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1 Introduction

The process of pollutant transport and diffusion in the atmosphere (and in
water) is described by the following advection–diffusion equation [1], [2]:

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
+ (w−wg)

∂ϕ

∂z
− µ(

∂2ϕ

∂x2
+
∂2ϕ

∂y2
)− ∂

∂z
(ν
∂ϕ

∂z
) + σϕ = f, (1)

where ϕ is the concentration of pollutants, (u, v, w) are the components of the
wind velocity, wg = const. > 0 the falling velocity of the pollutants by gravity,
f the power of the source, σ = const. ≥ 0 the transformation coefficient of
pollutants and µ, ν are the horizontal and vertical diffusion coefficients.

Many practical problems, for example, the substance (e.g. saline and alum)
propagation in rivers [3], [4], the stationary problem of air pollution generated
by a point source [5], [6] can be reduced to the one–dimensional advection–
diffusion equation

∂ϕ

∂t
+ u

∂ϕ

∂x
− µ

∂2ϕ

∂x2
+ σϕ = f, x > 0, t > 0. (2)

Besides, the two–dimensional or three–dimensional equations by the splitting
method [2] or local one–dimensional (LOD) method [7], [8] are also reduced to
the one–dimensional equation (2) [6]. Therefore, the equation (2) has attracted
great attention from many researchers. A number of numerical methods have
been proposed for solving the equation (2) with various boundary conditions.
One of the most popular methods used is the difference method. It is possible
to use the method directly to the equation (2) or to each component equation
separately after splitting by physical processes: first solve the diffusion equa-
tion by the difference method, and then solve the advection equation by the
characteristic or the difference method (see [3], [4]). It should be remarked that
usually mechanicians discretize the differential equation and after that solve
the obtained difference equations without drawing attention to various prop-
erties of difference schemes such as approximation, stability and convergence.
Therefore, the situation occurs when the computed concentration assumes
negative values, that looses the physical meaning of a concentration. It should
be emphasized that all trouble in the computational process is due to the
advection term. This term destroys the self–adjoint property in space of the
equation (2) and when approximating it by a difference quotient a numerical
diffusion term arises. Consequently, The quality of the difference scheme is
seriously affected by this artificial diffusion coefficient. If it is greater than the
actual diffusion coefficient then the result of the computation is distored and
doesn’t agree with the physical picture of the problem. Hence, the construction
of difference schemes that completely overcome or maximally decreases this
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phenomenon, have high order of accuracy and are easy realized is an actual
requirement for engineers in the fields of environmental sciences.

In a recent work [9] Wang and Lacroix made an analysis of the phenomenon
of numerical dispersion and proposed a weighted upwind difference scheme to
overcome this phenomenon. Motivated by this work, we are involved in this
paper from the mathematical point of view with qualitative characteristics of
difference schemes and investigation of positivity of some difference schemes
for advection–diffusion equations.

Our attention here is drawn to a simplified version of (1) under the following
assumptions:

• The source of emission is uniform with the constant power Q and concen-
trated in the point (0, 0, H), where H is the height of the smoke stack.

• The process of pollutant dispersion is a stationary process, the wind direc-
tion coincides with the positive direction of the x-axis and u = u(z) > u0 >
0 with u0 = const..

• For the horizontal diffusion coefficient we assume µ = k0u, k0 = const. > 0.

The problem of determining the concentration of pollutants in this case is
reduced to the following stationary problem (see [5], [6]):

u
∂ϕ

∂x
− wg

∂ϕ

∂z
− ∂

∂z

(
ν(z)

∂ϕ

∂z

)
+ σϕ = 0, x > 0, z > 0, (3a)

uϕ(0, z) = Qδ(z −H), z > 0, (3b)

∂ϕ

∂z
(x, 0) = αϕ(x, 0), x > 0, (3c)

lim
z→∞

ϕ(x, z) = 0, x > 0, (3d)

where δ(z) denotes the Dirac delta function and α = const. ≥ 0 is a coefficient
characterizing the reflection and adsorption of the bedding surface. For ν(z) =
const. (3a) has the form of (2) where x plays the role of t and the role of x is
replaced by z. Thus in the sequel both equations will be considered in parallel.

We remark that analytic solutions to the problem (3) can be found in some
special cases (e.g. u = const. in [10] and α = 0 in [1]).

Usually, numerical methods are constructed for multi–dimensional problems
by reducing them to a sequence of one–dimensional problems [7], [8]. Moreover,
these schemes must preserve important features of the continuous model, such
as the positivity of the solution (monotone schemes). These specially designed
difference schemes must be accompanied with artificial boundary conditions to
limit the computational domain appropriately. If the solution on the bounded
computational domain coincides with the solution on the unbounded half–
space (restricted to the bounded domain) one refers to these conditions as
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transparent boundary conditions (TBC). Finally, these boundary conditions
are designed on a discrete level directly for the chosen numerical schemes in
order to conserve the monotonicity property and to prevent any unphysical
reflections at these boundaries.

The paper is organized as follows. We derive in §2 the TBC for the time–
dependent problem (2) and prove the well–posedness of the resulting initial
boundary value problem. Afterwards we state the TBC for the stationary
equation (3a) for a constant or linear coefficient ν(z) for z > Z. In §3 an
adequate difference scheme for the stationary problem (3) is constructed. We
discuss in §4 several concepts and definitions of positivity preserving schemes
for stationary equations and extend afterwards the notion to time–dependent
problems. In §5 we present three positive difference schemes for the transient
advection–diffusion equation (2), namely the Samarskii scheme [7], the Crank–
Nicolson scheme and the scheme of Wang and Lacroix [9]. Furthermore we
address in §6 the question how to adequately discretize the obtained analytic
TBC for a chosen full discretization proposed in §5. Instead of discretizing
the analytic TBC with its singularity our strategy is to derive the discrete
TBC of the fully discretized problem. We present two discretized TBC from
the literature and give a concise derivation of the discrete TBC in case of the
Crank–Nicolson scheme. Finally, we conclude in §7 with a numerical example
illustrating the superiority of our approach.

2 The Transparent Boundary Conditions

We consider the pure initial value problem (IVP) (2)

∂ϕ

∂t
= µ

∂2ϕ

∂x2
− u

∂ϕ

∂x
− σϕ+ f, x ∈ R, t > 0,

ϕ(x, 0) = ϕI(x),
(4)

which will be supplied later with appropriate boundary conditions (BCs). We
shall assume that the coefficients remain constant outside of the computational
domain (0, X).

