the relation (2.21) we have a
bounded problem on area Ωi for the American Call option against the un-
bounded problem on the area Ω for the same American Call option [14]

∂u

∂τ
=

∂2u

∂x2
, a < x ≤ xf (τ), 0 ≤ τ ≤ σ2T

2
, (2.22)

u(x, 0) = g(x, 0), a < x ≤ xf (0), (2.23)

u(xf (τ), τ) = g(xf (τ), τ), (2.24)

e(1−α)xf (τ)−βτ

[
αu(xf (τ), τ) +

∂u(xf (τ), τ)

∂x

]
= 1, 0 ≤ τ ≤ σ2T

2
, (2.25)

∂u

∂x
|x=a =

1√
π

∫ τ

0

∂u(a, λ)

∂λ

dλ√
t− λ

. (2.26)

the finite difference approximation.
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This subsection is dedicated to the numerical approximation of the above
mentioned problem (2.22) - (2.26). In the first step we have to define the
corresponding two dimensional grid. For this let’s introduce some notations.

We denote γ = 4τ
(4x)2

. The parameter γ is called the parabolic mesh ratio
and plays a central role in the stability and accuracy considerations of the
heat equation.

Equation (2.22) is the heat equation on the bounded area Ωi. We want
to find the numerical solution of this problem. It can be solved by using
the different finite difference methods. In this thesis we will consider the
Crandall-Douglas scheme for the heat equation. This scheme is an accurate
numerical procedure and is efficient since it used only six points on two time
levels.

The discretization by the Crandall-Douglas scheme of the diffusion oper-
ator has the following form:

(1− 6γ)un
j+1 + (10 + 12γ)un

j + (1− 6γ)un
j−1

= (1 + 6γ)un−1
j+1 + (10− 12γ)un−1

j + (1 + 6γ)un−1
j−1 , (2.27)

j = 1, 2, ..., n = 1, 2, ..
For j = 1 this formula can be rewritten as

(1− 6γ)un
2 + (10 + 12γ)un

1 = b1,

where

b1 = (1 + 6γ)(un−1
2 + un−1

0 ) + (10− 12γ)un−1
1 − (1− 6γ)un

0 . (2.28)

For other value j = 2, 3, ...

(1− 6γ)un
j+1 + (10 + 12γ)un

j + (1− 6γ)un
j−1 = bj,

where
bj = (1 + 6γ)(un−1

j+1 + un−1
j−1 ) + (10− 12γ)un−1

j .

The matrix form of this method is Mu = b, where

M =




(10 + 12γ) (1− 6γ) 0 . . . 0
(1− 6γ) (10 + 12γ) (1− 6γ) 0 . . .

...
...

...
. . .

...
0 . . . 0 (1− 6γ) (10 + 12γ)


 ,

u =




un+1
1

un+1
2
...

un+1
m−1


 , b =




b1

b2
...

bm−1


 .
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We rewrite the Crandall-Douglas scheme as a θ-method. In the general
form the θ-method can be presented as follows

−θγun+1
j−1 + (1 + 2θγ)un+1

j − θγun+1
j+1

= (1− θ)γun
j−1 + (1− 2(1− θ)γ)un

j + (1− θ)γun
j+1.

If we divide each equation in the Crandall-Douglas scheme by 12 we obtain
(

1

12
− 1

2
γ

)
un

j+1 +

(
10

12
+ γ

)
un

j +

(
1

12
− 1

2
γ

)
un

j−1

=

(
1

12
+

1

2
γ

)
un−1

j+1 +

(
10

12
− γ

)
un−1

j +

(
1

12
+

1

2
γ

)
un−1

j−1

Now we can find θ:

−θγ =

(
1

12
− 1

2
γ

)
,

θ =
1

2
− 1

12γ
.

For the control of the correct calculations we can put θ in the general
form for θ-methods. Then we obtain

−
(

1

2
− 1

12γ

)
γun+1

j−1 +

(
γ +

5

6

)
un+1

j −
(

1

2
− 1

12γ

)
un+1

j+1 (2.29)

=
1

2
+

1

12γ
γun

j−1 +

(
5

6
− γ

)
un

j +

(
1

2
+

1

12γ

)
γun

j+1.

This scheme in a facsimile is the Crandall-Douglas scheme.
We introduce a new notation of variables

s1 = (10 + 12γ), y1 = b1.

For j = 1

s1u
n
1 + (1− 6γ)un

2 = y1 ⇒ un
1 =

b1 − (1− 6γ)un
2

s1

.

For j = 2 this formula has the following form

(1− 6γ)un
3 + (10 + 12γ)un

2 + (1− 6γ)un
1 = y2,

(1− 6γ)un
3 + ((10 + 12γ)− (1− 6γ)2

s1

)un
2 = b2 − y1(1− 6γ)

s1

.
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In general case
sju

n
j + (1− 6γ)un

j+1 = yj,

where

sj = (10 + 12γ)− (1− 6γ)2

sj−1

,

and

yj = bj − (1− 6γ)yj−1

sj−1

.

We have an inequality un
Mε
≥ gMε .

Assume that Mε is the biggest number which satisfies this inequality, then
we have

un
Mε

=
1

sMε

(
bMε −

(1− 6γ)yMε−1

sMε−1

− (1− 6γ)gMε+1,

)
,

un
j =

1

sj

(yj − (1− 6γ)un
j+1),

for j = Mε − 1, Mε − 2, ....

2.5 The description of the method 2

We describe the method proposed by Tangman, Gopaul and Bhuruth [13]
and call it Method 2. This method is an improvement of the Hang and
Wu method [5]. Authors consider the difference between American and
European options. Price of both types of options is the solution of the Black-
Scholes equation. So, this difference also satisfy the Black-Scholes equation.
We use the standard transformations [14] to obtain the heat equation

∂uD

∂τ
=

∂2uD

∂x2
, xf (τ) ≤ x < ∞,

with the boundary and initial conditions

uD(x, 0) = 0, xf (0) ≤ x < ∞,

uD(xf (τ), τ) = h(xf (τ), τ)− uE(xf (τ), τ), 0 ≤ τ ≤ τmax,

uD(x, τ) → 0 as x →∞,

where uE is the transformed function of value for an European put option,
uD denotes the difference between American and European options.

