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Abstract

Nonlinear Black–Scholes equations have been increasingly attracting inte-
rest over the last two decades, since they provide more accurate values by
taking into account more realistic assumptions, such as transaction costs,
illiquid markets, risks from an unprotected portfolio or large investor’s pre-
ferences, which may have an impact on the stock price, the volatility, the
drift and the option price itself.
In this work we will be concerned with several models from the most rele-
vant class of nonlinear Black–Scholes equations for European and American
options with a volatility depending on different factors, such as the stock
price, the time, the option price and its derivatives, where the nonlinearity
results from the presence of transaction costs.
In the European case we will consider a European Call option and analyti-
cally approach the option price by transforming the problem into a forward
convection-diffusion equation with a nonlinear term. In case of American
options we will consider an American Call option and transform this free
boundary problem into a fully nonlinear parabolic equation defined on a
fixed domain following Ševčovič’s idea [72].
Finally, we will present the numerical results of different discretization
schemes for European and American options for various volatility models
including Leland’s model, Barles’ and Soner’s model and the Risk Adjusted
Pricing Methodology.
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Zusammenfassung

Nichtlineare Black-Scholes Gleichungen sind im Laufe der letzten Jahre
immer mehr in den Vordergrund gerückt, da sie eine genauere Options-
preisbestimmung ermöglichen, indem sie realistischere Annahmen treffen
und Transaktionskosten, illiquide Märkte, Risiken durch ein ungeschütztes
Portfolio oder die Effekte durch große Händler berücksichtigen. Diese Zu-
satzannahmen können im Black-Scholes-Modell sowohl den Aktienpreis, als
auch die Volatilität, den Trend und den Optionspreis beeinflussen und da-
durch die Modelleigenschaften verändern.
In dieser Arbeit konzentrieren wir uns auf die relevanteste Klasse der nicht-
linearen Black-Scholes-Gleichungen für europäische und amerikanische Op-
tionen, die die Transaktionskosten berücksichtigt. Diese können durch eine
modifizierte Volatilität modelliert werden, so dass die Volatilität sowohl
vom Aktienpreis und der Zeit, als auch vom dem Optionspreis und des-
sen Ableitungen abhängt. Dadurch wird die partielle Differentialgleichung
nichtlinear.
Wir stellen diverse Volatilitätsmodelle zum Einbeziehen der Transaktions-
kosten vor - unter anderem das Modell von Leland, das Modell von Barles
und Soner und die risikoangepasste Bewertungsmethode - und wenden die-
se auf eine europäische und amerikanische Call Option an.
Auf analytischer Ebene transformieren wir das Problem für die europäische
Call Option in eine vorwärts Konvektions-Diffusions-Gleichung mit einem
nichtlinearen Term. Im Falle der amerikanischen Call Option untersuchen
wir das freie Randwertproblem und transformieren es in eine nichtlineare
parabolische Gleichung auf einem festen Ortsgebiet.
Da diese Probleme keine analytische Lösung besitzen, stellen wir mehrere
Diskretisierungsverfahren zu ihrer Lösung vor und lösen sie numerisch. Da-
bei konzentrieren wir uns auf die Methode der Finiten Differenzen.
Schliesslich präsentieren wir die Ergebnisse einiger klassischer und moder-
ner kompakter Diskretisierungsschemata für mehrere Volatilitätsmodelle
und vergleichen diese.
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Notation

Option Variables
t time
T expiry or expiration time
S, S(t) price of the underlying asset at time t
K strike price
V , V (S, t) value of an option
V eur value of a European option
V am value of an American option
σ constant volatility
σ̃(·) modified (nonconstant) volatility function
µ drift rate
r riskless interest rate in the bank
q dividend rate

Transformed Option Variables
τ transformed time variable

T̃ transformed expiry or expiration time
x transformed spatial variable
u, u(x, τ) transformed option value for European options
Π, Π(x, τ) synthetic portfolio for American options

Abbreviations
DJIA Dow Jones Industrial Average
S&P 500 Standard and Poor’s 500
ODE Ordinary Differential Equation
PDE Partial Differential Equation
SDE Stochastic Differential Equation
RAPM Risk Adjusted Pricing Methodology
PSOR Projected Successive Over Relaxation

Mathematical Symbols
R set of real numbers
R

+ set of real numbers > 0
N set of integers > 0
∈ element in
:= defined to be

xi
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Mathematical Symbols continued
�→ maps to
� transposed
Ck([a, b]) k times continuously differentiable functions
f+ := max(f, 0)

sign(x) :=

⎧⎨⎩
1 x > 0
0 x = 0
−1 x < 0

O(hr) Landau-symbol

Grid Variables
h step size in the spatial variable
k step size in the time variable
i index for the spatial step (xi = ih)
n index for the time step (τn = nk)



Chapter 1

Introduction

1.1 Financial Derivatives

The interest in pricing financial derivatives - among them in pricing op-
tions - arises from the fact that financial derivatives, also called contingent
claims, can be used to minimize losses caused by price fluctuations of the
underlying assets. This process of protection is called hedging. There is
a variety of financial products on the market, such as futures, forwards,
swaps and options. In this work we will focus on European and American
Call and Put options.

Definition: A European Call option is a contract where at a
prescribed time in the future, known as the expiry or expiration date T ,
the holder of the option may purchase a prescribed asset, known as the
underlying asset or the underlying S(t), for a prescribed amount, known
as the exercise or strike price K. The opposite party, or the writer, has
the obligation to sell the asset if the holder chooses to buy it.

At the final time T the holder of the European Call option will check the
current price of the underlying asset S := S(T ). If the price of the asset
is greater than the strike price, S ≥ K, then the holder will exercise the
Call and buy the stock for the strike price K. Afterwards, the holder will
immediately sell the asset for the price S and make a profit of V = S −K.
In this case the cash flow, or the difference of the money received and spent,
is positive and the option is said to be in-the-money. If S = K, the cash
flow resulting from an immediate exercise of the option is zero and the
option is said to be at-the-money. In case S ≤ K, the cash flow is negative
and the option is said to be out-of-the-money. In the last two cases the
holder will not exercise the Call option, since the asset S can be purchased
on the market for K or less than K, which makes the Call option worthless.
Therefore, the value of the European Call option at expiry, known as the
pay-off function, is

V (S, T ) = (S − K)+.

