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Abstract: For the simulation of the propagation of optical waves in the open waveguiding structures of the integrated optics the 

beam propagation method of solution of the parabolic wave equation is commonly used. It is of paramount importance to have 

well-performing transparent boundary conditions applied on the boundaries of the computational window, to enable the 

superfluous portion of the propagating wave to radiate away from the waveguiding structure. Three different formulations 

(continuous, semi-discrete and fully-discrete) of the non-local transparent boundary conditions are introduced and compared 

here. 
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INTRODUCTION 

For the computer modelling of the propagation of op-
tical waves in the open waveguiding structures of the 
integrated optics often the scalar parabolic wave equation 
is used. For a correct solution it is of paramount im-
portance to have appropriate transparent boundary con-
ditions formulated on the boundaries of the computa-
tional window, which enable the superfluous portion of 
the propagating wave to radiate away from the compu-
tational window and the waveguiding structure. For the 
two-dimensional parabolic equation (planar waveguiding 
structures) usually the continuous transparent boundary 
condition as formulated by e.g. Baskakov and Popov [1] 
with its subsequent discretisation has been used for 
simulations of photonic structures [2]. However, by the 
ad hoc discretisation of the continuous formulae an extra 
error is introduced. The semi-discrete formulation [3] 
may improve the situation. Recently published fully-
discrete formulation of the transparent boundary 
conditions [4] is naturally compatible with the fully 
discrete finite-differences Crank-Nicolson method 
commonly used in the beam propagation method. 

In the case of longitudinally invariant planar struc-
tures the propagation of the electromagnetic waves in 
scalar and parabolic approximation is governed by the 
Maxwell equations 
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where the electromagnetic field vectors and material 
constants have their usual meaning. By an usual proce-
dure from (1) the wave equation 
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for any Cartesian component f t( , )r of the field vectors 

E r( , )t , H r( , )t can be obtained. For monochromatic, 
i.e. harmonically-in-time oscillating wave in the complex 
representation given by 
 f t j t( , ) ( ) exp( )r r= ϕ ω  (3) 

one obtains for the complex wave amplitude ϕ( )r  

 ∇ + =2 2 0ϕ β ϕ( ) ( )r r , (4) 

where β ω µε=  is the propagation constant. If the 

wave has a particularly developed direction of propaga-
tion, say in Cartesian coordinates y , then one can strip-

off rapid oscillations in this direction from the complex 
wave amplitude by the substitution 
 ϕ ψ( , , ) ( , , ) exp( )x y z x y z jky= − . (5) 

Then instead of (4) one obtains 
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For wave propagation in homogeneous space, where 
µ ε, = const , k  can be set equal β  and (6) simplifies 

into 
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In what follows we shall consider only two-dimen-
sional problems (planar structures), i.e. the spatial co-
ordinate variable z  is omitted. If the spatial variations of 
the wave amplitude are slow compared to the fast 
oscillations of the carrier frequency, i.e. ∂ψ ∂y k<< , 

then the second derivative with respect to y  in (7) can 

be neglected and one arrives to the wave equation in 
parabolic approximation (sometimes called the Fresnel 
equation) 
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The variable x  means the transversal coordinate and 
the wave propagates along the longitudinal coordinate 
y . In case of waveguiding structures the phase constant 

β  may be a function of the transversal variable, 

β β= ( )x , particularly for homogeneous waveguides it is 

a kind of by-parts-constant function.  

 

1 CONTINUOUS TRANSPARENT BOUNDARY 

CONDITIONS 

If the equation (8) should be solved numerically the 
transversal variable x  must be bounded to some interval, 
say x x∈( , )max0  called computational window. In 

course of wave propagation the wave front changes due 
to the self-diffraction, the wave, in general, diverges 
(apart of some special cases) and thus also the wavefront 
originally bounded within the computational window 
reaches the boundaries and will be out-radiated 
throughout the computational window. The problem of 
transparent boundaries consists in formulating such 
boundary conditions for ψ( , )x y  that on the "left" 

boundary x = 0  only the wave propagating to the left, 
and on the "right" boundary x x= max  only the wave 

propagating to the right exists, i.e. no reflections on the 
boundaries occur. 