We begin with applying this scheme for the American option instead of
the difference uD. Then we apply it to the difference uD as noted above.
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We just change the initial conditions. In the case of the non-uniform grid
at the n-th time level the finite-difference approximation of the second space
derivative ∂2u

∂x2 and the function u(x, τ) are proposed in [12] to achieve the
maximal accuracy

Dxx[u
n
j ] =

2

xj+1 − xj−1

(
un

j+1 − un
j

xj+1 − xj

− un
j − un

j−1

xj − xj−1

)
, (2.30)

D[un
j ] =

1

3
(un

j−1 + un
j + un

j+1)−
bj

3
Dxx[u

n], (2.31)

where

bj =
1

3

(
(xj − xj−1)

2 + (xj − xj−1)(xj+1 − xj) + (xj+1 − xj)
2
)

is an effective mean square grid spacing.
Instead of the common forward approximation of the first derivative Tang-

man et al. [13] consider the forward difference between approximations of
the function (2.31) on the n-th and (n + 1)-th time level. Then we can
introduce the weighted scheme

D[un+1
j ]−D[un

j ]

∆τ
= (

1

2
λ− γ̃)Dxx[u

n+1
j ] + (

1

2
λ + γ̃)Dxx[u

n
j ]. (2.32)

To obtain the fourth order of an approximation we choose optimal values
of the parameters λ = 1 and γ̃ =

bj

12∆τ
. For the case of an uniform grid it

quotes to the optimal weighted scheme.
The replacement of (2.30) and (2.30) into (2.32) introduces the high order

compact (HOC) coefficients α−1(j), α0(j) and α1(j), which are calculated at
each time step. This is the set of coefficients from the scheme

α−1(j) =
1

3∆τ

(
1− 2bj

(xj+1 − xj−1)(xj − xj−1)

)
(2.33)

−(
1

2
λ− γ̃)

2

(xj+1 − xj−1)(xj − xj−1)
,

α0(j) =
1

3∆τ
(1 +

2bj

(xj+1 − xj−1)

(
1

xj+1 − xj

+
1

xj − xj−1

)

)
(2.34)

+(
1

2
λ− γ̃)

2

xj+1 − xj−1

(
1

xj+1 − xj

+
1

xj − xj−1

)
,
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α1(j) =
1

3∆τ

(
1− 2bj

(xj+1 − xj−1)(xj+1 − xj)

)
(2.35)

−(
1

2
λ− γ̃)

2

(xj+1 − xj−1)(xj+1 − xj)
,

where bj = 1
3
((xj − xj−1)

2 + (xj − xj−1)(xj+1 − xj) + (xj+1 − xj)
2) .

Now we can present the scheme (2.32) as a tridiagonal linear system




α0(1) α1(1) 0 ...
α−1(2) α0(2) α1(2) 0 ...

. . .

0 ... α−1(m− 2) α0(m− 2) α1(m− 2)
0 ... 0 α−1(m− 1) α0(m− 1)







un+1
1

un+1
2
...

un+1
m−2

un+1
m−1




=




b̂1

b̂2
...

b̂m−2

b̂m−1




.

But in the case of the uniform grid the coefficients reduce to

bj = ∆x2.

If we put this expression into (2.33) - (2.35) and multiply by ∆τ , we
obtain

α−1(j) =
1

3

(
1− 2∆x2

2∆x2

)
− (

1

2
λ− γ̃)

2∆τ

2∆x2
= −(

1

2
λ− γ̃)γ,

α0(j) =
1

3
(1 +

2∆x2

2∆x2
) + (

1

2
λ− γ̃)

2∆τ

2∆x2
= 1 + (λ− 2γ̃)γ,

α1(j) =
1

3

(
1− 2∆x2

2∆x2

)
− (

1

2
λ− γ̃)

2∆τ

2∆x2
= −(

1

2
λ + γ̃)γ.

As we can see, there is no dependence on the spatial index j, i.e. the
coefficients in the scheme α−1, α0, α1 are constant with α−1 = α1. We
achieve the tridiagonal matrix with constant coefficients.

Similarly we find the vector on the right-hand-side b̂j. In the case of the
uniform grid coefficients before un

j−1, un
j , un

j+1 respectively, are

α̂−1 = (
1

2
λ + γ̃)γ,

α̂0 = 1 + (λ + 2γ̃)γ,

α̂1 = (
1

2
λ + γ̃)γ.
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Then




b̂1

b̂2
...

b̂m−2

b̂m−1




=




α̂0 α̂1 0 ...
α̂−1 α̂0 α̂1 0 ...
. . .

0 ... α̂−1 α̂0 α̂1

0 ... 0 α̂−1 α̂0







un
1

un
2
...

un
m−2

un
m−1




In this thesis we investigate the three types of left boundary conditions.
On the right free boundary we use a Dirichlet condition. We describe them
below.

To clarify this method we consider the scheme as the θ-method (or a
weighted average method). In the general case this scheme has the following
form

−θγun+1
j−1 + (1 + 2θγ)un+1

j − θγun+1
j+1

= (1− θ)γun
j−1 + (1− 2(1− θ)γ)un

j + (1− θ)γun
j+1. (2.36)

Or in compact form it can be presented as

−θDxxu
n+1
j +

un+1
j

∆τ
=

un
j

∆τ
+ (1− θ)Dxxu

n
j , (2.37)

where Dxxu
n
j is the second order standard difference quotient.

If we put θ = 1
2
− (∆x)2

12∆τ
= 1

2
− 1

12γ
, then Method 2 (2.32) is transformed to

the θ-method (2.36) and the matrix A on the left-hand-side has the diagonal
entries (1 + 2θγ) and the off-diagonal entries −θγ. The matrix B at the
right-hand side has the entries (1 − 2(1 − θ)γ) and the off-diagonal entries
(1− θ)γ.

The θ-methods are a very wide group of methods of numerical approxi-
mations to the heat equation. We can obtain different schemes by choice of
the implicitness parameter θ. If we take θ = 0.5 we obtain the well-known
Crank-Nicolson method. For θ = 1 the method is called implicit, vice versa,
if θ = 0 it is a fully explicit method. Thus θ is the measure of implicity of
the scheme. In the Method 1 we have θ = 12 · (1

2
− 1

12γ
), so if we divide the

scheme equation (2.27) over 12, we obtain the scheme (2.29) with

θ =
1

2
− 1

12γ
. (2.38)

This θ is called the optimal weighting parameter. The same value of θ is
considered in the Method 1. Hence, that considered two Methods coincide
for the heat equation. However, for other possibly nonlinear equations these
methods can give different results.
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2.6 The description of R3-Methods

Another group of methods was proposed by Rigal [11] and then applied to
the Black-Scholes equation by Düring in his dissertation [2]. These schemes
have the fourth order in space and the second order in time. The methods
are based on a general two-level three-point scheme

(1 + C)Dtu
n
j = (

1

2
+ A1)Dxxu

n
j + (

1

2
+ A2)Dxxu

n+1
j

−f(
1

2
+ B1)Dxu

n
j − f(

1

2
+ B2)Dxu

n+1
j , (2.39)

where Aj, Bj and C are real numbers chosen to eliminate the lower order
terms in the truncation error [11]. But in (2.5) there are no first derivatives,
i.e. f = 0. The coefficients A, B and C are chosen to make the error of
approximation nearby zero. The choice of C influences just weakly, so Rigal
considered C = 0 and express A1, A2 and B1 from the scheme as a function
of B2. Also there are presented theorems about coefficients in the scheme.

According to the Theorem 1 in [11], ”A necessary condition of consistency
of the scheme is C = B1+B2”. This condition stipulates the relation between
B1 and B2

B1 = −B2.

To achieve the high order of an approximation we eliminate terms of the
order lower than 2 in time and 4 in space from the truncation error [11]. We
chose parameters A and B by this condition and obtain

A2 = −f 2∆τ

12
− 1

6γ
−B2

(
1 +

f 2∆τ

2

)
,

A1 =
f 2∆τ

12
+

1

6γ
+ B2

(
1− f 2∆τ

2

)
.