Definition: Reciprocally, a European Put option is the right to sell
the underlying asset S(t) at the expiry date T for the strike price K. The
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2 1. Introduction

holder of the Put may exercise this option, the writer has the obligation to
buy it in case the holder chooses to sell it (see e.g. [74]).

The Put is in-the-money if K ≥ S, at-the-money if K = S and out-of-
the-money if K ≤ S. The pay-off function for a European Put option is
therefore

V (S, T ) = (K − S)+.

The pay-off functions for the European Call and Put option are plotted in
Figure 1.1 from the perspective of the holder. This perspective is called
the long position. The perspective of the writer, or the short position, is
reversed and can be seen when the pay-off functions in Figure 1.1 are mul-
tiplied by −1. That means that the writer of a European Call option is
taking the risk of a potentially unlimited loss and must carefully design a
strategy to compensate for this risk (see e.g. [61]).

V

S

European Call

0 K

V

S

European Put

0 K

K

Figure 1.1: Pay-off functions for European options with a strike price K.

While European options can only be exercised at the expiry date T , Ame-
rican options can be exercised at any time until the expiration, which
complicates their pricing process significantly.
It is a known consequence that the value of an American option V am can
never be smaller than the value of a European option V eur, because an
American option includes at least the same rights as the corresponding
European option. That is:

V am ≥ V eur.

Whether the values are equal depends on the dividend yield q, which de-
scribes the percentage rate of the returns on the underlying asset. Assuming
that the underlying stock S pays no dividends, the values of a European
and an American Call option are equal if all the other parameters remain
the same (for details see [31, 78]). In case of an American Put option with-
out dividend payments it can often be advantageous to exercise it before
expiry, so that the values of a European and an American Put can differ
substantially.
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In the presence of a continuous dividend payment the fair price V (S, 0)
of both an American Call and Put option is greater than the value of a
European Call or Put. These facts are illustrated in Figure 1.2.

K
 

 

S

V
(S

,0
)

European Call
American Call
Pay−Off V(S,T)

(a) American vs. European Call option in
the presence of a dividend payment.

K

K

S

 

 

V
(S

,0
)

European Put
American Put
Pay−off V(S,T)

(b) American vs. European Put option.

Figure 1.2: Schematical values of American vs. European options at t = 0.

Furthermore, it should be mentioned that the value of a Call option on an
underlying without a dividend payment is always greater than the value
of a Call option on an underlying with a dividend payment for both Eu-
ropean and American options. For European and American Put options
on an underlying without a dividend payment the value is less than on an
underlying with a dividend payment. The influence of a dividend payment
is summarized in Figure 1.3.
Options, whose pay-offs only depend on the final value of the underlying
asset, are called vanilla options. Options, whose pay-offs depend on the
path of the underlying asset, are called exotic or path-dependent options.
Examples are Asian, Barrier and lookback options. In this thesis, we will
be concerned with plain vanilla European and American options.

1.2 Linear Black-Scholes Equations

Option pricing theory has made a great leap forward since the development
of the Black-Scholes option pricing model by Fischer Black and Myron
Scholes in [7] in 1973 and previously by Robert Merton in [51]. The solution
of the famous (linear) Black-Scholes equation

0 = Vt +
1

2
σ2S2VSS + rSVS − rV, (1.1)

where S := S(t) > 0 and t ∈ (0, T ), provides both an option pricing
formula for a European option and a hedging portfolio that replicates the
contingent claim assuming that (see [61]):

• The price of the asset price or underlying asset S follows a Geometric
Brownian motion, meaning that if W := W (t) is a standard Brownian
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(a) European Call option with various div-
idend yields q.
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(b) European Put option with various div-
idend yields q.
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(c) American Call option with various div-
idend yields q.
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(d) American Put option with various div-
idend yields q.

Figure 1.3: The influence of a dividend yield.

motion (see Appendix B.6), then S satisfies the following stochastic
differential equation (SDE):

dS = µSdt + σSdW.

• The trend or drift µ (measures the average rate of growth of the
asset price), the volatility σ (measures the standard deviation of the
returns) and the riskless interest rate r are constant for 0 ≤ t ≤ T
and no dividends are paid in that time period.

• The market is frictionless, thus there are no transaction costs (fees
or taxes), the interest rates for borrowing and lending money are
equal, all parties have immediate access to any information, and all
securities and credits are available at any time and any size. That
is, all variables are perfectly divisible and may take any real number.
Moreover, individual trading will not influence the price.

• There are no arbitrage opportunities, meaning that there are no op-
portunities of instantly making a risk-free profit (”There is no such
thing as free lunch”).
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Under these assumptions the market is complete, which means that any
derivative and any asset can be replicated or hedged with a portfolio of
other assets in the market (see [69]). Then, it is well-known that the linear
Black–Scholes equation (1.1) can be transformed into the heat equation
and analytically solved to price the option [74]. The derivation of the so-
lution can be found in [61], the formulae for the European Call and Put
options are attached in Appendix C.
For American options, in general, analytic valuation formulae are not avail-
able, except for a few special types, which we are not going to address in
this thesis. Those types are Calls on an asset that pays discrete dividends
and perpetual Calls and Puts - meaning Calls and Puts with an infinite time
to expiry [47]. For the other types, there are various kinds of analytical
and numerical approximations that will be discussed in Chapter 4.

1.3 Nonlinear Black-Scholes Equations

It is easy to imagine that the restrictive assumptions mentioned in the pre-
vious section are never fulfilled in reality. Due to transaction costs (see
[4, 9, 48]), large investor preferences (see [28, 29, 60]) and incomplete mar-
kets [64] they are likely to become unrealistic and the classical model results
in strongly or fully nonlinear, possibly degenerate, parabolic convection-
diffusion equations (see Appendix A), where both the volatility σ and the
drift µ can depend on the time t, the stock price S or the derivatives of the
option price V itself. In this work we will be concerned with several trans-
action cost models from the most relevant class of nonlinear Black–Scholes
equations for European and American options with a constant drift µ and
a nonconstant modified volatility function

σ̃2 := σ̃2(t, S, VS, VSS).