2.1 Derivation of the Transparent Boundary Condition

Here we determine the TBC at x = X, such that the solution of the resulting
initial boundary value problem (IBVP) is as close as possible to the solution
of the half–space problem (4) restricted to (0, X). We have to assume that the
initial data ϕI(x) = Qδ(x−H) is compactly supported in the computational
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domain (0, X). We consider the interior problem (firstly with f = 0):

ϕt = µϕxx − uϕx − σϕ+ f, 0 < x < X, t > 0,

ϕ(x, 0) = ϕI(x), 0 < x < X,

∂ϕ

∂x
(0, t) = αϕ(0, t), t > 0,

ϕx(X, t) = (TXϕ)(X, t), t > 0,

(5)

and obtain the Dirichlet–to–Neumann map TX by solving the exterior problem:

γt = µγxx − u γx − σ γ, x > X, t > 0,

γ(x, 0) = 0, x > X,

γ(X, t) = Φ(t), t > 0, Φ(0) = 0,

γ(∞, t) = 0, t > 0,

(6)

and setting (TXΦ)(t) = γx(X, t), t > 0. The problem (6) is coupled with (4)
by the assumption that ϕ, ϕx are continuous across the artificial boundary at
x = X. Since the initial data vanishes for x > X, we can solve (6) explicitly
by the Laplace–method, i.e. we use the Laplace transformation of γ

γ̂(x, s) =
∫

∞

0
γ(x, t) e−st dt,

where we set s = ζ + iξ, ξ ∈ R, and ζ > 0 is fixed, with the idea to later
perform the limit ζ → 0. Now the exterior problem (6) is transformed to

µ γ̂xx − u γ̂x − (σ + s) γ̂ = 0, x > X,

γ̂(X, s) = Φ̂(s).
(7)

The solution which decays as x → ∞ is simply γ̂(x, s) = Φ̂(s) eλ(s)(x−X),
x > X, with

λ(s) =
u

2µ
− 1√

µ
+
√
η + s, (8)

and the parameter

η =
u2

4µ
+ σ ≥ 0. (9)

Consequently, the transformed TBC reads:

ϕ̂x(X, s) = λ(s) ϕ̂(X, s). (10)

Note that in (8) +
√

denotes the branch of the square root with nonnegative
real part. After an inverse Laplace transformation the TBC at x = X reads:

ϕx(X, t) =
u

2µ
ϕ(X, t) − e−ηt

√
µπ

d

dt

∫ t

0

ϕ(X, t′) eηt′

√
t− t′

dt′. (11)

We observe that (11) is non–local in t (of memory type), i.e. the computation
of the solution at some time uses the solution at all previous times.
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2.2 The Inhomogeneous Equation

Now we consider (4) with an inhomogeneity f(x, t) provided that f(x, t) = f
is constant for x > X. In this case the transformed exterior problem is an
inhomogeneous ordinary differential equation in x:

µ γ̂xx − u γ̂x − (σ + s)γ̂ = −s−1f, x > X,

γ̂(X, s) = Φ̂(s).
(12)

A (constant in x) particular solution reads

γ̂part(x, s) =
f

s(σ + s)
, x > X,

i.e. the general solution to (12) is

γ̂(x, s) =
(
Φ̂(s) − f

s(σ + s)

)
eλ(s)(x−X) +

f

s(σ + s)
, x > X,

with λ(s) given in (8). Therefore the transformed TBC is given by:

γ̂x(X, s) = λ(s) Φ̂(s) − λ(s)
f

σ

(
1

s
− 1

σ + s

)
, (13)

and after an inverse Laplace transformation of (13) the TBC reads:

ϕx(X, t) =
u

2µ

(
ϕ(X, t) − ψ(t)

)
− e−ηt

√
µπ

d

dt

∫ t

0

(
ϕ(X, t) − ψ(t)

)
eηt′

√
t− t′

dt′, (14)

where ψ(t) is obtained as ψ(t) = fL{1
s
− 1

c+s
}−1/σ = f(1 − e−σt)/σ.

2.3 Well–posedness of the Initial Boundary Value Problem

It is well–known that the pure IVP (4) is well–posed:

Theorem 1 (Theorem 6.2.1, [11]) The initial value problem for the equa-
tion (4) (with f = 0) is well–posed, i.e. for any time T ≥ 0 there is a constant
CT such that any solution ϕ(x, t) satisfies

‖ϕ(., t)‖L2(R) +
∫ t

0
‖ϕx(., t

′)‖L2(R) dt
′ ≤ CT ‖ϕI‖L2(R)

for 0 ≤ t ≤ T .

However, the well–posedness of the associated IBVP (5) is not clear a-priori.
While the existence of a solution to the 1D parabolic equation (5) with the
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BC at x = 0 and the TBC (11) at x = X is clear from the used construction it
remains to prove the uniqueness of the solution. A straight forward calculation
using the energy method, i.e. multiplying (4) with ϕ(x, t) and integrating by
parts in x, yields

1

2

d

dt
‖ϕ(., t)‖2

L2(0,X) = −µ‖ϕ(., t)‖2
L2(0,X) − u

∫ X

0
ϕ(x, t)ϕx(x, t) dx

− σ‖ϕ(., t)‖2
L2(0,X) + µϕ(x, t)ϕx(x, t)|x=X

x=0

≤ µϕ(x, t)ϕx(x, t)|x=X
x=0

= µϕ(X, t)ϕx(X, t) − µαϕ2(0, t),

if σ ≥ u2/(4µ) (which can always be achieved by a change of variables). Finally,
we integrate in time using Plancherel’s Theorem for the Laplace transforma-
tion:

Theorem 2 (Plancherel’s Theorem [12]) If the function g : R+ → C is
continuous and satisfies an estimate

|g(t)|2 ≤ C ect, t ≥ 0,

for some real constants C, c, then the Laplace transformation of g is an ana-
lytic function for Re s > c and

∫
∞

0
e−2ηt |g(t)|2 dt =

1

2π

∫
∞

−∞

|ĝ(η + iξ)|2 dξ, η > c.

holds.

Extending ϕ(X, t) by 0 for t > T gives

‖ϕ(., t)‖L2(0,X) ≤ ‖ϕI‖L2(0,X) + 2µ
∫ T

0

[
ϕ(X, t)ϕx(X, t) − αϕ2(0, t)

]
dt

= ‖ϕI‖L2(0,X) + 2µ
∫

R

λ(iξ) |ϕ̂(X, iξ)|2 dξ − 2µα‖ϕ(0, .)‖2
L2(0,T )

≤ ‖ϕI‖L2(0,X) + 4µ
∫

∞

0
Re λ(iξ) |ϕ̂(X, iξ)|2 dξ,

since ϕ̂(X,−iξ) = ¯̂ϕ(X, iξ), λ(X,−iξ) = λ̄(X, iξ). Now it can easily be
checked that the condition for well–posedness

Re λ(iξ) ≤ 0, for ξ ∈ R,

with λ given by (8), is fulfilled and we can state the following main theorem.

Theorem 3 The resulting parabolic IBVP (5) with the BC at x = 0 and the
TBC (11) at x = X is well–posed, i.e.

‖ϕ(., t)‖L2(0,X) ≤ ‖ϕI‖L2(0,X), t > 0, (15)
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and this implies uniqueness of the solution to the parabolic IBVP (5).

2.4 The Transparent Boundary condition for the stationary problem

Here we consider the stationary problem (3) and assume ν(z) = cza +b, where
a, b, c ≥ 0 for z > Z. Then the Laplace transformed exterior problem for
ϕ̂ = ϕ̂(s, z) reads

usϕ̂− wg
∂

∂z
ϕ̂− ∂

∂z

(
ν(z)

∂

∂z
ϕ̂
)

+ σϕ̂ = 0, z > Z, (16)

with the condition ϕ̂(s, Z) = Φ(s). We will formulate the TBC for the two
most relevant cases a = 0 and a = 1.

For a = 0 we have the same structure as (11) and obtain

ϕz(x, Z) = −wg

2
ϕ(x, Z) −

√
u

π
e−ηx d

dx

∫ x

0

ϕ(x′, Z) eηx′

√
x− x′

dx′, (17)

with the parameter η = w2
g/(4u) + σ ≥ 0. Here, the TBC (17) is non–local in

the spatial coordinate x.