If we take these values of parameters A and B, the scheme has the second
order in time and the fourth order in space. For the case f = 0 these
constraints can be rewritten in the following form

B1 = −B2, (2.40)

A1 =
1

6γ
+ B2, (2.41)

A2 = − 1

6γ
−B2. (2.42)

Now we obtain different schemes depending on the choice of B2.
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The R3A-method

For the R3A-method Rigal offers

B2 = − 1

12γ
. (2.43)

Then we find residuary constants from (2.40) -(2.42)

B1 =
1

12γ
,

A1 =
1

6γ
− 1

12γ
=

1

12γ
,

A2 = − 1

6γ
+

1

12γ
= − 1

12γ
.

And if we put these coefficients to the (2.39), we obtain the scheme

Dtu
n
j = (

1

2
+

1

12γ
)Dxxu

n
j + (

1

2
− 1

12γ
)Dxxu

n+1
j .

Also we can obtain coefficients of the tridiagonal matrices A and B, which
describe the difference scheme, given by Rigal [11]

a0 =
5

6
+ γ,

a1 =
1

12
− γ

2
,

a−1 =
1

12
− γ

2
,

b0 =
5

6
− γ,

b1 =
1

12
+

γ

2
,

b−1 =
1

12
+

γ

2
.

Obviously, we obtain again the optimal weighted scheme for the heat
equation.

The R3B-method
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If we take another value of B2 than in (2.43), we obtain another scheme.
For the R3B-method Rigal take

B2 = − 1

12γ
− f 2∆τ

12
.

But we have f = 0, it means that we obtain the same B2, and, conse-
quently, we have the same coefficients as in the R3A-method.

2.7 The description of the non-compact Method

The considered schemes so far are the high order compact schemes. It means
that a numerical solution of the heat equation is obtained by using a small
number of points, but the solution has the high order of accuracy. There
exist another way to achieve an accurate solution. For example, by using
more points in the stencil. We consider the fully explicit scheme with five
points on n-th time level. The only unknown variable un+1

j is in the left part
of the algebraic formula below that was derived from the discretization.

The space derivative is approximated on n-th time level, which is known.
This method is an explicit modification of the Crank-Nicolson scheme

un+1 − un

∆τ
=

1

2
Dxxu

n +
1

2
Dxxu

n+1. (2.44)

Then from the explicit Euler scheme we obtain an aproximation for un+1

on the right hand side of (2.44)

un+1 = un + ∆τDxxu
n.

If we insert this expression into (2.44) then we obtain the explicit expres-
sion for the unknown value of the function on the next time level un+1

j

un+1
j = un

j +
∆τ

2
(Dxx)u

n
j +

∆τ

2
Dxx(u

n
j + ∆τDxxu

n
j ), (2.45)

un+1
j = un

j +
γ

2
(un

j−1 − 2un
j + un

j+1) +
γ

2
(un

j−1 − 2un
j + un

j+1

+γ(un
j−2 − 2un

j−1 + un
j − 2

(
un

j−1 − 2un
j + un

j+1

)
+ un

j − 2un
j+1 + un

j+2). (2.46)

This method is called the Heun’s method. The main properties of this scheme
are considered in chapter 3.

After some transformation we obtain the fully explicit scheme of the two-
level five-point scheme. It means that for numerical solution we use two time
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Figure 2.5: The non-Compact explicit 2-level 5-point Scheme,j is numerate
the space steps and n is the time levels.

levels n and n+1. On the n-th level we use 5 points to find the value on the
next time level. This scheme has the following form

un+1
j = un

j + γ(un
j−1 − 2un

j + un
j+1)

+
γ2

2
(un

j−2 − 4un
j−1 + 6un

j − 4un
j+1 + un

j+2) (2.47)

This is the 5-point scheme, so we have to use additional boundary condi-
tions. We chose the Crank-Nicolson scheme for the second and for the M −1
points.

2.8 Artificial Boundary Conditions

To solve free boundary problem (2.12) - (2.16) numerically, many different
methods are developed, e.g. the standard method consists in the reformula-
tion to a linear complementary problem (LCP) and the solution by the pro-
jected SOR method of Cryer [1]. Alternatively, the penalty and the front-
fixing methods were developed (e.g. in [4], [10]). A disadvantage of these
methods is the change of the underlying model. A different approach [6] is
based on a recursive calculation of the early exercise boundary, estimating
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the boundary only at some points and then approximating the whole bound-
ary by the Richardson extrapolation. Explicit boundary tracking algorithms
are e.g. a finite difference bisection scheme [7] or the front–tracking strategy
of Han and Wu [5]. In this thesis we consider solely the later approach of
Han and Wu, which we describe now briefly.

The artificial boundary conditions of Han and Wu.

The solution u(x, τ) of the problem (2.12) - (2.16) should satisfies the
following condition

∂u

∂x

∣∣∣∣
x=a

=
1√
π

∫ τ

0

∂u(a, λ)

∂λ

dλ√
t− λ

.

It can be approximated in this way

un
1 − un

−1

24x
=

1√
π

n∑
m=1

2(um
0 − um−1

0 )√
τn − τm +

√
τn − τm−1

. (2.48)

An implicit approximation of the heat equation is given by

un
0 − un−1

0

4τ
=

un
1 − 2un

0 + un
−1

(4x)2
. (2.49)

From equation (2.48) we express the value un
−1 and put it in equation

(2.49). After this replacement we obtain the boundary un
0

un
0 =

√
γH1 +

√
πH2/4√

γ +
√

π(1 + 2γ)/4
, (2.50)

where

H1 = un−1
0 +

√
πγ

un
1

4
−

n−1∑
m=1

(um
0 − um−1

0 )√
n−m +

√
n− (m− 1)

,

H2 = un−1
0 + γun

1 .

The other type of the boundary conditions was presented by Mayfield
[9]. This condition is an ad-hoc discretization strategy, which can be applied
to the heat equation.

The discretized TBC of Mayfield

Mayfield in her paper [9] considers the Schrödinger equation and finds
boundary conditions on the left boundary. One way of the discretization the
analytic transparent boundary conditions at x = a is

u(a, τ) =
1√
π

∫ τ

0

∂u(a, λ)

∂λ

dλ√
τ − λ

, (2.51)



Compact Scheme for the Black-Scholes equation 23

The approximation of the first integral has the following form

∫ τm

0

∂u(a, λ)

∂λ

dλ√
τm − λ

=
1

4x

n−1∑
m=0

(un−m
1 − un−m

0 )

∫ τm+1

τm

dξ√
ξ
.

=
2
√4t

4x

n−1∑
m=0

(un−m
1 − un−m

0 )√
m + 1 +

√
m

Let us denote the convolution coefficients as

l̃m =
1√

m + 1 +
√

m
.

If we put the approximation of this integral into formula (2.51) then we
obtain the discretized transparent boundary conditions of Mayfield

un
1 − un

0 =

√
π4 x

2
√4t

un
0 −

n−1∑
m=1

(un−m
1 − un−m

0 )l̃m.