Under these circumstances (1.1) becomes the following nonlinear Black-
Scholes equation, which we will consider for European options:

0 = Vt +
1

2
σ̃2(t, S, VS, VSS)S2VSS + rSVS − rV, (1.2)

where dS = µSdt + σ̃SdW , S > 0 and t ∈ (0, T ).
Studying (1.1) for an American Call option would be redundant, since the
value of an American Call option equals the value of a European Call option
if no dividends are paid and the volatility is constant. In order to make the
model more realistic, we will consider a modification of (1.2) for American
options, where S pays out a continuous dividend qSdt in a time step dt:

0 = Vt +
1

2
σ̃2(t, S, VS, VSS)S2VSS + (r − q)SVS − rV, (1.3)

where S follows the dynamics dS = (µ − q)Sdt + σ̃SdW , S > 0, t ∈ (0, T )
and the dividend yield q is constant.
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Remark 1.1. Most dividend payments on an index - such as the Dow Jones
Industrial Average (DJIA) or the Standard and Poor’s 500 (S&P500) - are
so frequent that they can be modeled as a continuous payment, which is
the case in (1.3). However, if companies only make two or four dividend
payments per year, then one has to treat the dividend payments discretely
and the question of how to incorporate discrete dividend payments into
the Black–Scholes equation arises.
Even though in this work we will focus on the case of continuous dividend
payments, we briefly review the results for discrete dividend payments from
[75] in the sequel.
We assume that there is only one dividend payment of the dividend yield
q during the lifetime of the option at the dividend date tq. Neglecting
other factors, such as taxes, the asset price S must decrease exactly by the
amount of the dividend payment q at time tq. Thus we have the jump
condition

S(t+q ) = (1 − q)S(t−q ),

where t−q , t+q denote the moments just before and after the dividend date tq.
This leads to the following effect on the option price:

V (S, t−q ) = V ((1 − q)S, t+q ), (1.4)

i.e. the value of the option at S and time t−q is the same as the value
immediately after the dividend date tq but at the asset value (1 − q)S. In
order to calculate the value of a Call option with one dividend payment we
solve the Black–Scholes equation from expiry t = T until t = t+q and use
the relation (1.4) to compute the values at t = t−q . Finally, we continue to
solve the Black–Scholes equation backwards starting at t = t−q using these
values as the initial data. The boundary conditions, that are discussed in
the next section, do not need to be modified for this case.

In the mathematical sense equations (1.2) and (1.3) are called convection-
diffusion equations. The second-order term 1

2
σ̃2(t, S, VS, VSS)S2VSS is re-

sponsible for the diffusion, the first-order term rSVS or (r − q)SVS is the
convection term and −rV can be interpreted as the reaction term (see
[61, 73]).
In the financial sense, the partial derivatives indicate the sensitivity of the
option price V to the corresponding parameter and are called Greeks. The
option delta is denoted by ∆ = VS, the option gamma by Γ = VSS and the
option theta by θ = Vt [37].

1.4 Terminal and Boundary Conditions

In order to find a unique solution for the equation (1.2) we need to complete
the problem by stating the terminal and boundary conditions for both the
European Call and Put option.
Since American options can be exercised at any time before expiry, we
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need to find the optimal time t of exercise, known as the optimal exercise
time. At this time, which mathematically is a stopping time (see Appendix
B.5), the asset price reaches the optimal exercise price or optimal exercise
boundary Sf (t). This leads to the formulation of the problem for American
options by dividing the domain [0,∞[×[0, T ] of (1.3) into two parts along
the curve Sf (t) and analyzing each of them (see Figure 1.4). Since Sf (t)
is not known in advance but has to be determined in the process of the
solution, the problem is called free boundary value problem (see e.g. [78]).
For different numerical approaches, the free boundary problem for Ame-
rican options can be reformulated into a linear complementary problem, a
variational inequality and a minimization problem [31]. Here, we will only
consider the formulation as a free boundary problem.
Even though we will focus on Call options in this thesis, we state the con-
ditions for Put options for the sake of completeness.

1.4.1 European Call Option

The value V (S, t) of the European Call option is the solution to (1.2)
on 0 ≤ S < ∞, 0 ≤ t ≤ T with the following terminal and boundary
conditions:

V (S, T ) = (S − K)+ for 0 ≤ S < ∞
V (0, t) = 0 for 0 ≤ t ≤ T (1.5)

V (S, t) ∼ S − Ke−r(T−t) as S → ∞.

1.4.2 European Put Option

Reciprocally, the value V (S, t) of the European Put option is the solution
to (1.2) on 0 ≤ S < ∞, 0 ≤ t ≤ T with the pay-off function for the Put as
the terminal condition and the boundary conditions:

V (S, T ) = (K − S)+ for 0 ≤ S < ∞
V (0, t) = Ke−r(T−t) for 0 ≤ t ≤ T (1.6)

V (S, t) → 0 as S → ∞.

1.4.3 American Call Option

For the American Call option the spatial domain is divided into two regions
by the free boundary Sf (t), the stopping region Sf (t) < S < ∞, 0 ≤ t ≤
T , where the option is exercised or dead with V (S, t) = S − K and the
continuation region 0 ≤ S ≤ Sf(t), 0 ≤ t ≤ T , where the option is held
or stays alive and (1.3) is valid under the following terminal and boundary
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conditions (see Figure 1.4(a)):

V (S, T ) = (S − K)+ for 0 ≤ S ≤ Sf (T )

V (0, t) = 0 for 0 ≤ t ≤ T

V (Sf(t), t) = Sf(t) − K for 0 ≤ t ≤ T (1.7)

VS(Sf(t), t) = 1 for 0 ≤ t ≤ T

Sf (T ) = max(K, rK/q).

For the sake of simplicity we will assume r > q in this work, and therefore
we have Sf(T ) = rK/q for the American Call.
The structure of the value of an American Call can be seen Figure 1.5(a),
where we notice that the free boundary Sf(t) determines the position of
the exercise. The exercising and holding regions are illustrated in Figure
1.4(a).

hold exercise

S
0

T

t

Sf (0)Sf (T )

Sf(t)

(a) American Call.

holdexercise

S
0

T

t

Sf(0) Sf(T )

Sf(t)

(b) American Put.

Figure 1.4: Exercising and holding regions for American options.