In the case of a linear varying coefficient ν(z), i.e. a = 1, the explicit solution
to (16) decaying for z → ∞ is the following ratio of two Hankel functions of
the second kind

ϕ̂(s, z) = Φ(s)

(
cz + b

cZ + b

)
−

wg

2c H
(2)

−
wg

c

(
2
√
−su− σ

√
cz+b
c2

)

H
(2)

−
wg

c

(
2
√
−su− σ

√
cZ+b

c2

) , z > Z. (18)

The Hankel functions of the second kind (and order n) are defined asH(2)
n (ζ) :=

Jn(ζ)− iYn(ζ) where Jn(ζ) is a Bessel function of the first kind and Yn(ζ) is a
Bessel function of the second kind. The expression (18) can be inverse trans-
formed (numerically) to obtain a TBC.

We remark that in the classical model of Judin and Schwez from 1940 [1] it
is assumed that a = 1 holds in the domain z < Z and a = 0 for z > Z. For a
detailed discussion of different models of the vertical diffusion coefficient ν(z)
we refer the reader to [1, Chapter 1.5].

3 The Finite Difference Scheme

In this section we construct a difference scheme for the stationary problem (3).
Let us introduce the grid points xn = n∆x, zj = j∆z, n, j = 0, 1, . . . , where
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τ = ∆x, h = ∆z denote the step sizes in x and z direction. Furthermore we
assume that H = zjH

, i.e. the source is located at the grid point z = zjH
.

In the sequel we want to construct a monotone finite difference scheme (cf.
Definition 5) and follow closely the ideas of Samarskii [7]. To do so, we rewrite
(3a) in the form

u
∂ϕ

∂x
= Lϕ, x > 0, z > 0,

with

Lϕ =
∂

∂z

(
ν
∂ϕ

∂z

)
+ wg

∂ϕ

∂z
− σϕ.

To obtain a monotone scheme, we introduce the perturbed operator L̃

L̃ϕ = χ(z)
∂

∂z

(
ν(z)

∂ϕ

∂z

)
+ wg

∂ϕ

∂z
− σϕ, (19)

where

χ(z) =
1

1 +R(z)
, R(z) =

wg∆z

2ν(z)
.

The coefficient R(z) is called the Reynolds difference number.

Now the operator L̃ is approximated by the difference operator

L̃hϕ
n
j = χjD

+

h

(
ajD

−

hϕ
n
j

)
+ bjaj+1D

+

hϕ
n
j − σϕn

j , (20)

with χj = 1/(1+R(zj)), aj = νj−1/2 = ν(zj −h/2) and bj = wg/νj, νj = ν(zj).
Here, D+

h , D−

h denote the usual forward and backward difference quotients.

The initial condition (3b) is approximated through the discrete delta function

ϕ0
j =





Q
hujH

, j = jH ,

0, else.
(21)

In order to approximate the boundary condition (3c) at the ground z = 0 we
choose the centered difference quotient

ϕn
1 − ϕn

−1

2h
= αϕn

0 , n ≥ 0, (22)

with the fictitious grid point z−1 = −h. The proper incorporation of the decay
condition (3d) into the finite difference scheme by introducing a so–called
discrete transparent boundary condition will be outlined in §6.

We shall consider the implicit finite difference method

ujD
+

τ ϕ
n
j = L̃hϕ

n+1
j , (23)
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which has the discretization error O(h2 + τ) [7]. The numerical scheme (23)
reads

uj

ϕn+1
j − ϕn

j

τ
=
χj

h

(
aj+1

ϕn+1
j+1 − ϕn+1

j

h
− aj

ϕn+1
j − ϕn+1

j−1

h

)

+ bjaj+1

ϕn+1
j+1 − ϕn+1

j

h
− σϕn+1

j , j, n = 0, 1, . . . .

This second order difference equation can be written in the standard form [7]:

Ajϕ
n+1
j−1 − Cjϕ

n+1
j +Bjϕ

n+1
j+1 = −F n

j , j, n = 0, 1, 2, . . . , (24)

where we assumed that ϕn
j is known. The coefficients in (24) are given by

Aj = ρχjaj ,

Bj = ρχjaj+1 + ρhbjaj+1,

Cj = Aj +Bj + uj + στ,

F n
j = ujϕ

n
j ,

with the parabolic mesh ratio ρ = τ/h2. Setting j = 0 in (24) we obtain from
(22) the boundary condition

ϕn+1
0 = α1ϕ

n+1
1 + β1,

where

α1 =
A0 +B0

C0 + 2hαA0
, β1 =

F0

C0 + 2hαA0
.

Alternatively, one can consider the Crank–Nicolson discretization

ujD
+

τ ϕ
n
j = L̃h

ϕn+1
j + ϕn

j

2
, n ≥ 0, (25)

with the discretization error O(h2 + τ 2).

4 About the Positivity and the Monotonicity of Difference Schemes

The main concepts of the theory of difference scheme are systematically pre-
sented in the books, e.g. [7], [13]. They are approximation, stability and conver-
gence. The stability is the inside property of difference scheme. It guarantees
that the computational error does not accumulate in the process of compu-
tation from time to time. Meanwhile the concepts of approximation and con-
vergence associate difference scheme with the discretized differential problem.
Besides the above properties which are necessarily drawn attention in con-
structing difference schemes, for many problems of hydrodynamics, mass and
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heat transfer,... one is interested in the more thin properties. It is positivity
and monotonicity properties.

Definition 4 (positive scheme [14]) A difference scheme is called positive
if its solution is non–negative when its right hand side, initial condition and
boundary conditions are all non–negative.

Definition 5 (monotone scheme [14]) A difference scheme is called mono-
tone if it preserves the monotonicity in the same direction of space profiles
when passing from one time step to another.

The concepts of positive and monotone difference scheme have clear physical
meanings. But to discover whether a difference scheme has these properties,
especially the property of monotonicity, is not easy.

For hyperbolic equations with constant coefficients Friedrichs [15] introduced
the following concept of difference schemes with positive approximation. Con-
sider an equation with one space variable. In the domain of definition of the
problem let us introduce a grid with space step h and the time step τ . Denote
the grid function by y with value yn

j = y(jh, nτ).

Definition 6 (positive approximation [15]) A difference scheme for an
evolution equation with constant coefficients has a positive approximation if
for zero right hand side it has the form

yn+1
j =

∑

µ,ν

αν
µy

n+ν
j+µ , (26)

where αν
µ ≥ 0, for all ν, µ are positive coefficients.

The following proposition is easy to verify by definition.

Proposition 7 Let (26) be an explicit difference scheme, i.e., ν ≤ 0. If it has
a positive approximation then it is positive and monotone.

PROOF. Since (26) has a positive approximation we have by definition αν
µ ≥

0 for all ν and µ. Therefore, yn+1
j ≥ 0 if boundary and initial conditions are

all non–negative. It means that the difference scheme is positive in the sense
of Definition 4.

Now, let all layers yn+ν be monotone grid functions of the same direction, say,
nondecreasing functions. It means that ∀j, µ yn+ν

j+µ ≤ yn+ν
j+1+µ. Therefore,

yn+1
j − yn+1

j+1 =
∑

µ,ν

αν
µ(yn+ν

j+µ − yn+ν
j+1+µ) ≤ 0.
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So, yn+1 is a nondecreasing grid function. Thus, the difference scheme is mono-
tone in the sense of Definition 5.