The discretized transparent boundary conditions of Mayfield have a new
form now

un
1 − (1 +

√
π4 x

2
√4t

)un
0 =

n−1∑
m=1

(un−m
1 − un−m

0 )l̃m.

The discrete TBC

The third type of the boundary conditions we used for the schemes is
the discrete TBC [3]. It does not involve additional computational costs,
but it prevents any numerical reflections at the boundary. The discrete TBC
doesn’t destroy the stability of the underlying scheme for the interior points.
These boundary conditions are used for the θ-methods and depend on this
parameter.

We use the discrete TBC at the left boundary. So, the underlying equa-
tion for the discretization in [3] was the following

∆+
τ un

j = γ∆2
xu

n+θ
j ,

where
∆+

τ = ∆τ ·D+
τ ,

∆2
x = ∆x2Dxx,
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for the equation un+θ = θun+1 + (1− θ)un.
Now we construct the discrete TBC for the left boundary x0 = a

un
1 = un

0 ∗ l(n) =
n∑

k=1

uk
0l

(n−k),

where convolution coefficients are given by

l(0) = 1 +
1

2θγ
+

2θ

γ

√
A,

l(n) =
(−1)n

2θ(1− θ)γ
(
1− θ

θ
)n +

1

γ
√

A
·

(
A

2θ
P̃n(µ)− C

2(1− θ)
P̃n−1(µ) +

1

2θ(1− θ)2

n−1∑

k=0

(
−1− θ

θ

)n−k

P̃k(µ)

)
,

where P̃n(µ) = Pn(µ)(
+√C√

A
)n is ”damped” Legendre polynomials and the

parameter µ = B√
A +√C

. The coefficients A, B, and C are given by

A = 1 + 4γθ,

B = 1− 2γ(1− 2θ),

C = 1− 4γ(1− θ).

The right free boundary condition

There are 2 types of the boundary conditions. If the unknown variable
on the boundary is a known function on time or a constant, it is called the
Dirichlet BC:

u(xf , τ) = f(τ). (2.52)

Another type of boundary conditions is the Neumann BC, if we set the
space derivative as a known function or as a constant

∂u

∂x
(xf , τ) = g(τ). (2.53)

In the Dirichlet conditions we use the exact solution on the boundary. It
means that the singular source of an error is the approximation of derivatives
in the heat equation. But if we use the Neumann BC, we also approximate
the first space derivative at the boundary, so we have an additional source
of errors. The order of the one-side approximation is O(∆x), but for the
interior points we use the fourth order compact scheme. This is a problem
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for the accuracy estimation, because the function behavior at the boundaries
influence the numerical solution. We can use the central approximation. It
has the second order of the approximation. We need one additional right
point for that. This point does not exist in the computational domain.

Different types of the boundary condition influence on the accuracy of
the solution. For example, the Crank-Nicolson scheme with the Dirichlet
conditions is unconditionally stable. With Neumann BC it is also stable, but
there appears the oscillation.

In our thesis we use the Dirichlet BC on the right free boundary. We use
the fact, that on the free boundary the value of the option is equal to the
payoff function, i.e. (2.14) is satisfied. But we should note, that the value
xf (τ) is not given. It’s a part of a solution. The explicit definition of the free
boundary is a difficult question. We want to determine the option value in the
connection with the free boundary. It means that we have to determine the
free boundary numerically. We use the Han and Wu front-tracking strategy
for that [5].
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Chapter 3

Results

3.1 The stability analysis

A theoretical analysis of the schemes (2.27), (2.32), (2.39) and (2.45) will be
made in this section. The numerical solution of the heat equation is computed
on the bounded grid. We should expect that more accurate solutions can be
obtained on the refined grid. But the computational costs increase. Therefore
sometimes it is more reasonable to use high order schemes on the coarse grid
than low order schemes on the refined grid. These reflections lead to an
idea of a computational efficiency. Important questions besides efficiency are
stability and convergence of numerical schemes.

Definition (Stability). A scheme is stable if the difference between numer-
ical and analytical solutions remains bounded as the number of time steps
tend to infinity.

Definition (Convergence). A scheme is convergent if the difference be-
tween numerical and analytical solutions at a fixed point tends to zero uni-
formly if space and time steps tend to zero.

Definition (Error of approximation). The difference between an analyti-
cal solution of the partial differential equation and the numerical solution is
called error of approximation. The value of the error in the (i, n) point de-
pends on values of4x, 4τ and the values of the high order derivatives, which
were not included in the finite difference approximation of the derivatives in
the considered differential equation.

Only a small family of the problems has a known analytical solution. If
the problem has not it then a conclusion about the convergence can be made
by the construction of numerical solution on a sequentially refining grid.

The von Neumann method is the most efficient when defining stability
criteria. This method can be applied only for linear problems with initial

27
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conditions and constant coefficients. Loosely speaking, the von Neumann
method is applied for interior points only.

The optimal weighed θ-method

We consider the θ-scheme for the heat equation

D+
τ un

j = θD2
xu

n+1
j + (1− θ)D2

xu
n
j ,

where D+
τ is the forward difference and D2

x is the standard second order
difference:

D+
τ =

un+1
j − un

j

4τ
,

D2
x =

un
j+1 − 2un

j + un
j−1

(4x)2
.

Applying to the scheme the discrete separation of variables ansatz un
j = vjw

n,
we obtain

vj
wn+1 − wn

4τ
= θwn+1D2

xvj + (1− θ)wnD2
xvj = [θwn+1 + (1− θ)wn]D2

xvj

Solving with respect to temporal and spatial dependence yields

wn+1 − wn

4τ [θwn+1 + (1− θ)wn]
=

D2
xvj

vj

= −δ = const. (3.1)

We start with the right hand side of (3.1)

D2
xvj + δvj = 0, j = 1, .., M − 1,

or

vj+1 + (δ(4x)2 − 2)vj + vj−1 = 0, j = 1, .., M − 1. (3.2)

Let v
(l)
j =

√
2 sin (πlxj), j = 0, .., M, l = 1, .., M − 1.

Put this expression to (3.2), note that xj±1 = xj ±4x

sin πl(xj +4x) + (δ(4x)2 − 2) sin (πlxj) + sin πl(xj −4x)

= [2 cos (πl4x) + δ(4x)2 − 2] sin (πlxj) ≡ 0.

This identity should be fulfilled for any xj, l. It means that

2 cos (πl4x) + δ(4x)2 − 2 = 0.
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From this equation we obtain an estimate for δ

δ =
2

(4x)2
(1− cos πl4x) =

4

(4x)2
sin2 πl4x

2
<

4

(4x)2
, l = 1, .., M − 1

After this we consider (3.1) for wn

wn+1 − wn + δ4τ(θwn+1 + (1− θ)wn) = 0,

or, equivalently,
wn+1 = qlw

n

with the amplification factor ql = 1−δ4τ(1−θ)
(1+δ4τθ)

.

The scheme is stable if |ql| ≤ 1, i.e.

−1 ≤ 1− δ4τ(1− θ)

(1 + δ4τθ)
≤ 1. (3.3)

Assume that δ > 0 then the left side of the inequality (3.3) can be written
in the following form

−1− δ4τθ ≤ 1− δ4τ(1− θ),

δ4τ(1− 2θ) ≤ 2; θ ≥ 1

2
− 1

δ4τ
.