1.4.4 American Put Option

The American Put option is exercised in the stopping region 0 ≤ S < Sf(t),
0 ≤ t ≤ T where it has the value V (S, t) = K−S (see Figure 1.4(b)). In the
continuation region Sf (t) ≤ S < ∞, 0 ≤ t ≤ T the Put option stays alive
and (1.3) is valid under the following terminal and boundary conditions:

V (S, T ) = (K − S)+ for Sf (T ) ≤ S < ∞
lim

S→∞
V (S, t) = 0 for 0 ≤ t ≤ T

V (Sf(t), t) = K − Sf (t) for 0 ≤ t ≤ T (1.8)

VS(Sf(t), t) = −1 for 0 ≤ t ≤ T

Sf(T ) = min(K, rK/q).

Since we assumed that r > q, we have Sf (T ) = K for the American Put.
In Figure 1.5(b) we can see how the free boundary Sf(t) determines the
structure of an American Put.
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V (S, t)

K

S

0

T t

Sf (0)

Sf (T )

Sf (t)

(a) American Call.

V (S, t)

K

K

S

0

T

t

Sf (0)

Sf (T )
Sf (t)

(b) American Put.

Figure 1.5: Schematical values V (S, t) of American options.

1.5 Outline

The structure of this thesis is as follows. In the following chapter (Chapter
2) several nonconstant volatility models that lead to the nonlinearity of
the Black–Scholes equation will be introduced. The focus of this work is
the solution of the resulting nonlinear problems for European and Ameri-
can Call options. Since in general, a closed–form solution to the nonlinear
Black–Scholes equation does not exist (for American options not even in
the linear case), we have to solve the problems numerically.
This is achieved by initially analytically approaching the solution for the
European Call by transforming (1.2) with (1.5) into a forward-in-time
parabolic problem (see Section 3.1). In Section 4.1 thereafter both classical
and compact finite-difference schemes will be specified and used to solve
the transformed problem. Finally, different volatility models will be com-
pared to each other.
The numerical solution and the comparison study for American options
will be achieved by the transformation of the free boundary problem (1.3)
subject to (1.7) into a parabolic equation defined on a fixed spatial domain
(Section 3.2). This new problem will be numerically solved by the method
of finite differences using an operator splitting technique. It will then be
evaluated and concisely discussed in Section 4.2 thereafter.





Chapter 2

Volatility Models

The essential parameter of the standard Black–Scholes model, that is not
directly observable and is assumed to be constant, is the volatility σ. There
have been many approaches to improve the model by treating the volatility
in different ways and using a modified volatility function σ̃(·) to model the
effects of transaction costs, illiquid markets and large traders, which is the
reason for the nonlinearity of (1.2) and (1.3). In this section we will first
give a brief overview of several volatility models and then focus on the
volatility models of transaction costs.

• The constant volatility σ in the standard Black–Scholes model can
be replaced by the estimated volatility from the former values of the
underlying. This volatility is known as the historical volatility [31].

• If the price of the option and the other parameters are known, which
is e.g. the case for the European Call and Put options (see Appendix
C), then the implied volatility can be calculated from those Black–
Scholes formulae. The implied volatility is the value σ, for which
(C.1) or (C.2) is true compared to the real market data. It can be
calculated implicitly via the difference between the observed option
price V (from the market data) and the Black–Scholes formulae (C.1)
or (C.2), where all the parameters - except for the implied volatility
σ - are taken from the market data (the stock price S, the time t, the
expiration date T , the strike price K, the interest rate r the dividend
rate q).
Considering options with different strike prices K but otherwise iden-
tical parameters, we see that the implicit volatility changes depending
on the strike price. If the implicit volatility for a certain strike price
K is less than the implicit volatility for both the strike price greater
and less than K, this effect is called volatility smile (see e.g. [46]).

• Replacing the constant volatility with the observed implicit volatili-
ties at each stock price and time leads to the term of the local volatility
σ̃ := σ̃(S, t). Dupire [19] examines the dependencies and expresses
the local volatility as a function of implicit volatilities.

• Hull and White [38] and Heston [33] develop a model, in which the

11
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volatility follows the dynamics of a stochastic process. This is known
as the stochastic volatility.

• The assumption, that each security is available at any time and any
size, or that individual trading will not influence the price, is not
always true. Therefore, illiquid markets and large trader effects have
been modeled by several authors. In [29] Frey and Stremme and later
Frey and Patie [28] consider these effects on the price and come up
with the result

σ̃ =
σ

1 − ρλ(S)SVSS
, (2.1)

where σ the historical volatility, ρ constant, λ(S) strictly convex func-
tion, λ(S) ≥ 1. The function λ(S) depends on the pay-off function
of the financial derivative. For the European Call option, Frey and
Patie show that λ(S) is a smooth, slightly increasing function for
S ≥ K. Bordag and Chmakova [8] assume that λ(S) is constant and
solve the problem (1.2) with the modified volatility (2.1) explicitly
using Lie-group theory (see also [12, 23]).

The main scope of this thesis is the numerical solution of nonlinear Black–
Scholes equations resulting from transaction costs. Therefore, after this
general overview, we devote our attention to a more detailed description of
several transaction cost models.

2.1 Transaction Costs

The Black–Scholes model requires a continuous portfolio adjustment in or-
der to hedge the position without any risk. In the presence of transaction
costs it is likely that this adjustment easily becomes expensive, since an in-
finite number of transactions is needed [47]. Thus, the hedger needs to find
the balance between the transaction costs that are required to rebalance
the portfolio and the implied costs of hedging errors. As a result to this
”imperfect” hedging, the option might be over- or underpriced up to the
extent where the riskless profit obtained by the arbitrageur is offset by the
transaction costs, so that there is no single equilibrium price but a range
of feasible prices. It has been shown that in a market with transaction
costs there is no replicating portfolio for the European Call option and the
portfolio is required to dominate rather than replicate the value of the op-
tion (see [4]). Soner, Shreve and Cvitanič proved in [63] that the minimal
hedging portfolio that dominates a European Call is the trivial one (hence
holding one share of the stock that the Call is written on), so that efforts
have been made to find an alternate relaxation of the hedging conditions
to better replicate the pay-offs of derivative securities.
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2.2 Leland

Leland’s idea of relaxing the hedging conditions is to trade at discrete times
[48], which promises to reduce the expenses of the portfolio adjustment. He
assumes that the transaction cost κ|∆|S/2, where κ denotes the round trip
transaction cost per unit dollar of the transaction and ∆ the number of
assets bought (∆ > 0) or sold (∆ < 0) at price S, is proportional to the
monetary value of the assets bought or sold. Now consider a replicating
portfolio with ∆ units of the underlying and the bond B (a certificate of
debt issued by a government or a corporation guaranteeing payment B plus
interest by a specified future date):

Π = ∆S + B.