Samarskii [7] introduced another definition of monotone difference schemes,
which in essence is a criteria for positive difference schemes in the sense of
Definition 4. This concept is introduced first for stationary equations and
afterwards extended for evolution equations.

Definition 8 (monotone scheme [7]) The difference scheme Lhyj = fj is
called monotone if it has the form

Lhyj = −Ajyj−1 + Cjyj −Bjyj+1 = fj, j = 1, . . . , N − 1, (27a)

where

Aj > 0, Bj > 0, Cj > 0 and Cj − Aj −Bj ≥ 0. (27b)

The operator Lh herein is called monotone operator.

The monotone (in the above sense) difference scheme satisfies a discrete max-
imum principle, namely, if Lhyj ≥ 0 for any j and the grid function yj is
not a constant then it can not reach a negative minimum at inner points
(see [7], Chap.1). Therefore, the solution of the monotone difference scheme
is non–negative if the right hand side fj ≥ 0 and the boundary conditions
y0, yN ≥ 0. The sense of monotonicity maybe comes from the fact that if
Cj = Aj + Bj, fj = 0 for all j = 1, . . . , N − 1 then the grid solution of (27a)
is a monotone function. Moreover, in the case fj ≥ 0 if y0 ≥ y1 it is easy to
show that the grid solution yj is a decreasing function.

In [7] there is no definition of monotone difference schemes for evolution equa-
tions. Below we state the following

Definition 9 (monotone scheme for evolution equation) A difference
scheme for an evolution equation is called monotone if it satisfies a discrete
maximum principle, namely, if the difference scheme Lh(y

n
j , y

n+1
j ) = fn

j with

given initial and boundary conditions satisfies the condition Lh(y
n
j , y

n+1
j ) ≥ 0

then its solution cannot reach a negative minimum at inner points.

Proposition 10 The purely implicit difference scheme

yn+1
j − yn

j

τ
+ Lhy

n+1
j = fn

j , (28)

where Lh is a monotone operator, is monotone in the sense of Definition 9
and is positive in the sense of Definition 4.
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PROOF. Let Lh be a monotone operator. Then it has the form

Lhy
n+1
j = −An+1

j yn+1
j−1 + Cn+1

j yn+1
j − Bn+1

j yn+1
j+1 , j = 1, . . . , N − 1, (29a)

where

An+1
j > 0, Bn+1

j > 0, Cn+1
j > 0 and Cn+1

j − An+1
j −Bn+1

j ≥ 0. (29b)

We shall prove first that the difference scheme (28) is monotone in the sense
of Definition 9, i.e. if fn

j ≥ 0 for any j and n then the grid solution y cannot
reach a negative minimum at a point with the indexes 0 < j < N and n > 0.
In order to do this we assume that the grid function y reaches a negative
minimum at a point (j0, n + 1) with 0 < j0 < N and n ≥ 0. Then among the
neighbouring points (j0 − 1, n + 1), (j0 + 1, n + 1) and (j0, n) there exist at
least one point, where the function y assumes a value, which is strictly greater
than yn+1

j0 . Now, in view of (29a) we have

Lhy
n+1
j0

= −An+1
j0

yn+1
j0−1 + Cn+1

j0
yn+1

j0
−Bn+1

j0
yn+1

j0+1

= An+1
j0

(yn+1
j0

− yn+1
j0−1) +Bn+1

j0
(yn+1

j0
− yn+1

j0+1)

+ (Cn+1
j0

− An+1
j0

−Bn+1
j0

)yn+1
j0

.

Consequently, the equation (28) at the point (j0, n+ 1) becomes

yn+1
j0 − yn

j0

τ
+ An+1

j0
(yn+1

j0
− yn+1

j0−1) +Bn+1
j0

(yn+1
j0

− yn+1
j0+1)

+(Cn+1
j0

− An+1
j0

−Bn+1
j0

)yn+1
j0

= fn
j .

(30)

Due to the conditions (29b) and the property of the point (j0, n + 1) the left
hand side of (30) is strictly less than zero while the right hand side is non–
negative. This contradiction proves that the grid solution y cannot reach a
negative minimum at an interior point. Thus, the difference scheme (28) is
monotone in the sense of Definition 9. The positivity of the difference scheme
(28) is a straightforward corollary of its monotonicity and the proof of the
Proposition is completed.

We remark that the notion of monotone difference schemes by Definition 5
is very rigorous and in the literature on difference schemes the concept of
monotonicity associated with the maximum principle is commonly used (see
[16] and the references therein). Using the above concepts we investigate in
the next section the positivity of difference schemes for advection–diffusion
equations.
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5 Positive difference Schemes for Advection–Diffusion Equations

We rewrite the equation (2) with the variable diffusion coefficient k(x, t) in
the form

∂ϕ

∂t
+ Lϕ = f, (31a)

where

Lϕ = − ∂

∂x
(k
∂ϕ

∂x
) + u

∂ϕ

∂x
+ σϕ. (31b)

(1) Following Samarskii [7] we construct a difference scheme for the perturbed
equation associated with the equation (31a), namely, for the equation
(31a) with L replaced by

L̃ϕ = −χ ∂

∂x
(k
∂ϕ

∂x
) + u

∂ϕ

∂x
+ σϕ,

where χ = 1/(1 +R) and R = 0.5h|u|/k.
The difference scheme for the case of a positive velocity u ≥ 0 has the

form
yn+1

j − yn
j

τ
+ L̃hy

n+1
j = fn

j , (32)

where

L̃hyj = −χD+

h (an
jD

−

h yj) + bnjD
−

h yj + σyj,

an
j = k(xj − 0.5h, tn − 0.5τ), bnj = u(xj, tn − 0.5τ).

(33)

D+

h and D−

h are the usual forward and backward difference quotients with
step size h. It is easy to prove that the difference scheme (32), (33) has
the approximation error O(τ + h2) on smooth solutions of (31) and is
monotone for any τ and h. More precisely, L̃h is monotone. Therefore,
the solution of the difference scheme is non–negative when the right hand
side, initial and boundary conditions are non–negative. The difference
schemes of the type (32), (33) are used in [5], [6] for a problem of air
pollution.

(2) Next we consider the Crank–Nicolson difference scheme associated with
(32)

yn+1
j − yn

j

τ
+ L̃h

yn+1
j + yn

j

2
= f

n+1/2
j . (34)

Suppose L̃hyj = −Ajyj−1 + Cjyj − Bjyj+1. Of course, the coefficients
satisfy (27b). From (34) we have

− 0.5τAjy
n+1
j−1 + (1 + 0.5τCj)y

n+1
j − 0.5τBn+1

j+1

= −0.5τAjy
n
j−1 + (1 − 0.5τCj)y

n
j + 0.5τBn

j+1 + τf
n+1/2
j .

14



Obviously, the operator on the left side is monotone and if 1−0.5τCj ≥ 0
then (34) is a positive difference scheme. For the case k = const. this
condition is satisfied if

τ

h2
<

1

2k + hmaxu
.

Thus, although the Crank–Nicolson scheme has the approximation error
O(τ 2 +h2) due to the above limitation the second order accuracy in time
has no more meaning.