From the estimation of δ ≤ 4
(4x)2

we can conclude that the scheme is

stable for all 4τ > 0 (unconditionally stable), when

θ ≥ θ0 =
1

2
− (4x)2

44τ
=

1

2
− 1

4γ
.

For 0 ≤ θ < θ0 the scheme will be stable if

4τ ≤ (4x)2

2(1− 2θ)
,

or equivalently γ ≤ 1
2(1−2θ)

. In this case the scheme is called conditionally
stable.

For Method 1 and Method 2 θ is equal to θ = 1
2
− 1

12γ
> θ0. It means

that these methods for interior points are unconditionally stable.
Note that the Crank-Nicolson scheme is also unconditionally stable (θ =

1
2
).

Another method to analyze the stability of the scheme is the formal
Fourier analysis. This method is based on the Fourier expansion on a one
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time level. The computational algorithm will be stable if some components
in the Fourier expansion will decrease when moving to the next time level.
We analyze the Crandall-Douglas method by the Fourier method. As we
found out, the R3-methods and the Tangman’s method are the same for our
special case, so, we can generalize the results for all schemes.

We decompose the solution in the Fourier models un
j = qneikj4x, where

we denote by i - the imaginary unit and k-wave number. For the stability
conditions we require |q| ≤ 1. Put the expression for the un

j to the scheme
and divide both parts by qneikj4x

q
(
(1− 6γ)(eik4x + e−ik4x) + (10 + 12γ)

)

= (1 + 6γ)(eik4x + e−ik4x) + (10− 12γ).

q =
(1 + 6γ)(eik4x + e−ik4x) + (10− 12γ)

(1− 6γ)(eik4x + e−ik4x) + (10 + 12γ)
.

By using the identity eik4x + e−ik4x = 2 cos k4x we obtain

q =
(1 + 6γ)(2 cos k4x) + (10− 12γ)

(1− 6γ)(2 cos k4x) + (10 + 12γ)
.

For the stability of the θ-method the following inequality should hold

|q| ≤ 1 ⇔
∣∣∣∣
(1 + 6γ)(2 cos k4x) + (10− 12γ)

(1− 6γ)(2 cos k4x) + (10 + 12γ)

∣∣∣∣ ≤ 1,

i.e.

−(1− 6γ)(2 cos k4x)− (10 + 12γ) ≤ (1 + 6γ)(2 cos k4x) + (10− 12γ)

≤ (1− 6γ)(2 cos k4x) + (10 + 12γ).

After some calculations we obtain the stability condition γ ≥ 0. This
means that the optimal weighted θ-scheme is unconditionally stable.

The non-Compact method

We use the Fourier ansatz un
j = qneikj4x for the non-compact two-level

five-point scheme. If we apply this substitution to the equation (2.47) and
divide by qneikj4x, we obtain

q = 1 + γ(e−ik4x − 2 + eik4x)

+
γ2

2
(e−2ik4x − 4e−ik4x + 6− 4eik4x + e2ik4x).
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We use the De Moivre’s formulas to get trigonometric functions instead
of exponential functions

q = 1 + 2γ (cos(k4x)− 1) + γ2 (−4 cos(k4x) + 3 + cos(2k4x)) . (3.4)

For the stability conditions we should choose γ such that the inequality

|q| ≤ 1 ⇔ −1 ≤ q ≤ 1

is fulfilled.
First, we consider the right hand side of this inequality. Using some

trigonometric formulas we rewrite it in the following form

1− 4γ sin2(
k4x

2
) + γ2(cos(2k4x)− cos(k4x) + 6 sin2(

k4x

2
)),

4 sin2(
k4x

2
) ≥ γ(cos(2k4x)− cos(k4x) + 6 sin2(

k4x

2
)),

i.e.

γ ≤ 4 sin2(k4x
2

)

cos(2k4x)− cos(k4x) + 6 sin2(k4x
2

)
. (3.5)

Now we consider the numerator of (3.5)

4 sin2(
k4x

2
) = −2 cos(k4x) + 2 = 2(1− cos(k4x)). (3.6)

In the denominator we obtain after some transformations

cos(2k4x)− cos(k4x) + 6 sin2

(
k4x

2

)
=

2 cos2(k4x)− 4 cos(k4x) + 2 = (
√

2 cos(k4x)−
√

2)2 =

2(cos(k4x)− 1)2. (3.7)

We insert both expressions (3.6) and (3.7) into (3.5) and get

γ ≤ 2(1− cos(k4x))

2(cos(k4x)− 1)2
,

or, equivalently,

γ ≤ 1

1− cos(k4x)
. (3.8)
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This stability condition (3.8) should be fulfilled for all 4x. Hence, we
should take the most strict condition. Because of that we require cos(k4x) =
−1, then from (3.8) we conclude that

γ ≤ 1

2
.

Hence, the non-compact two-level five-point scheme for the heat equation
(2.47) is conditionally stable. We can’t use γ > 1

2
, because in that case we

obtain strong oscillations for some modes and the method will not converge
to an exact solution.

3.2 The order of the approximation

The second important parameter of the valuation of the scheme is the order
of approximation. The heat equation is transformed to the system of linear
algebraic equations. This trasformation is the source of the errors. The value
of this error shows the order of approximation, i.e. the order of approximation
is how accurate we discretize the equation. To find the order of approximation
we use the Taylor series expansion.

We consider the point (xj, τ
n + ∆τ

2
) as a central point in our scheme. The

error of approximation is denoted by ψ
n+ 1

2
j . It is calculated by

ψ
n+ 1

2
j =

un+1
j − un

j

∆τ
− θDxxu

n
j − (1− θ)Dxxu

n+1
j . (3.9)

Then we apply a Taylor series expansion for this point to the θ-scheme
(2.37). For the time derivative the central difference scheme is used, it has
the second order of approximation

un+1
j − un

j

∆τ
=

∂u

∂τ
(xj, τ

n +
∆τ

2
) +O(∆τ 2). (3.10)

For the approximation the space derivatives we use the central scheme
of the second order. On the n-th and the (n + 1)-th time level we obtain
correspondingly

Dxxu
n
j =

un
j−1 − 2un

j + un
j+1

∆x2
= (uxx +

∆x

12
uxxxx)|τ=τn +O(∆x4), (3.11)

Dxxu
n+1
j =

un+1
j−1 − 2un+1

j + un+1
j+1

∆x2
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= (uxx +
∆x

12
uxxxx)|τ=τn+1 +O(∆x4). (3.12)

Now we insert the expressions (3.10)-(3.12) into (3.9)

ψ
n+ 1

2
j = uτ +O(∆τ 2)− uxx +

[
(
1

2
− θ)∆τ − ∆x2

12

]
uxxxx +O(∆x4).