After a small change in time of the size δt the change in the portfolio
becomes

δΠ = ∆δS + rBδt − κ

2
|δ∆|S, (2.2)

where δS is the change in price S, so that the first term represents the
change in value, the second term represents the bond growth in δt time
and δ∆ represents the change in the number of assets, so that the last
term becomes the transaction cost due to portfolio change.
We apply Itô’s lemma (see B.1 in Appendix B.7) to the value of the option
V := V (S, t) and get

δV = VSδS + (Vt +
σ2

2
S2VSS)δt. (2.3)

Assuming that the option V is replicated by the portfolio Π, their values
have to match at all times and there can be no risk-free profit. With this
no-arbitrage argument we get

δΠ = δV.

Matching the terms in (2.2) and (2.3) we get ∆ = VS and

rBδt − κ

2
|δ∆|S = (Vt +

σ2

2
S2VSS)δt. (2.4)

Leland shows that
κ

2
|δ∆|S =

σ2

2
LeS2|VSS|δt, (2.5)

where Le denotes the Leland number, which is given by

Le =

√
2

π

(
κ

σ
√

δt

)
, (2.6)

with δt being the transaction frequency (interval between successive revi-
sions of the portfolio) and κ the round trip transaction cost per unit dollar
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of the transaction. Plugging (2.5) and B = Π − ∆S = V − SVS into the
equation (2.4) becomes

rV − rSVS − σ2

2
LeS2|VSS| = Vt +

σ2

2
S2VSS. (2.7)

Therefore, Leland deduces that the option price is the solution of the non-
linear Black-Scholes equation

0 = Vt +
1

2
σ̃2S2VSS + rSVS − rV,

with the modified volatility

σ̃2 = σ2

(
1 + Le sign(VSS)

)
, (2.8)

where σ represents the historical volatility and Le the Leland number. It
follows from the definition of the Leland number (2.6) that the more fre-
quent the rebalancing (δt smaller), the higher the transaction cost and the
greater the value of V .
It is known that VSS > 0 for European Puts and Calls in the absence of
transaction costs. Assuming the same behavior in the presence of transac-
tion costs, equation (1.2) becomes linear with an adjusted constant volati-
lity σ̃2 = σ2(1 + Le) > σ2.
Leland’s model has played a significant role in financial mathematics, even
though it has been partly criticized by e.g. Kabanov and Safarian in [44],
who prove that Leland’s result has a hedging error. The restriction of his
model is the convexity of the resulting option price V (hence VSS > 0) and
the possibility to only consider one option in the portfolio. Hoggard, Whal-
ley and Wilmott study equation (1.2) with the modified volatility (2.8) for
several underlyings in [35]. An extension to this approach to general pay-
offs is obtained by Avellaneda and Parás in [3].

2.3 Parás and Avellaneda

From the binomial model making use of the algorithm of Bensaid et al.
(see [6]), Parás and Avellaneda derive the same volatility (2.8) as Leland.
Dropping the convexity assumption of the resulting option price they state
that in case VSS ≤ 0 and Le ≥ 1 (hence σ̃ ≤ 0) the problem (1.2) becomes
mathematically ill-posed and does not possess a solution for general pay-off
functions [3]. For the case VSS > 0 and Le ≥ 1 (hence σ̃ > 0) they propose
several hedging strategies.

2.4 Boyle and Vorst

Using the central limit theorem in [9] Boyle and Vorst derive from the
binomial model with transaction costs and discrete trading processes that
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as the time step δt and the transaction cost κ tend to zero, the price of the
option converges to a Black-Scholes price with the modified volatility of the
form

σ̃2 = σ2

(
1 + Le

√
π

2
sign(VSS)

)
. (2.9)

Just like Leland, Boyle and Vorst assume convexity of V , so that σ̃2 =
σ2(1 + Le

√
π/2) and (1.2) turns into a linear equation. However, here δt

in the definition of Le (2.6) is the mean time length for a change in the
value of the stock, not the transaction frequency (see [4]).

2.5 Hodges and Neuberger

In [34] Hodges and Neuberger suggest a different approach to model trans-
action costs. They consider a utility function, without specifying it, and
assume that the behavior of the investor is characterized by this function.
The utility function measures the relative satisfaction of the investor from
the input. They show that the Black–Scholes price is the difference be-
tween the maximum utility from the final wealth with and without option
liability. They postulate that the price of the option in a market with trans-
action costs should be equal to the unique cash increment which offsets this
difference. This theory in the presence of transaction costs is further de-
veloped by Davis, Panas and Zariphopoulou in [17]. Constantinides and
Zariphopoulou [13] modify this original definition of the price and obtain
universal bounds independent of the utility function.

2.6 Barles and Soner

In [4] Barles and Soner derive a more complicated model by following the
above utility function approach of Hodges and Neuberger [34]. Consider
the process of bonds owned X(s) and the process of shares owned Y (s).
Let the trading strategy

(
L(s), M(s)

)
be a pair of nondecreasing processes

with L(t) = M(t) = 0, which are interpreted as the cumulative transfers,
measured in shares of stock. L(s) is measured in shares from bond to stock
and M(s) is measured in shares from stock to bond. Let κ ∈ (0, 1) be the
proportional transaction cost. The processes X(s) and Y (s) start with the
initial values x and y, s ∈ [t, T ] and evolve according to

X(s) = x −
∫ s

t

S(τ)(1 + κ) dL(τ) +

∫ s

t

S(τ)(1 − κ) dM(τ) (2.10)

and

Y (s) = y + L(s) − M(s). (2.11)

The first integral in (2.10) represents buying shares of stock at a price in-
creased by the proportional transaction cost, the second integral represents
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selling stock at a reduced price of the transaction cost. In (2.11) we add
the amount of the stocks bought and subtract the amount for the stocks
sold to the initial amount of stocks owned.
According to the utility maximization approach of Hodges and Neuberger
in [34], the price of a European Call option can be obtained as the diffe-
rence between the maximum utility of the terminal wealth when there is no
option liability and when there is such a liability. Following this approach,
Barles and Soner consider two optimization problems. Let the exponential
utility function be

U(ξ) = 1 − e−γξ, ξ ∈ R,

where γ > 0 is the risk aversion factor. The first value function is the
expected utility from the final wealth without any option liabilities taken
over the transfer processes

V1(x, y, S(t), t) := sup
L(·),M(·)

E[U
(
X(T ) + Y (T )S(T )

)
],

the second one is the expected utility from the final wealth assuming that
we have sold N European call options taken over the transfer processes

V2(x, y, S(t), t) := sup
L(·),M(·)

E[U
(
X(T ) + Y (T )S(T ) − N(S(T ) − K)+

)
].