(3) Finally, let us consider the difference scheme proposed by Wang and
Lacroix [9]. This scheme has the form of (34) with

L̃hyj = −kD2

hyj + u[(0.5 + α)D−

h yj + (0.5 − α)D+

hyj]

= −kD2

hyj + uD0

hyj,
(35)

where α ∈ [−0.5, 0.5] and D2

h = D+

hD
−

h , D0

h are the second order and
the first order centered difference quotients. It is easy to show that the
sufficient condition for that the difference scheme (35) has second order
of approximation in h is α = O(h) and the sufficient conditions for the
difference scheme (35) to have the positivity property are

h ≤ 2k

maxu
,

τ

h
≤ 2

maxu
,

τ

h2
≤ 1

k + 2αhmaxu
.

Thus, theoretically the Wang–Lacroix scheme is also more complicated
than the scheme (34) with L̃h defined by (33) but it is not better in the
sense of approximation and positivity.

6 The Discrete Transparent Boundary Condition

Next we shall address the question how to adequately discretize the analytic
TBC (11) for a chosen full discretization of (4) proposed in Section 5. Instead
of discretizing the analytic TBC (11) with its singularity our strategy is to
derive the discrete TBC of the fully discretized problem. With the uniform
grid points xj = j∆x, tn = n∆t (h = ∆x, τ = ∆t ) and the approximation
ϕn

j ≈ ϕ(xj, tn) the Crank–Nicolson scheme (34) for solving (31b) reads (for

k(x) = const. and f
n+1/2
j = 0):

D+

τ ϕ
n
j = µD2

hϕ
n+1/2
j − uD+

hϕ
n+1/2
j − σ ϕ

n+1/2
j , j ≥ 0, (36)

with µ = k/(1 + R) the abbreviation ϕ
n+1/2
j = (ϕn+1

j + ϕn
j )/2. While a uni-

form grid in x is necessary in the exterior domain, the interior grid may be
nonuniform in x.
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We remind the reader that In the scheme (36) D+

τ denotes the usual forward
and D2

h the second order difference quotient:

D+

τ φ
n
j =

ϕn+1
j − ϕn

j

τ
, D2

hϕ
n+1/2
j =

ϕ
n+1/2
j+1 − 2ϕ

n+1/2
j + ϕ

n+1/2
j−1

h2
.

The advection term is discretized by the backward difference quotient

D−

hϕ
n
j =

ϕn
j − ϕn

j−1

h
,

(‘upwind differencing’) since the velocity is positive: u ≥ 0.

6.1 Discretization strategies for the TBC

Here we want to compare three strategies to discretize the TBC (11) which is
a rather delicate question with its mildly singular convolution kernel. First we
review two known discretization techniques from Mayfield [17] and Halpern
[18].

Discretized TBC of Mayfield

To compare our results we first consider the ad-hoc discretization strategy
of Mayfield for the Schrödinger equation applied to the advection–diffusion
equation (4). According to the approach of Mayfield [17] one way to discretize
the analytic TBC (11) at x = X (with Jh = X) in the equivalent form

ϕ(X, t) =

√
µ

π

∫ t

0

ϕx(X, t
′) e−η(t−t′)

√
t− t′

dt′ − u

2
√
µπ

∫ t

0

ϕ(X, t′) e−η(t−t′)

√
t− t′

dt′, (37)

with η given by (9), is for the first integral

∫ t

0

ϕx(X, t− t′) e−ηt′

√
t′

dt′ ≈ 1

h

n−1∑

m=0

(ϕn−m
J − ϕn−m

J−1 ) e−ηmτ
∫ tm+1

tm

dt′√
t′

=
2
√
τ

h

n−1∑

m=0

(ϕn−m
J − ϕn−m

J−1 ) e−ηmτ

√
m+ 1 +

√
m

.
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Discretizing the second integral in (37) analogously leads to the following
discretized TBC for the advection–diffusion equation (4):

ϕn
J−1 −

(
1 +

uh

2µ

)
ϕn

J =

√
πh

2
√
µτ
ϕn

J +
n−1∑

m=1

ℓ̃(m)(ϕn−m
J − ϕn−m

J−1 ) − uh

2µ

n−1∑

m=1

ℓ̃(m)ϕn−m
J , (38)

with the convolution coefficients ℓ̃(m) given by

ℓ̃(m) =
e−ηmτ

√
m+ 1 +

√
m
,

and η defined by (9). On the fully discrete level (38) is not perfectly transparent
any more and may possibly lead to an unstable numerical scheme as shown
by Mayfield [17] in case of the Schrödinger equation.

Artificial BC of Halpern

Secondly we present the approach of Halpern [18] which was generalized by
Lohéac in [19] to the case that the diffusion coefficient µ in (4) can depend
on x. In [18] Halpern developed a family of artificial boundary conditions for
the linear advection–diffusion equation with small diffusion µ. To start with
we rewrite the transformed TBC (10) as

ϕ̂x(X, s) =
1

2µ

(
u− +

√
u2 + 4(σ + s)µ

)
ϕ̂(X, s). (39)

Now Halpern’s approach consists of using Taylor or Padé approximations of
the term in parentheses in (39) with respect to a small value of µ in order
to obtain a local in t boundary condition. A first order Taylor approximation
gives

u− +

√
u2 + 4(σ + s)µ ≈ u− |u| + 2µ(σ + s)

|u| ,

which leads to the transformed artificial boundary condition

ϕ̂x(X, s) =

(
u− |u|

2µ
+
σ + s

|u|

)
ϕ̂(X, s). (40)

Since u > 0 we have an outflow BC at x = X and an inverse Laplace trans-
formation of (40) yields the first order artificial boundary condition:

ϕt(X, t) − uϕx(X, t) + σ ϕ(X, t) = 0. (41)

17



To discretize (41) at X = Jh we follow the suggestion in [18] and obtain:

D+

τ ϕ
n
J − uD−

hϕ
n+1/2
J + σ ϕ

n+1/2
J = 0. (42)

While Halpern showed that the interior Crank–Nicolson scheme together with
the artificial boundary condition (42) (for σ = 0) is stable and has order two
in time and space, the resulting scheme suffers from reduced accuracy as we
will see later in the numerical examples of §7.

The Discrete TBC

In order to avoid any numerical reflections at the artificial boundary and to
ensure unconditional stability of the resulting scheme we will construct in the
next subsection a discrete TBC instead of choosing an ad–hoc discretization
of the analytic TBC (11) like Mayfields approach or the approach of Halpern.
The discrete TBC completely avoids any numerical reflections at the bound-
ary at no additional computational costs (compared to ad–hoc discretization
strategies like (38)).