Because the structure of the heat equation, uτ − uxx = 0, the error of ap-
proximation is equal to

ψ
n+ 1

2
j =

[
(
1

2
− θ)∆τ − ∆x2

12

]
uxxxx +O(∆τ 2) +O(∆x4). (3.13)

If the expression in the squared brackets in (3.13) is equal to zero, the
approximation error is of fourth order in space and the second order in time

(
1

2
− θ

)
∆τ − ∆x2

12
= 0,

i.e.,

θ =
1

2
− ∆x2

12∆τ
=

1

2
− 1

12γ
,

which is the optimal weight θ.

3.3 The numerical Results

The considered schemes belong to the large class of so-called θ-methods.
For example, the fully explicit and implicit methods, and certainly Crank-
Nicolson schemes are included in this class. We propose several numerical
examples to compare the calculation of the option value in American case
by using the finite difference schemes with different boundary conditions.
The comparison is made with respect to the error and the accuracy of the
numerical solution.

For all examples we consider the American call option. After the standard
transformation for the Black-Scholes equation we obtain the heat equation on
the unbounded interval. But the realization of the computational algorithms
can not be made on the unbounded domain. We find the solution of the
heat equation on the closed interval [xm, xf (τ)], where xm = a (the number
a is strictly negative real number). On each time step we calculate the free-
boundary value and magnify the computational domain.
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We compare numerical results with an exact option value, which is a-
priory unknown. The binomial method is very accurate therefore, we can
take it to obtain the exact solution. The binomial method uses a large
number of the steps to achieve the high order of accuracy. In our numerical
examples the number of the steps is equal to 5000. For the numerical tests
we use MATLAB program.

Example 1.

We consider a six-month American call option. The dividend payment
D = 0.03 and the risk-free rate r = 0.03. The exercise price of this option is
equal to 100$. The volatility σ2 is 0.4. At the initial time the right boundary
of the closed interval is calculated from the equation (2.13). A very important
coefficient for the numerical schemes is the parabolic mesh ratio that is set
to γ = 1 for all compact methods. In the case of the non-compact method
which is conditionally stable for γ ≤ 1

2
we can’t take this value, so we use

γ = 1
4
. The number of the time steps is N = 400. The size of the space steps

is defined from the expression

γ =
4τ

(4x)2
⇒4x =

√
γ

4τ
.

We consider the different left boundary in the closed interval [xm, xf ]. In
the first case xm = a = −1. The asset price for this a = −1 is approximately
equal to 36.7879. For xm = a = −0.6 the asset price is equal to 54.88. And
for xm = a = −1 is equal to 81.87. The Tables below show the results of
the finite difference methods with different boundary conditions. We analyze
influence of the left boundary to the solution.

Note, that the two-level five-point scheme is conditionally stable. This
scheme is stable for γ ≤ 1

2
. In the first numerical test γ = 1. For that value

Heun’s method has an oscillation of the solution. Therefore the numerical
results by using this scheme are not included in the Table 3.1. In the Table
3.1 there are presented the intermediate results for the compact schemes and
for the Crank-Nicolson method for three different boundary conditions.

As we see from the Tables 3.1-3.6, the numerical test confirms the the-
oretical results. The Method 1 and the Method 2 are the same and give
the same solution to the heat equation. Also, R3A and R3B give the same
results. So, we can conclude that all two-level three-point compact schemes
are coincide for this one type of partial differential equations, for the heat
equation. If we consider the Non-linear Black-Scholes model, as in [2], then
the different high order compact schemes are different because of the first
derivatives in the transformed equation.
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Asset price BC Crank-Nicolson Method 1 Method 2 True Value

36.7879 Mayfield 0.0024 0.0023 0.0023 0.0015
Han-Wu 0.0023 0.0023 0.0023
DTBC 0.0023 0.0023 0.0023

62.5002 Mayfield 0.6108 0.6096 0.6096 0.4388
Han-Wu 0.6108 0.6096 0.6096
DTBC 0.6108 0.6096 0.6096

87.8095 Mayfield 6.1291 6.1234 6.1234 5.4801
Han-Wu 6.1291 6.1234 6.1234
DTBC 6.1291 6.1234 6.1234

110.5171 Mayfield 18.3457 18.3349 18.3349 17.6184
Han-Wu 18.3457 18.3349 18.3349
DTBC 18.3457 18.3349 18.3349

140.4948 Mayfield 42.3819 42.3748 42.3748 41.9937
Han-Wu 42.3819 42.3748 42.3748
DTBC 42.3819 42.3694 42.3694

Figure 3.1: Value of the option in Example 1. Test 1a. We take the free
boundary value a=-1 and the parabolic mesh ratio γ = 1.

Asset price BC C-N Method 1 Method 2 Heun True Value

36.7879 Mayfield 0.0015 0.0015 0.0015 0.0016 0.0015
Han-Wu 0.0015 0.0014 0.0014 0.0015
DTBC 0.0015 0.0014 0.0014

63.1284 Mayfield 0.5699 0.5631 0.5631 0.5656 0.4803
Han-Wu 0.5699 0.5631 0.5631 0.5656
DTBC 0.5699 0.5631 0.5631

86.9358 Mayfield 5.4814 5.4543 5.4543 5.4631 5.1639
Han-Wu 5.4814 5.4543 5.4543 5.4631
DTBC 5.4814 5.4543 5.4543

110.5171 Mayfield 17.9773 17.9320 17.9320 17.9498 17.6184
Han-Wu 17.9773 17.9320 17.9320 17.9498
DTBC 17.9773 17.9320 17.9320

140.4948 Mayfield 42.1728 42.1254 42.1254 42.1480 41.9937
Han-Wu 42.1728 42.1254 42.1254 42.1480
DTBC 42.1728 42.1254 42.1254

Figure 3.2: Value of the option in Example 1. Test 1b. We take the free
boundary value a=-1 and the parabolic mesh ratio γ = 1

4
.
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Asset price BC Crank-Nicolson Method 1 Method 2 True Value

54.8812 Mayfield 0.1988 0.1980 0.1980 0.1247
Han-Wu 0.1947 0.1940 0.1940
DTBC 0.1941 0.1933 0.1933

86.0708 Mayfield 5.4820 5.4667 5.4667 4.8598
Han-Wu 5.4819 5.4766 5.4766
DTBC 5.4819 5.4766 5.4766

110.5171 Mayfield 18.3457 18.3349 18.3349 17.6184
Han-Wu 18.3457 18.3349 18.3349
DTBC 18.3457 18.3349 18.3349

140.4948 Mayfield 42.3819 42.3694 42.3694 41.9937
Han-Wu 42.3819 42.3694 42.3694
DTBC 42.3819 42.3694 42.3694

180.3988 Mayfield 80.4207 80.4017 80.4017 80.4046
Han-Wu 80.4207 80.4017 80.4017
DTBC 80.4207 80.4017 80.4017

Figure 3.3: Value of the option in Example 1. Test 2a. We take the free
boundary value a=-0.6 and the parabolic mesh ratio γ = 1.