Hodges and Neuberger postulate that the price of each option is equal to
the maximal solution Λ of the algebraic equation

V2(x + NΛ, y, S(t), t) = sup
L(·),M(·)

E[U
(
X(T ) + NΛ + Y (T )S(T )

− N(S(T ) − K)+
)
]

= sup
L(·),M(·)

E[U
(
X(T ) + Y (T )S(T )

)
]

=V1(x, y, S(t), t),

which means that the option price Λ equals the increment of the initial
capital at time t that is needed to cope with the option liabilities arising at
T . By a linearity argument selling N options with risk aversion factor of
γ yields the same price as selling one option with risk aversion factor γN .
This leads to performing an asymptotic analysis as γN → ∞. Hence, we
consider

U(ξ) = 1 − e−γNξ

and

ε =
1

γN
.

Then, we have

Uε(ξ) = 1 − e−
ξ
ε , ξ ∈ R.

Our optimization problems become

V1(x, y, S(t), t) = 1 − inf
L(·),M(·)

E[e−
1
ε
(X(T )+Y (T )S(T ))]
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and

V2(x, y, S(t), t) = 1 − inf
L(·),M(·)

E[e−
1
ε
(X(T )+Y (T )S(T )−(S(T )−K)+)].

For analysis simplification Barles and Soner define z1,2 : R × (0,∞) ×
(0, T ) → R by

V1(x, y, S(t), t) = 1 − e−
1
ε

(
x+yS(t)−z1(y,S(t),t)

)
and

V2(x, y, S(t), t) = 1 − e−
1
ε

(
x+yS(t)−z2(y,S(t),t)

)
.

Then
z1(y, S(t), T ) = 0 and z2(y, S(t), T ) = (S(T ) − K)+

and the option price

Λ(x, y, S(t), t;
1

ε
, 1) = z2(y, S(t), t) − z1(y, S(t), t).

By the theory of stochastic optimal control [26], Barles and Soner state
that the value functions V1 and V2 are the unique solutions of the dynamic
programming equation

min{−Vt +
1

2
σ2S2VSS − rSVS,−Vy + S(1 + κ)Vx, Vy − S(1 − κ)Vx} = 0,

which leads to a dynamic programming equation for z1 and z2, which are
independent of the variable x.
Supposing that the proportional transaction cost κ is equal to a

√
ε for some

constant a > 0, they prove that as ε → 0 and κ → 0

z1 → 0 and z2 → V,

where V is the unique (viscosity) solution of the nonlinear Black-Scholes
equation

0 = Vt +
1

2
σ̃2S2V 2

SS + rSVS − rV,

where

σ̃2 = σ2

(
1 + Ψ(er(T−t)a2S2VSS)

)
. (2.12)

Here σ denotes the historical volatility, a = κ/
√

ε and Ψ(x) is the solution
to the following nonlinear ordinary differential equation (ODE)

Ψ′(x) =
Ψ(x) + 1

2
√

xΨ(x) − x
, x 
= 0, (2.13a)

with the initial condition
Ψ(0) = 0. (2.13b)
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The analysis of this ODE (2.13) by Barles and Soner in [4] implies that

lim
x→∞

Ψ(x)

x
= 1 and lim

x→−∞
Ψ(x) = −1. (2.14)

The property (2.14) encourages to treat the function Ψ(·) as the identity
for large arguments and therefore to simplify the calculations. In this case
the volatility becomes

σ̃2 = σ2(1 + er(T−t)a2S2VSS). (2.15)

The existence of a viscosity solution to (1.2) for European options with
the volatility given by (2.12) is proved by Barles and Soner in [4] and
their numerical results indicate an economically significant price difference
between the standard Black-Scholes model and the nonlinear model with
transaction costs.

2.7 Risk Adjusted Pricing Methodology

In this model, proposed by Kratka in [46] and improved by Jandačka and
Ševčovič in [41], the optimal time-lag δt between the transactions is found
to minimize the sum of the rate of the transaction costs and the rate of
the risk from an unprotected portfolio. That way the portfolio is still well
protected with the Risk Adjusted Pricing Methodology (RAPM) and the
modified volatility is now of the form

σ̃2 = σ2

(
1 + 3

(C2M

2π
SVSS

) 1
3

)
, (2.16)

where M ≥ 0 is the transaction cost measure and C ≥ 0 the risk premium
measure.

It is worth mentioning that these nonlinear transaction cost models that we
described above are all consistent with the linear model if the additional
parameters for transaction costs are equal to zero and vanish (Le, Ψ(·),
M). We will concentrate on four of the above mentioned models: Leland’s
model (2.8), the model of Barles and Soner (2.12), the identity model (2.15)
and the Risk Adjusted Pricing Methodology (2.16). We will study these
models – more precisely equations (1.2) and (1.3) where the volatility is
given by the equations (2.8), (2.12), (2.15) and (2.16) – for both European
and American Call options.
In general, an exact analytical solution leading to a closed expression is
not known neither for European nor for American options in a market
with transaction costs. In the next chapter we will analytically approach
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the solution of (1.2) and (1.3) by a transformation, that facilitates the
numerical solution. We will compare different approaches of solving this
problem numerically by standard and compact finite-difference schemes in
the chapter thereafter.





Chapter 3

Analytical Approach

Both the equations (1.2) and (1.3) are backward in time. In order to ease
the numerical solution of (1.2) for the European Call option, we transform
the problem into a forward parabolic problem. For the American Call
option, we transform the original spatial domain of (1.3) subject to (1.7)
into a fixed (unbounded) domain additionally to the forward transformation
in time. Hence, in case of the American Call option, the domain does not
depend on the free boundary Sf (t) anymore and we simply calculate an
algebraic constraint equation for the position of the free boundary.