6.2 The Derivation of the Discrete TBC

We mimic the derivation from § 2 on a discrete level: we obtain the discrete
TBC at xJ = X by solving the discrete exterior problem, i.e. (36) for j ≥ J−1:

∆+

τϕ
n
j + u

τ

h
∆−

hϕ
n+1/2
j + 2κϕ

n+1/2
j = r∆2

hϕ
n+1/2
j , (43)

where r = µ τ/h2 denotes the (parabolic) mesh ratio, κ = στ/2. In the scheme
(43) we used the difference operators ∆+

τ = τ D+

τ , ∆2

h = h2D2

h, etc. To proceed,
we apply the Z–transformation:

Z{ϕn
j } = ϕ̂j(z) :=

∞∑

n=0

ϕn
j z

−n, z ∈ C, |z| > Rϕ̂,

j fixed (Rϕ̂ denotes the convergence radius of the Laurent series), to solve (43)
explicitly. We assume for the initial data ϕ0

j = 0, j ≥ J − 1, and obtain the
transformed exterior scheme

2

r

z − 1

z + 1
ϕ̂j(z) +

[
Pe∆−

h +
2κ

r

]
ϕ̂j(z) = ∆2

hϕ̂j(z), j ≥ J − 1, (44)

with Pe = uh/µ. The two linearly independent solutions of the resulting second
order difference equation (44) take the form

ϕ̂j(z) = νj+1
1,2 (z), j ≥ J − 1, (45)
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where ν1,2(z) are the solutions of the quadratic equation

ν2 − 2
[
1 +

1

r

(
z − 1

z + 1
+ κ

)
+
Pe

2

]
ν + 1 + Pe = 0, (46)

i.e. they can be written as

ν1,2(z) = 1 +
Pe

2
+

1

r

(
z − 1

z + 1
+ κ

)
± +

√
Az2 − 2Bz + C.

Since we are seeking decreasing modes as j → ∞ we have to require |ν2(z)| < 1
and obtain the Z–transformed discrete TBC as

(1 + Pe) ϕ̂J−1(z) = ν1(z) ϕ̂J(z), (47)

where we have used the property ν1(z)ν2(z) = 1+Pe. It was shown by Lill [20,
Theorem 3.11] that for the solutions to the quadratic equation (46) |ν1(z)| > 1,
|ν2(z)| < 1 holds for |z| > 1.

It only remains to inverse Z–transform ν1(z) in order to obtain the discrete
TBC from (47) and in a tedious calculation this can be performed explicitly
[21], [22]. This yields the following discrete TBC :

(1 + Pe)ϕn
J−1 = ℓ(n) ∗ ϕn

J =
n∑

k=1

ℓ(n−k)ϕk
J , n ≥ 1, (48)

with convolution coefficients ℓ(n) given by

ℓ(0) = H +
κ

r
+

1 +
√
A

r

ℓ(n) =
2(−1)n

r
+

1

r
√
A
·

·
(
AP̃n(υ) + CP̃n−1(υ) + 4

n−1∑

k=0

(−1)n−kP̃k(υ)

)
, n ≥ 1,

(49)

where the constants can be determined as

A = (κ+)2 + 2rHκ+ + β2,

B = κ+κ− − 2rHκ− β2,

C = (κ−)2 − 2rHκ− + β2,

with H = 1 + Pe/2, κ+ = 1 + κ, κ− = 1 − κ, β = uτ/(2h). The parameters λ,
υ are given by

λ =

√
A

+
√
C
, υ =

B√
A +
√
C
. (51)

P̃n(υ) := λ−nPn(υ) denotes the “damped” Legendre polynomials (P̃0 ≡ λ−1,
P̃−1 ≡ 0) and δ0

n is the Kronecker symbol.
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Remark 11 (Implicit Euler scheme) For the implicit Euler scheme we
obtain the coefficients (cf. [22]):

ℓ(0) = H +
κ

r
+

1 +
√
A

2r
,

ℓ(1) = − 1

2r
+

1

2r
√
A

(
AP̃1(υ) − 2B

)
= − 1

2r

(
1 +

B√
A

)
,

ℓ(n) =
1

2r
√
A

(
AP̃n(υ) − 2BP̃n−1(υ) + CP̃n−2(υ)

)
, n ≥ 2.

(52)

6.3 The Inhomogeneous Equation

Analogously to §2.2 we consider the discrete equation (36) with an inhomo-

geneity f
n+1/2
j provided that f

n+1/2
j = f = const. for j ≥ J−1. In this case the

transformed discrete exterior problem is an inhomogeneous ordinary difference
equation in j:

2
z − 1

z + 1
ϕ̂j(z) +

[
rPe∆−

h + 2κ
]
ϕ̂j(z) = r∆2

hϕ̂j(z) + τf
z

z − 1
, j ≥ J − 1, (53)

and a (constant in j) particular solution of (53) reads

ϕ̂part
j (z) =

τf

2

z

z − 1

z − 1 + κ(z + 1)

z + 1
, j > J − 1, (54)

i.e. the general solution to (53) is

ϕ̂j(z) =
ϕ̂J − ϕ̂part

j (z)

1 + Pe

νj−J
1

(z) + ϕ̂part
j (z), j > J − 1,

with ν1 solution of (46) with |ν1(z)| > 1 . Thus the transformed discrete TBC
is given by:

(1 + Pe) ϕ̂J−1(z) =
(
ϕ̂J − ϕ̂part

j (z)
)
ν1(z) + (1 + Pe) ϕ̂part

j (z).

After an inverse Z–transformation the discrete TBC reads:

(1 + Pe)ϕn
J−1 =

n∑

k=1

ℓ(n−k)ϕk
J −

n∑

k=1

ψ(n−k)ϕk
J + (1 + Pe)ψ(n), n ≥ 1, (55)

with ℓ(n) given by (49) and ψ(n) is obtained from (54) by an inverse Z–
transformation:

ψ(n) = Z−1{ϕ̂part
j (z)} =

τf

2
(−1)n +

(
τ

2

)2

σf. (56)
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Note that it is also possible to derive a (discrete) TBC in the case of a space–
dependent inhomogeneity f = fj , j ≥ J − 1, using the techniques developed
in [22, Chapter 1.3]. However, the computational costs for evaluating this
(discrete) TBC are unacceptable high.

6.4 The summed convolution coeffcients

In this subsection we want to investigate the asymptotic behaviour of the
convolution coefficients ℓ(n) given by (49). We will see that it is beneficial to
reformulate the discrete TBC (48) and give a recursion formula for these new
coefficients.

It can be shown [22] that the convolution coefficients (49) have the asymptotic
behaviour ℓ(n) ∼ 4(−1)n/r, n → ∞ and this alternating behaviour may lead
to subtractive cancellation in (48). Therefore we prefer to use the following
summed coefficients in the implementation

s(n) := ℓ(n) + ℓ(n−1), n ≥ 1, s(0) := ℓ(0),

and compute

s(n) =
1

r
√
A

(
AP̃n(υ) + [A+ C − 4] P̃n−1(υ) + CP̃n−2(υ)

)

=
1

r
√
A

(
AP̃n(υ) − 2BP̃n−1(υ) + CP̃n−2(υ)

)

=

√
A

2r

(
P̃n(υ) − 2υλ−1P̃n−1(υ) + λ−2P̃n−2(υ)

)
.