Asset price BC C-N Method 1 Method 2 Heun True Value

54.8812 Mayfield 0.1664 0.1639 0.1639 0.1652 0.1247
Han-Wu 0.1590 0.1563 0.1563 0.1576
DTBC 0.1580 0.1555 0.1555

86.9358 Mayfield 5.4815 5.4544 5.4544 5.4632 5.1637
Han-Wu 5.4814 5.4543 5.4543 5.4631
DTBC 5.4814 5.4543 5.4543

110.5171 Mayfield 17.9773 17.9320 17.9320 17.9498 17.6184
Han-Wu 17.9773 17.9320 17.9320 17.9498
DTBC 17.9773 17.9320 17.9320

140.4948 Mayfield 42.1728 42.1254 42.1254 42.1480 41.9937
Han-Wu 42.1728 42.1254 42.1254 42.1480
DTBC 42.1728 42.1254 42.1254

178.6038 Mayfield 78.5995 78.5920 78.5920 78.6141 78.6174
Han-Wu 78.5995 78.5920 78.5920 78.6141
DTBC 78.5995 78.5920 78.5920

Figure 3.4: Value of the option in Example 1. Test 2b. We take the free
boundary value a=-0.6 and the parabolic mesh ratio γ = 1

4
.
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Asset price BC Crank-Nicolson Method 1 Method 2 True Value

81.8731 Mayfield 4.0615 4.0548 4.0548 3.5455
Han-Wu 4.0151 4.0092 4.0092
DTBC 4.0041 3.9982 3.9982

86.0708 Mayfield 5.4518 5.4462 5.4462 4.8598
Han-Wu 5.4150 5.4098 5.4098
DTBC 5.4046 5.3997 5.3997

100.0000 Mayfield 11.8441 11.8356 11.8356 11.1068
Han-Wu 11.8270 11.8185 11.8185
DTBC 11.8207 11.8126 11.8126

140.4948 Mayfield 42.3810 42.3684 42.3684 41.9937
Han-Wu 42.3795 42.3670 42.3670
DTBC 42.3787 42.3663 42.3663

178.6038 Mayfiel d 78.6417 78.6232 78.6232 78.6174
Han-Wu 78.6417 78.6231 78.6231
DTBC 78.6416 78.6231 78.6231

Figure 3.5: Value of the option in Example 1.Test 3a. We take the free
boundary value a=-0.2 and the parabolic mesh ratio γ = 1.

Asset price BC Crank-Nicolson Method 1 Method 2 Heun True Value

81.8731 Mayfield 3.8914 3.8712 3.8712 3.8797 3.5455
Han-Wu 3.7860 3.7645 3.7645 3.7724
DTBC 3.7728 3.7534 3.7534

86.9358 Mayfield 5.5385 5.5108 5.5108 5.5197 5.1639
Han-Wu 5.4555 5.4283 5.4283 5.4368
DTBC 5.4457 5.4182 5.4182

100.0000 Mayfield 11.5111 11.4727 11.4727 11.4862 11.1068
Han-Wu 11.4703 11.4322 11.4322 11.4456
DTBC 11.4643 11.4262 11.4262

140.4948 Mayfield 42.1753 42.1279 42.1279 42.1505 41.9937
Han-Wu 42.1721 42.1248 42.1248 42.1473
DTBC 42.1714 42.1241 42.1241

178.6038 Mayfield 78.5954 78.5938 78.5938 78.6143 78.6174
Han-Wu 78.5995 78.5920 78.5920 78.6141
DTBC 78.5995 78.5919 78.5919

Figure 3.6: Value of the option in Example 1. Test 3b. We take the free
boundary value a=-0.2 and the parabolic mesh ratio γ = 1

4
.
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Figure 3.7: The fractional error for example 1. We take the left boundary
value a=-1 and the parabolic mesh ratio is equal to γ = 1

4
.

The using different types of boundary conditions leads to changing of
the stability properties. Furthermore, the accuracy of the solution depends
on boundary conditions. A combination of the Crank-Nicolson stencil with
Mayfield’s BC gives comparatively an inaccurate solution in comparison to
the same scheme but with the Han and Wu and the discrete TBC conditions.

The left boundary in the closed interval [xm, xf ] should be a negative
number. Point out that if we put the left boundary considerably far from
the zero point then the influence of different boundary conditions is not
so visible. But if the left boundary is closer to zero then the influence is
increasing and we see the difference between the Mayfield’s, the Han and Wu
and the discrete TBC conditions. For example, if a = −1, γ = 1

4
(Fig. 3.2)

for the asset price S = 36.7879, which is here a boundary value, the Crank-
Nicolson method with the Mayfield’s, the Han and Wu and the discrete
TBC conditions give the same result. The difference between the application
these BC for all other methods is just equal to 10−4. But the increasing of
value a involves growth of this difference. In the case a = −0.2 (Fig. 3.6) the
margin between BC for all methods (including the Crank-Nicolson scheme) is
approximately 0.1. The most accurate solution can be obtained by using the
optimal weighted scheme with the discrete TBC boundary conditions. Note
that the Heun’s method is more accurate then the Crank-Nicolson scheme
for all considered numerical tests.

Example 2.
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In the second example we consider a 3-year American call option. The
dividend payment D = 0.07. Other parameters of the problem are similar to
the parameters values in the first example. The risk-free rate is equal to 0.03.
The exercise price of this option is equal to 100$. The volatility σ2 is 0.4. At
the initial time the right boundary of the closed interval is calculated using
the equation (2.13). The parabolic mesh ratio is set to γ = 1. In the case of
the non-compact method which is conditionally stable for γ ≤ 1

2
we can not

take this value, so we use γ = 1
4
. The number of time steps is N = 400.

Asset price BC Crank-Nicolson Method 1 Method 2 True Value

36.7879 Mayfield 0.9376 0.9365 0.9365 0.8121
Han-Wu 0.9201 0.9190 0.9190
DTBC 0.9188 0.9178 0.9178

63.0582 Mayfield 5.8760 5.8730 5.8730 5.5333
Han-Wu 5.8708 5.8678 5.8678
DTBC 5.8703 5.8673 5.8673

88.8533 Mayfield 15.6634 15.6589 15.6589 15.1843
Han-Wu 15.6615 15.6570 15.6570
DTBC 15.6613 15.6568 15.6568

110.7683 Mayfield 27.4561 27.4510 27.4510 26.9570
Han-Wu 27.4553 27.4502 27.4502
DTBC 27.4552 27.4501 27.4501

141.5127 Mayfield 48.5037 48.4988 48.4988 48.1016
Han-Wu 48.5033 48.4985 48.4985
DTBC 48.5033 48.4985 48.4985

199.4010 Mayfield 99.3558 99.3508 99.3508 99.4010
Han-Wu 99.3558 99.3597 99.3597
DTBC 99.3558 99.3507 99.3597

Figure 3.8: Value of the option in Example 2. We take the free boundary
value a=-1 and the parabolic mesh ratio γ = 1.

By comparison both examples we conclude, that the boundary conditions
are an important source of errors. As we see from the Tables 3.1 - 3.8,
the error on the first several points is quite big and it goes down with the
increasing of the asset price, i.e. with removal from the boundary.