3.1 Transformation of the European Call

In order to be able to solve the problem (1.2) with the corresponding vo-
latilities subject to (1.5) numerically, we perform the following variable
transformation (see e.g. [20, 74]):

x = ln

(
S

K

)
, τ =

1

2
σ2(T − t), u(x, τ) = e−x V (S, t)

K
.

Since S = Kex and V = uS, differentiation yields:

Vt = uττtS = −1

2
σ2Suτ ,

VS = uxxSS + u = ux + u,

VSS = uxxxS + uxxS =
1

S
(uxx + ux).

Plugging these derivatives into (1.2) leads to

0 = −1

2
σ2Suτ +

1

2
σ̃2S(uxx + ux) + rS(ux + u) − ruS,

and a final multiplication by − 2
Sσ2 gives

0 = uτ − σ̃2

σ2
(uxx + ux) − Dux, (3.1)

21
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where D = 2r
σ2 and σ̃2 depends on the volatility model, x ∈ R and 0 ≤ τ ≤

T̃ = σ2T
2

. Leland’s model (2.8) becomes

σ̃2 = σ2

(
1 + Le sign(uxx + ux)

)
, (3.2a)

Barles’ and Soner’s model (2.12)

σ̃2 = σ2

(
1 + Ψ

(
e

2rτ
σ2 a2Kex(uxx + ux)

))
, (3.2b)

the identity model (2.15)

σ̃2 = σ2

(
1 + e

2rτ
σ2 a2Kex(uxx + ux)

)
(3.2c)

and the Risk Adjusted Pricing Methodology (RAPM) (2.16) becomes

σ̃2 = σ2

(
1 + 3

(C2M

2π
(uxx + ux)

) 1
3

)
. (3.2d)

Now u(x, τ) solves (3.1) on the transformed domain x ∈ R, 0 ≤ τ ≤ T̃
subject to the following initial and boundary conditions resulting from
(1.5):

u(x, 0) = (1 − e−x)+ for x ∈ R,

u(x, τ) = 0 as x → −∞, (3.3)

u(x, τ) ∼ 1 − e−Dτ−x as x → ∞.

Therefore the original problem (1.2) with (1.5) and the corresponding vo-
latilities transforms to a forward problem (3.1) with the corresponding
volatilities (3.2) subject to (3.3).
The numerical solution for the European Call option is specified in the first
part of the next chapter. Once the problem is solved, u can easily be trans-
formed into V = Su and we obtain the price of the European Call option
in the presence of transaction costs. Next, we address the transformation
in case of the American Call option.

3.2 Transformation of the American Call

The purpose of converting the free-boundary problem for the nonlinear
Black-Scholes equation (1.3) subject to (1.7) into a fully nonlinear parabolic
equation defined on a fixed domain is the minimization of the error resulting
from the discontinuity of VSS at the free boundary. This is achieved by
only considering the domain where (1.3) holds [78]. Following the idea of
Ševčovič [72] we change the variables to:

τ = T − t, x = ln

(
�(τ)

S

)
⇔ S = e−x�(τ), �(τ) = Sf (T − τ),
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so that x ∈ R
+ and τ ∈ [0, T ]. We then construct a portfolio

Π(x, τ) = V (S, t) − SVS(S, t)

by buying ∆ = VS shares S and selling an option V . Differentiating Π with
respect to x and τ gives us

Πx = VSSx − SxVS − SVSSSx = S2VSS

and

Πτ = VSSτ + Vttτ − SτVS − S(VSSSτ + VSttτ )

= −Vt − �′(τ)

�(τ)
S2VSS + SVSt

= −Vt − �′(τ)

�(τ)
Πx − S∂S(−Vt).

(3.4)

Substituting

−Vt =
σ̃2

2
S2VSS − r(V − SVS) − qSVS =

σ̃2

2
Πx − rΠ − qSVS

from (1.3) into (3.4) and using the fact that −S∂S = ∂x, we get

Πτ =
σ̃2

2
Πx − rΠ − qSVS − �′(τ)

�(τ)
Πx + ∂x

(
σ̃2

2
Πx − rΠ

)
+ S∂S(qSVS)

=

(
σ̃2

2
− �′(τ)

�(τ)
− r + q

)
Πx − rΠ +

1

2
∂x(σ̃

2Πx).

We therefore obtain

0 = Πτ +
(
b(τ) − σ̃2

2

)
Πx − 1

2
∂x(σ̃

2Πx) + rΠ, (3.5)

defined on x ∈ R
+, 0 ≤ τ ≤ T , where

b(τ) =
�′

�
(τ) + r − q.

The terminal condition from (1.7) in the original variables (S, T ) becomes
the initial condition in the new variables (x, 0):

Π(x, 0) = V (S, T ) − SVS(S, T )

=

{ −K for S > K ⇔ x < ln �(0)
K

0 otherwise

(3.6a)

and the boundary conditions from (1.7) transform to

Π(x, τ) = 0 as x → ∞, 0 ≤ τ ≤ T, (3.6b)

Π(0, τ) = −K for 0 ≤ τ ≤ T. (3.6c)
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To complete the system of equations that enables the computation of the
portfolio Π we need to use the last two conditions of (1.7) to obtain an ex-
pression at the free boundary position �(τ). Differentiating and evaluating
V at the free boundary gives us

VS(Sf(t), t)S
′
f (t) + Vt(Sf (t), t) = S ′

f(t).

Using (1.7), we conclude that

Vt(Sf(t), t) = 0 for 0 ≤ τ ≤ T.

Computing (1.3) at the point (Sf(t), t) or at (0, τ) in the transformed vari-
ables gives:

0 = Vt(Sf (t), t) +
1

2
σ̃2Πx(0, τ) + (r − q)Sf(t)VS(Sf (t), t) − rV (Sf (t), t)

=
1

2
σ̃2Πx(0, τ) + rK − q�(τ).