(57)

Using

υλ−1P̃n−1(υ) =
n

2n− 1
P̃n(υ) +

n− 1

2n− 1
λ−2P̃n−2(υ),

we finally get

s(n) = −
√
A

r

P̃n(υ) − λ−2P̃n−2(υ)

2n− 1
, n ≥ 2, (58)

to use in the discrete TBC:

(1 + Pe)ϕn
J−1 − s(0)ϕn

J =
n−1∑

k=1

s(n−k)ϕk
J − (1 + Pe)ϕn−1

J−1, n ≥ 1. (59)

Remark 12 We see from (57) that for n ≥ 2 the summed coefficients s(n)

coincides with the convolution coefficients (52) for the implicit Euler scheme.
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Using a recursion formula for the scaled Legendre polynomials P̃n+1(υ) −
P̃n−1(υ):

P̃n+1(υ) − λ−2P̃n−1(υ)

2n+ 1
=

υλ−1 P̃n(υ) − λ−2P̃n−2(υ)

n+ 1
− n− 2

n+ 1
λ−2 P̃n−1(υ) − λ−2P̃n−3(υ)

2n− 3
, n ≥ 2,

we see from (58) the recurrence relation for the summed convolution coeffi-
cients:

s(n+1) =
2n− 1

n+ 1
υλ−1s(n) − n− 2

n+ 1
λ−2s(n−1), n ≥ 2, (60)

which can be used after calculating s(n), n = 0, 1, 2 by the formula (57).

The starting coefficient of the recursion (cf. (49)) can be determined with

s(0) = ℓ(0) = lim
z→∞

ν1(z) =
(
H +

κ

r

)
+

1 +
√
A

r
.

Here, the sign has to be fixed such that |ν1(z)| > 1 holds. This can be done
for e.g. for z = ∞.

Ehrhardt proved in [22] that the problem of determining the required values
of the convolution coefficients through the recurrence relation (60) is well–
conditioned by applying partial results of the comprehensive article [23].

The rapid decay of the s(n) = O(n−
3

2 ) [22] motivates a simplified discrete TBC
by restricting (59) to a convolution over the “recent past” (last M time levels):

(1 + Pe)ϕn
J−1 − s(0)ϕn

J =
n−1∑

k=n−M

s(n−k)ϕk
J − (1 + Pe)ϕn−1

J−1, n ≥ 1. (61)

We note that the stability of the resulting scheme is still not proven yet.

6.5 The Stability of the resulting Scheme

In this section we will prove the stability of the Crank–Nicolson scheme with
the discrete TBC (59) and an appropriate discretization of the the boundary
condition (3c):

D+

hϕ
n+1/2
0 = αϕ

n+1/2
0 , n ≥ 0. (62)

We consider for simplicity the scheme (36) with constant coefficients and

f
n+1/2
j = 0 written in the form

∆+

τϕ
n
j = r∆2

hϕ
n+1/2
j − rPe∆−

hϕ
n+1/2
j − 2κu

n+1/2
j . (63)
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To use the discrete energy method we multiply (63) with 2ϕ
n+1/2
j and sum it

up for the finite interior range j = 1, 2, . . . , J − 1, using summation by parts:

J−1∑

j=1

[
(ϕn+1

j )2 − (ϕn
j )2
]

= 2r
J−1∑

j=1

ϕ
n+1/2
j ∆2

hϕ
n+1/2
j − 2rPe

J−1∑

j=1

ϕ
n+1/2
j ∆−

hϕ
n+1/2
j − 4κ

J−1∑

j=1

(ϕ
n+1/2
j )2

= −2r
J−1∑

j=0

(
∆+

hϕ
n+1/2
j

)2
+ 2rϕ

n+1/2
J ∆−

hϕ
n+1/2
J − 2rϕ

n+1/2
0 ∆+

hϕ
n+1/2
0

− rPe

J−1∑

j=1

(
∆+

hϕ
n+1/2
j

)2 − rPe

(
ϕ

n+1/2
1

)2
+ rPe

(
ϕ

n+1/2
J

)2

− 2rPeϕ
n+1/2
J ϕ

n+1/2
J−1 + 2rPeϕ

n+1/2
0 ϕ

n+1/2
1 − 4κ

J−1∑

j=1

(ϕ
n+1/2
j )2

≤ −2rϕ
n+1/2
J [(1 + Pe)ϕ

n+1/2
J−1 − (1 +

Pe

2
)ϕ

n+1/2
J ]

− 2r[hα + (1 − hα)2]
(
ϕ

n+1/2
0

)2
.

Finally a summation with respect to the index n yields the following estimate
for the discrete L2–norm (defined by ‖ϕn‖2

2 := h
∑J−1

j=1 |ϕn
j |2)

‖ϕN+1‖2
2 ≤ ‖ϕI‖2

2 −
2µτ

h

N∑

n=0

ϕ
n+1/2
J

[
(1 + Pe)ϕ

n+1/2
J−1 − (1 +

Pe

2
)ϕ

n+1/2
J

]

≤ ‖ϕI‖2
2 −

2µτ

h

N∑

n=0

ϕ
n+1/2
J

(
ϕ

n+1/2
J ∗ ℓ̃(n)

)
,

(64)

where ℓ̃(n) := ℓ(n) − (1 + Pe

2
)δ0

n is given in (48).

Again, as in the continuous case, it remains to show that the boundary–
memory–term at j = J in (64) is of positive type. To do so, we define the
finite sequences

fn = ϕ
n+1/2
J ∗ ℓ̃(n), gn = ϕ

n+1/2
J , n = 0, 1, . . . , N, (65)

with fn = gn = 0 for n > N , i.e.
∑N

n=0 fn gn ≥ 0 is to show. A Z–transformation
using the transformed discrete TBC (47) yields

Z{fn} = f̂(z) =
z + 1

2
ϕ̂N

J (z)
[
ν1(z) − (1 +

Pe

2
)
]

=
1

2r
ϕ̂N

J (z)
{[
z − 1 + κ(z + 1)

]
± +

√
Az2 − 2Bz + C

}
,

(66)

where ϕ̂N
J (z) =

∑N
n=0 ϕ

n
Jz

−n is analytic on |z| > 0. The zeros z1,2 of the square
root above are given by z1,2 = λ−1(υ ±

√
υ2 − 1) with λ, υ defined in (51).
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Typically we have λ > 1, υ > 1 and it can be shown that 0 < z2 < z1 < 1
holds. The expression above in the curly brackets is analytic for |z| > z1 and
continuous for |z| ≥ z1 and therefore f̂(z) is analytic on |z| > z1. Note that
we have to choose the sign in (66) such that it matches with ν1(z) for |z|
sufficiently large. For the second sequence gn we obtain

Z{gn} = ĝ(z) =
z + 1

2
ϕ̂N

J (z), (67)

i.e. ĝ(z) is analytic on |z| > 0. Now the basic idea is to use Plancherel’s theorem
for the Z–transformation:

Theorem 13 (Plancherel’s Theorem [24]) If f̂(z) = Z{fn} exists for |z| >
Rf̂ ≥ 0 and ĝ(z) = Z{gn} for |z| > Rĝ ≥ 0 with Rf̂ Rĝ < 1. Then there also
exists Z{fn ḡn} for |z| > Rf̂ Rĝ and the following relation holds:

∞∑

n=0

fn ḡn = Z{fn ḡn}(z = 1) =
1

2π

∫ 2π

0
f̂(r eiξ) ĝ

(
eiξ

r

)
dξ.

The integration path is the circle C defined by Rf̂ < r < 1/Rĝ (if Rĝ = 0:
Rf̂ < r < ∞). Especially, if Rf̂ < 1, Rĝ < 1 then r = 1 can be chosen to
obtain:

∞∑

n=0

fn ḡn =
1

2π

∫ 2π

0
f̂(eiξ) ĝ(eiξ) dξ.