The second example confirms the results about the quality of the bound-
ary conditions. The high order compact scheme (HOC) with the discrete
TBC boundary condition is the most acceptable for the American option
pricing problem. Heun’s non-compact method is better than the Crank-
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Asset price BC C-N Method 1 Method 2 Heun True Value

36.7879 Mayfield 0.9041 0.9004 0.9004 0.9027 0.8121
Han-Wu 0.8692 0.8656 0.8656 0.8678
DTBC 0.8674 0.8634 0.8634

63.0582 Mayfield 5.7138 5.7033 5.7033 5.7088 5.5333
Han-Wu 5.7038 5.6934 5.6934 5.6988
DTBC 5.7031 5.6929 5.6926

88.8533 Mayfield 15.4173 15.4017 15.4017 15.4094 15.1843
Han-Wu 15.4139 15.3983 15.3983 15.4059
DTBC 15.4136 15.3979 15.3979

113.5151 Mayfield 28.8653 28.8474 28.8474 28.8563 28.6419
Han-Wu 28.8639 28.8460 28.8460 28.8549
DTBC 28.8638 28.8458 28.8458

145.0219 Mayfield 50.9588 50.9409 50.9409 50.9501 50.8152
Han-Wu 50.9583 50.9404 50.9404 50.9496
DTBC 50.9583 50.9403 50.9403

204.3457 Mayfield 104.1187 104.1079 104.1079 104.1148 104.3457
Han-Wu 104.1186 104.1078 104.1078 104.1148
DTBC 104.1186 104.1078 104.1078

Figure 3.9: Value of the option in Example 2. We take the free boundary
value a=-1 and the parabolic mesh ratio γ = 1

4
.
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Asset price BC Crank-Nicolson Method 1 Method 2 True Value

81.8731 Mayfield 12.5815 12.5766 12.5766 12.0979
Han-Wu 12.4424 12.4376 12.4376
DTBC 12.4255 12. 4219 12.4219

109.8492 Mayfield 26.9158 26.9100 26.9100 26.4060
Han-Wu 26.8167 26.8112 26.8112
DTBC 26.8006 26.7963 26.7963

130.3956 Mayfield 40.3452 40.3393 40.3393 39.8942
Han-Wu 40.2717 40.2661 40.2661
DTBC 40.2584 40.2540 40.2540

170.7187 Mayfield 72.5266 72.5216 72.5216 72.3235
Han-Wu 72.4958 72.4908 72.4908
DTBC 72.4892 72.4852 72.4852

188.2925 Mayfield 88.6242 88.6211 88.6211 88.5570
Han-Wu 88.6084 88.6052 88.6052
DTBC 88.6049 88.6023 88.6023

202.6502 Mayfield 102.6107 102.6099 102.6099 102.6502
Han-Wu 102.6066 102.6057 102.6057
DTBC 102.6057 102.6049 102.6049

Figure 3.10: Value of the option in Example 2. We take the free boundary
value a=-0.2 and the parabolic mesh ratio γ = 1.
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Asset price BC C-N Method 1 Method 2 Heun True Value

81.8731 Mayfield 12.5602 12.5480 12.5480 12.5530 12.0979
Han-Wu 12.2568 12.2449 12.2449 12.2498
DTBC 12.2397 12.2269 12.2269

109.8492 Mayfield 26.7933 26.7774 26.7774 26.7844 26.4060
Han-Wu 26.5716 26.5560 26.5560 26.5628
DTBC 26.5549 26.5384 26.5384

127.2404 Mayfield 37.9867 37.9700 37.9700 37.9778 37.6754
Han-Wu 37.8114 37.7949 37.7949 37.8026
DTBC 37.7970 37.7795 37.7795

170.7187 Mayfield 72.4055 72.3941 72.3941 72.4001 72.3235
Han-Wu 72.3295 72.3180 72.3180 72.3240
DTBC 72.3226 72.3104 72.3104

188.2925 Mayfield 88.5544 88.5479 88.5479 88.5514 88.5570
Han-Wu 88.5145 88.5079 88.5079 88.5114
DTBC 88.5108 88.5039 88.5039

197.7466 Mayfield 97.7155 97.7121 97.7121 97.7139 97.7602
Han-Wu 97.6949 97.6915 97.6915 97.6933
DTBC 97.6930 97.6994 97.6894

Figure 3.11: Value of the option in Example 2. We take the free boundary
value a=-0.2 and the parabolic mesh ratio γ = 1

4
.
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Figure 3.12: The fractional error for example 1. We take the left boundary
value a=-1 and the parabolic mesh ratio is equal to γ = 1

4
.

Nicolson scheme. This non-compact method has one big disadvantage. It is
stable only for certain values of the parabolic mesh ratio γ. Vice-versa, the
Crank-Nicolson scheme is unconditionally stable.
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Chapter 4

Conclusion

The main idea of our master thesis is the application different boundary
conditions for compact and non-compact methods to the American option
pricing problem and revelation the best combination between a scheme and
the boundary conditions. We considered several high order compact schemes,
which are different in the general case of diffusion-convection equation. The
Black-Scholes equation for the American option is transformed to the heat
equation. We found out that all considered high order compact schemes
coincide for this equation. This theoretical result was confirmed by numerical
tests.

The American option pricing problem is considered as a free boundary
problem. We introduce an artificial boundary to limit the computational
domain. In our thesis we applied the Dirichlet boundary conditions to the
right boundary. In the Dirichlet boundary conditions we use exact solution.
It means that the singular source of the error is the approximation of deriva-
tives in the heat equation and there are no additional sources of errors.

For the interior points we use several difference methods. The high order
compact and the Crank-Nicolson schemes are unconditionally stable. Heun’s
method is stable for the parabolic mesh ratio γ ≤ 1

2
. It is one of the disadvan-

tages of this method. We can not use γ = 1 for numerical tests, how it was
proposed in many papers. The second disadvantage of the Heun’s method is
that we need 5 points on the n-th time level. Therefore, we have to introduce
additional boundary conditions. For our numerical tests we take the Crank-
Nicolson scheme as this additional equation. That is an improvement of this
method. The numerical examples show, that this choice does not involve any
computational costs or errors. The Heun’s method with the Crank-Nicolson
additional condition is more accurate than the Crank-Nicolson scheme itself.

After numerical tests we obtained that the best combination is the high
order compact scheme with the Han and Wu boundary conditions on the left
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boundary. Using the different types of the boundary conditions do not lead
to strong difference, but it is visible that the Han and Wu boundary condi-
tions give smaller contribution to the error of approximation than Mayfield’s
boundary conditions. The influence of the boundary conditions decreases
with removal from the left boundary, i.e. the accuracy of the numerical
solution increase with the increasing of asset price.

All high order compact schemes coincide for the heat equation. They can
be transformed to the optimal weighted scheme, or the optimal θ-method.
This scheme has the fourth order in space and the second order in time. And
there are no possibilities to create a new three-point two-level stencil for the
heat equation, which will have a higher order of approximation. Therefore,
the Method 1, the Method 2 and the R3-schemes are coincide in this case.
New schemes can be obtained by using more points in stencil. It involves
the loss of the density, i.e. the scheme will be not a compact scheme. Also,
we can use a non-uniform grid. In that case the coefficients in the scheme
depend on the space index j and the scheme has a new form. Another way
to get the new method is creating compact schemes of the deferred order
(for example, third order in space) with better properties like stability or
monotonicity.
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