 The parabolic wave equation (8) can be formally 
written as 
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and factorised into two one-way wave equations, i.e. 
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where each one characterizes the wave propagating 
either in the −x  or in the +x  direction with the formal 
solution 
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The transparent boundary conditions have to guarantee 
that the wave amplitude fulfils on the left boundary, 
x = 0 , relation (12) with the upper sign and on the right 
boundary, x x= max , the same with the lower sign. 

Taking Laplace transform of ψ( , )x y in y -variable, 

i.e. 

 Ψ( , ) ( , ) exp( )x p x z py dy= −

∞

zψ
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and substituting into the parabolic wave equation (8) 
yields 
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Solution of (14) reads 
Ψ1 2, ( , )x p =  

= ± − − −RST
UVWΨ( , ) exp j( )x p x x k kp0 0

2 2 2β j ,     (15) 

i.e. it consists of two transversally propagating waves, 
either along the negative (upper sign) or along the posi-
tive (lower sign) direction of the x-axis. These two so-
lutions represent in the Laplace transform domain the 
solution (12) of the two corresponding "one-way" wave 
equations (11). 

Differentiating (15) yields the relation between 
Ψ( , )x p and its derivative ∂ ∂Ψ( , )x p x  
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The inverse Laplace transform of (17) yields the 
convolution integral 
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If one may set k = β  then (18) is simplified into 
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This formula (19) is called impedance formulation and is 
identical to the original Baskakov & Popov's formula [1]. 
In (18) and(19) the values in boundary points 
( , ) ( , )x y y= 0 0 , or ( , ) ( , )maxx y x y= 0  are expressed 

through the derivative of boundary values in all 
"previous" boundary points ( , ) ( , ) ( , )x y y∈ ÷0 0 0 0 , or 

( , ) ( , ) ( , )max max maxx y x x y∈ ÷0 0 . Thus both formulas 

(18) and (19) are non-local, which in fact rather com-
plicates their application. On the other hand the initial 
integration point in (18) and (19) is arbitrary, i.e. the 
integration path can be, at least conceptually, kept of 
constant length. Using thus this relation the reflections 
of waves in the boundary points x = 0  and x x= max  are 

prohibited. 

2 FIRST DISCRETISATION: DISCRETE 

PROPAGATION DIRECTION 

For the numerical computer simulation the wave 
amplitude profile ψ( , )x y  has to be taken in the set of 

discrete points ( , )x ym n , i M= 0 1 2, , , ..., , 

n = 0 1 2, , ,... yielding thus the set of discrete values. Let 

us first consider discretisation along the propagation 
coordinate y , i.e. taking the discrete values of ψ( , )x y  

in equidistant points y nn y= ∆ , 

 
 ψ ψ ψ( , ) ( , ) ( )x y x n xn y n= =∆ . (20) 

Using the implicit Crank-Nicolson strategy the semi-
discretised formulation of (8) takes the form 
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Instead of Laplace transform (13) for continuous ψ( , )x y  

it is quite natural to take the Z-transform 
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for the discrete sequence { ( )}
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x
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"shift" property of the Z-transform (21) yields 
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In analogy to (16) one obtains 
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or in the form 
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or in case k = β  
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Since the values fn  in the Z-transform 
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are in fact the coefficients of the Taylor series in variable 
1 z  of F z( )  and to the product G z F z H z( ) ( ) ( )=  in the 

Z-domain corresponds the discrete convolution of 
originals 

 g f hn n k k

k

n

= −

=
∑

0

, (29) 

one needs to obtain the Taylor series coefficients in case 
(26) of the term 
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or in the case (27) of the term  
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As shown in [3]  
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The resulting discrete convolution formula then reads 
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3 SECOND DISCRETISATION: DISCRETE 

TRANSVERSAL DIRECTION 

The second discretisation yields a two-dimensional 
array of values 
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for m M∈( , )0 , where ∆ x  and ∆ y  are (in our case 

equidistant) discretisation intervals. The computational 
window is ( , ) ( , )max0 0x M y= ∆ . Using the central 

second differences in Crank-Nicolson discretisation 
scheme one arrives to the discrete formula analogous to 
(21) 
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This Crank-Nicholson formula is known to conserve 
power within the computational window and therefore it 
is especially suitable for the wave propagation compu-
tations.  