This theorem gives:

N∑

n=0

fn gn =
1

2π

∫ 2π

0
f̂(z) ĝ(z)

∣∣∣∣
z=eiξ

dξ

=
1

2π

∫ π

0

(
f̂(z) ĝ(z) + f̂(z̄) ĝ(z̄)

)∣∣∣∣
z=eiξ

dξ

=
1

π

∫ π

0
Re

{
f̂(z) ĝ(z)

}∣∣∣∣
z=eiξ

dξ,

where we have used the fact that f̂(z̄) = f̂(z), ĝ(z̄) = ĝ(z), since fn, gn ∈ R.
Using (66), (67) we obtain

N∑

n=0

fn gn =
1

4π

∫ π

0
|z + 1|2

∣∣∣ϕ̂N
J (z)

∣∣∣
2 [

Re {ν1(z)} −
(
1 +

Pe

2

)]∣∣∣∣
z=eiξ

dξ. (68)

We remark that the pole of ν1(z) at z = −1 is “cancelled” by |z + 1|2. From
(68) we conclude that the discrete L2–norm (64) is non–increasing in time if

Re {ν1(e
iξ)} ≥ 1 +

Pe

2
, ∀ξ ∈ [0, 2π], (69)
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holds. This property of ν1 can be shown in the following way. On the unit
circle z = eiξ, 0 ≤ ξ ≤ 2π, we have (z − 1)/(z + 1) = i tan(ξ/2) and thereby

y(z) :=
1

r

(
z − 1

z + 1
+ κ

)
=

1

r

(
κ+ i tan

ξ

2

)
, 0 ≤ ξ ≤ 2π.

Now ν1(z) fulfils simply

ν1(z) − 1 − Pe

2
= y(z) ± +

√

y(z)
(
2 + y(z)

)
+
Pe

2

4

and therefore we obtain the requested property

Re {ν1(z)} − 1 − Pe

2
=
κ

r
+ Re

{
+

√

y(z)
(
2 + y(z)

)
+
Pe

2

4

}
≥ 0,

for z = eiξ, 0 ≤ ξ ≤ 2π.

We then have the following main result of this section:

Theorem 14 The numerical scheme (63) with the discrete TBC (59) and the
boundary condition (62) is stable with the property:

‖ϕn+1‖2
h := h

J−1∑

j=1

(
ϕn+1

j

)2 ≤ ‖ϕ0‖2
h, n ≥ 0. (70)

Remark 15 To remedy the deficiency that our discrete TBC is nonlocal in the
time variable which is noticeable especially in long–time calculations one can
construct a new approximative (local in time) transparent boundary condition
using the approach [25]. This BC is an efficient convolution by an exponential
approximation: only one simple update is needed in each time step to compute
the discrete convolution. However, it is a priori not clear if the monotonicity
property is retained with this approximative TBC.

7 Numerical Example

In this section we want to compare the numerical results from using our dis-
crete TBC (59) to the solution using either the discretized TBC of Mayfield
(38) or the approximative absorbing BC of Halpern (42). Due to its construc-
tion, our discrete TBC yields exactly (up to round–off errors) the numerical
half–space solution restricted to the finite computational interval and thus
serves for an adequate discrete model for air pollution problems.
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Example

In this example we consider the two–dimensional stationary problem (3) and
used the parameters of the problem given in [5]:

u = 5, wg = 0.5, α = 0.1, σ = 0,

ν = 5, Q = 104, H = 100,

on the computational domain z ∈ [0, 200] with the rather coarse grid τ = 10
and h = 5 (which makes the difference in the accuracy more clear).

In the sequel we present the results when using the Crank–Nicolson scheme
(25) based on the perturbed operator (19). Note that we have to employ
forward differencing of the advection term for the stationary problem. We
used the initial data (21) and the boundary condition (62) at the ground
z = 0.

Figures 1 and 2 show some concentration profiles ϕ(z), ϕ(x), respectively.
They are computed at different distances x from the source at z = 100 or
at different heights z with the discrete TBC (59) applied at the artificial
boundary z = 200.
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Fig. 1. Concentration profiles ϕ(z) at different distances from the source at z = 100.

In Figure 3 the (negative) values of the summed coefficients s(n) are presented
in a logarithmic plot. One clearly observes their rapid decay property which
led to the idea of a simplified discrete TBC (59) by cutting off the discrete
convolution after M terms.
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Fig. 2. Concentration profiles ϕ(x) at different heights z.
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Fig. 3. Summed convolution coefficients s(n) for n = 1, . . . , 500.

To measure the induced error (especially at the boundary) we calculate a ref-
erence solution on a three times larger domain (with a discrete TBC). The dif-
ference between the reference solution and the computed solution is called the
reflected part. Figure 4 shows the discrete L2–norm ‖ϕn‖2 := (h

∑J−1
j=1 |ϕn

j |2)1/2

of the reflected part computed with the discrete TBC (59) and in Figure 5 one
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can see the analogous results when using the boundary conditions of Mayfield
and Halpern at z = 200. This illustrates the superiority of our discrete TBC
(59) over both other strategies (observe the different scales!).
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Discrete TBC: Reflected Part

Fig. 4. Discrete TBC: L2–norm of the reflected part (only roundoff–errors occur).
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Fig. 5. Other Approaches: L2–norm of the reflected part.
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The simulation with the discretized TBC (38) from Mayfield requires the
same numerical effort but the computed solution deviates (especially on coarse
grids) from the half–space solution. The discretization of Mayfield is conver-
gent (if a stability condition is fulfilled). The numerical results with the first
order boundary condition (42) from Halpern are slightly better than the one
with (38) but worse than the results with the simplified discrete TBC (61)
with M = 20, which has comparable computational costs.

We emphasize the fact that the reflections due to the artificial boundary con-
ditions (38), (42) are not that strong in this specific example taken from the
literature [5]. This is due to the fact that only a very small amount of the
concentration ϕ passes the artificial boundary at z = 200 (cf. Figure 1). How-
ever, if the computational domain is chosen smaller or if (for the transient
problem (2)) the concentration is advected towards the artificial boundary,
then the numerical reflections become much more apparent. Thus we reduce
the computational domain to z ∈ [0, 120] and plotted the corresponding re-
sults in Figure 6. The results are comparable to the ones shown in Figure 5.
However, the magnitude of the error is now significantly larger and the peak
of the error curve is reached earlier due to the smaller size of the domain. Fi-
nally we present in Figure 7 a comparison of the computational effort for the
different approaches (for 10000 steps using the MATLAB function cputime).
One observes that the Mayfield approach is even more costly than the exact
discrete TBC and the computational cheapest artificial boundary condition in
this example is the one of Halpern (42).
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Fig. 6. L2–norm of the reflected part for the reduced computational domain.
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Fig. 7. Computational effort for the reduced computational domain and 10000 steps.

The reader is refered to [22, Chapter 2] for a detailed comparison study of the
presented approaches for general advection–dffusion problems.

Conclusion

In this work we considered problems of air and water pollution. We discussed
the concepts of monotonicity and positivity and presented adequate difference
schemes that fulfill these requirements. For the numerical solution of an un-
bounded domain we constructed (discrete) transparent boundary conditions
and proved the well–posedness of the analytic problem and the stability of the
resulting scheme. Finally a numerical example showed the usefulness of our
approach.

Future work will be concerned with nonuniform grids w.r.t. z, non–flat do-
mains (mountains) and the propagation of active pollutants (e.g. ozone).
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