After again having (36) Z-transformed in the propa-
gation direction one obtains the discrete pendant to (23) 
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The solution to this difference equation of the second 
order is 
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For the simple case k = β  one obtains 
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The analytical inversion of (39), (40) has been ob-
tained in [4] where also thorough analysis of various 
rather subtle mathematical aspects of the technique is 
presented. 

The resulting formula in form of a convolution is 
now 

 ψ ψm
n

m
n k

k

k

n

h= −
−

=
∑ 1

0

, (41) 

where 

  1 1 1
2

0

− ± − − = −

=

∞

∑A z A z h zn
n

n

( ) ( ) . (42) 

4 NUMERICAL IMPLEMENTATION 

For numerical simulations solely the full Crank-Ni-
colson formula (36) is used. It can be written in the form 
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i.e. the unknowns ψ i
n+1 , i M= −1 2 1, ,..., on the left 

sides of (43)-(45) are expressed by the known values in 

the previous layer ψ i
n , i M= 0 1 2, , , ..., and by the must-

be-known boundary values ψ0
1n+ , ψ M

n+1 . This is an 

implicit type of discretisation scheme, i.e. it requires the 
solution of a tridiagonal system of equations for each 
step in the propagation direction y. 

All three formulas (18), (34) and (41) can be easily 
embodied into the Crank-Nicholson scheme. The values 
of continuous x -derivatives in (18) and in (41) must be 
in boundary points first approximated by their discrete 
two-point, or three-point counterparts. 
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 If using (18) the approximate values of derivatives in 
the boundary points are linearly interpolated along the 
y -direction, i.e. for y y yn n∈ −( , )1  
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and substituted into (18) with the result for the N-th 
computational layer 
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After the integration one obtains ψ0
N  related to ψ1

N  and 

to all pairs of previous values ψ0
n  and ψ1

n , 

n N= −0 1 2 1, , ,... . The unknown value of ψ0
N  expressed 

by the known values ψ0
n  and ψ1

n , n N= −0 1 2 1, , ,...  

and unknown value ψ1
N  can be then inserted into (43) 

and ψ1
N  shifted again to the left side to unknowns. For 

example for the first step the integration domain in (51) 
spans over of only one step in the y-direction with the 
result 
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where D ky x= ∆ ∆2 2πj . Analogous formulas can be 

obtained for the "right" boundary point x x= max . 

As already mentioned the main drawback of all three 
formulations is the non-locality of the boundary 
conditions, i.e. for the successful application of the TBC 
one has to keep track of all previous derivatives in 

boundary points δψ0
n , δψM

n , n N= −0 1 2 1, , ,...  up to 

the actually calculated layer n N= . 

5 RESULTS OF NUMERICAL COMPUTATION 

We illustrate the performance of the continuous and 
semi-discrete boundary conditions using the case of an 
asymmetrical photonic slab waveguide with the 
waveguiding slab thickness of 10. µm with the refractive 
index ng = 324.  (the characteristic value 

  

  

Fig. 1 - Illustrative results to Table I first column 

for GaAs-InP semiconductor waveguides) with the re-
fractive index of the substrate n1 316= .  and the refrac-

tive index of the superstrate equal to n2 2 0= . . The fun-

damental mode of this waveguide is given by 
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In our case a = 05. µm and for the commonly used free-
space wavelength of used radiation λ0 15= . µm one ob-

tains the exact values of the q = 214325. µm-1, 

κ1 2 09522= . µm-1, κ2 104601= . µm-1, ζ = 029725. rad 

with  

 η β= − −g q k k2 2 2 2  (54) 

depending on the arbitrarily chosen value of k, where 
β π λg gn= 2 0 . The modus profile is the exact solution 

of the full wave equation 
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with η β= − −g q k2 2 2 . For the above parameters 

βg q2 2 016588− = . µm-1. The width of the computa-

tional window was taken b = 10. µm with Gaussian input 
profile distribution in the form 

 ψ( , ) expx x W0 2
0
2= −e j  (56) 

where W0  is the effective width of the Gaussian 

profile.  

For benchmark simulations it was taken either much 
larger than the modus profile with W0 5= µm, or much 

smaller with W0 005= . µm, representing thus either 

nearly a plane wave with nearly constant distribution 
within the computational window or the excitation by 
nearly point source of the spherical wave.  

 

  

Fig. 2 - Illustrative results for Table I second column 

The accuracy of calculation was assessed by calculat-
ing the correlation factor between exact modus profile 
and simulated propagating wave profile. The illustrative 
results of computations are presented in Figures 1 
through 3 and the differences of the correlation from the 
unity are presented in Tables I through IV. In Table I 
and II the waveguide was excited by the broad Gaussian 
profile wave (nearly the plane wave) while in the Table 
III and IV by the narrow Gaussian profile wave (nearly 
the spherical wave). 

 

  

Fig. 3 - Illustrative results for Table III first column 

 

Table I 

Correlation difference from unity for nearly plane wave 

Propagation length 1.8 mm with 2400 steps 

 formula (18) formula (33) formula (19) 

k = 13.23 .7769D-05 .5247D-4 .5395D-03  

k = 8.37 .7384D-01 .8852D-2 .1972D-02 

k = 13.57 .2505D-04 .9821D-3 .4496D-03 

k = 13.40 .2337D-04 .7772D-3 .4941D-03 

 



 

The numerical results presented in Table I are for 
∆ y = λ / 2  for the propagation length y = 1800 µm, i.e. 

total of 2400 steps had been calculated. In Table II 
∆ y = λ / 16  for the propagation length 1800y = µm, i.e. 

total of 19200 steps had been calculated. In the Table III 
and IV again ∆ y = λ / 2  and ∆ y = λ / 16  for 

5400y = µm, i.e. for 7200 and 57600 steps respectively. 

The results indicate that the performance of the trans-
parent boundary conditions depends in all cases strongly 
on the choice of the constant k. 

Table II 

Correlation difference from unity for nearly plane wave 

Propagation length 1.8 mm with 19200 steps 

 formula (18) formula (33) formula (19) 

k = 13.23 .6363D-05 .3588D-04 .5485D-03 

k = 8.37 .2471D+00 .9652D-03 .1354D-04 

k = 13.57 .2303D-04 .9952D-04 .1979D-03 

k = 13.40  .3190D-03 .4468D-04 .2140D-04 

 

Table III 

Correlation difference from unity for nearly spherical wave 

Propagation length 5.4 mm with 7200 steps 

 formula (18) formula (33) formula (19) 

k = 13.237 .9673D-03 .1855D-03 .2386D-03 

k = 8.377 .1295D-02 .1777D-03 .1933D-02 

k = 13.578 .9716D-03 .2777D-03 .2847D-03 

k = 13.405 .1042D-02 .1255D-03 .2406D-03 

 

Table IV 

Correlation difference from unity for nearly spherical wave 

Propagation length 5.4 mm with 57600 steps 

 formula (18) formula (33) formula (19) 

k = 13.23 .5627D-04 .4842D-04 .4969D-04 

k = 8.377 .1338D-04 .5247D-01 .3259D+00 

k = 13.57 .4903D-04 .5528D-4 .6465D-04 

k = 13.40 .5092D-04 .5996D-04 .6435D-04 

 

6 CONCLUSIONS 

Preliminary numerical results for the asymmetric slab 
waveguide using the formulae (34) for semi-discrete 
formulation of transparent boundary condition (TBC) in 
connection with (31) and (33) as well as the results using 
the discretised continuous TBC accordingly (18) and 
(19) show that the performance of the transparent 
boundary conditions is in a complicated way dependent 
on many factors as e.g. the step length yD , total number 

of steps, nature of excitation etc. There is no substantial 
difference between the performances of respective TBC 

even if the nonzero term β2 2− k  is not taken into 

account. No simple recipe can be given as for the 
prediction of the performance. In all cases the worst 
performance shows the case when k = 837758. . However 
for the sufficiently small ∆ y  the correlation between the 

stationary distribution after sufficiently long propagation 
path and exact modus profile is satisfactory for methods 

used. Anyhow the formula with β2 2− k  term performed 

better always when the value of the constant k has been 
chosen in such a way that the oscillations of the slowly 
varying envelope were significant. In this series of 
simulations the semi-discrete method with embodied 

β2 2− k  term was not used yet, neither was used the 

third (fully discrete formulation) method. Their 
properties require further investigation. A thorough 
review and some outlook of mathematical aspects of 
TBC can be found in recent publication [5]. 
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