As we have already assumed in Section 1.4.3, we have r ≥ q and therefore
we obtain the last condition:

�(τ) =
1

2q
σ̃2Πx(0, τ) +

rK

q
with �(0) =

rK

q
, (3.6d)

where 0 ≤ τ ≤ T and σ̃2 depends on the volatility model we choose. The
volatility (2.8) from the Leland model becomes

σ̃2 = σ2

(
1 + Le sign(Πx)

)
, (3.7a)

for (2.12) we get

σ̃2 = σ2(1 + Ψ(erτa2Πx)), (3.7b)

for (2.15) we obtain

σ̃2 = σ2(1 + erτa2Πx) (3.7c)

and for (2.16)

σ̃2 = σ2

(
1 + 3

(C2M

2π
Πx�(τ)e−x

) 1
3

)
. (3.7d)

This transformed problem (3.5) subject to (3.6) with the corresponding vo-
latilities (3.7) is solved by the split-step finite-difference method proposed
by Ševčovič in [72] and elaborated on in Section 4.2 of this thesis.
Once we have numerically solved the transformed problem by calculating
the solution to our portfolio Π(x, τ) and the free boundary �(τ), we calcu-
late the value of the American Call V (S, t) option by transforming

Π(x, τ) = V (S, t) − SVS(S, t)
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back to the original variables. Since we know that

Π(x, τ)

S2
=

V (S, t)

S2
− VS(S, t)

S
= ∂S

(
− V (S, t)

S

)
,

we integrate the above equation from S to Sf (t), take into account the
boundary condition V (Sf(t), t) = Sf (t) − K and obtain:∫ Sf (t)

S

Π(ln(�(τ)/S), τ)

S2
dS =

∫ Sf (t)

S

∂S

(
− V (S, t)

S

)
dS∫ ln

�(τ)
Sf (t)

ln
�(τ)

S

Π(x, τ)

S2
(−S)dx = −V (Sf(t), t)

Sf(t)
+

V (S, t)

S

S

∫ ln �(τ)
S

0

Π(x, τ)

e−x�(τ)
dx = −S

�(τ) − K

�(τ)
+ V (S, t)

V (S, T − τ) =
S

�(τ)

(
�(τ) − K +

∫ ln �(τ)
S

0

exΠ(x, τ)dx

)
. (3.8)

Therefore, (3.8) yields the price of the American Call option V (S, t) in the
presence and absence of transaction costs.





Chapter 4

Numerical Solution

Due to the lack of general closed–form solutions to the Black–Scholes equa-
tions, there are various numerical methods for solving Black–Scholes equa-
tions for European and American options.
For European Call and Put options, the Black–Scholes formulae (C.1) and
(C.2) provide the correct answer, but for more complicated contracts in
more general settings analytical formulae are seldom available and numeri-
cal methods have to be used to solve the problem. These vary from lattice
methods (including binomial and trinomial approximations [15]), Monte-
Carlo methods using the least-square techniques [40], analytical approxi-
mations [5, 11, 49], finite-element discretizations [31, 43] to finite-difference
methods [2, 10, 14].
There are numerous other methods for pricing American options including
the method of lines [52], front-tracking algorithms [76], penalty methods
[79] and many others. One of the standard approaches for solving the
Black–Scholes equation for American options consists of the transformation
of the original equation into the heat equation posed on a semi–unbounded
domain with a free boundary Sf (t) [61, 75]. For a new alternative direct
method using the Mellin transformation we refer to [42, 55].
Up to now, an exact analytical formula for the free boundary profile Sf (t)
in (1.3) subject to (1.7) is not known, but several authors derived approxi-
mate expressions to evaluate American Call and Put options in the linear
case [30]. Recently, in a promising approach [71], Ševčovič obtained a semi–
explicit formula for an American Call in the case of r > q. By transforming
the linear Black–Scholes equation for the American Call option into a non-
linear parabolic equation on a fixed domain and applying Fourier sine and
cosine transformations, he derives a nonlinear singular integral equation
determining the shape of the free boundary. This integral equation can be
solved effectively by the means of successive iterations.
Another standard method consists of the reformulation of the free boun-
dary problem into a linear complementary problem (LCP) and the solu-
tion by the Projected Successive Over Relaxation (PSOR) method of Cryer
[16]. Alternatively, penalty and front–fixing methods are developed (e.g. in
[27, 53]). A disadvantage of these methods is the change of the underlying
model.

27
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A different approach [36] is based on a recursive calculation of the early
exercise boundary, estimating the boundary only at some points and then
approximating the whole boundary by Richardson extrapolation. Explicit
boundary tracking algorithms are e.g. a finite-difference bisection scheme
[45] or the front–tracking strategy of Han and Wu [32].
This work’s emphasis is on finite-difference schemes, thus other methods
will not be further elaborated on here. For more information on numerical
methods we refer to [56, 57, 77] and the references therein.

4.1 European Call option

In this section we want to use finite-difference schemes to solve the trans-
formed problem from Section 3.1

0 = uτ − σ̃2

σ2
(uxx + ux) − Dux, x ∈ R, 0 ≤ τ ≤ T̃ (4.1)

with the corresponding volatilities (3.2) subject to the initial and boundary
conditions

u(x, 0) = (1 − e−x)+ for x ∈ R,

u(x, τ) = 0 as x → −∞, (4.2)

u(x, τ) ∼ 1 − e−Dτ−x as x → ∞.

Hence, we first introduce the reader to finite-difference schemes and then
present some numerical results.

4.1.1 Finite-Difference Schemes

The idea of finite-difference schemes is the approximation of the derivatives
in (4.1) by difference quotients and the solution of the resulting discrete
schemes.
For this purpose, we start by discretizing the domain of the transformed
problem (4.1) with the corresponding volatilities (3.2) subject to (4.2).
We then substitute the derivatives by appropriate difference quotients and
address the nonconstant volatilities. We continue by examining the result-
ing schemes in terms of convergence, introduce both classical and compact
finite-difference schemes for the European Call option and finally compare
them to each other.

4.1.1.1 Grid

We begin by replacing x ∈ R and τ ∈ [0, T̃ ] by a bounded interval x ∈
[−R, R], R > 0. We discretize the new computational domain by a uniform
grid (xi, τn) with xi = ih and τn = nk, where h > 0 denotes the spatial
step, k > 0 is the time step, i ∈ [−N, N ], −R = −Nh, R = Nh, n ∈ [0, M ]
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time

space

τ

x

xi xi+1

τn

τn+1

k

h

−R = −Nh R = Nh

T̃ = Mk

0

Figure 4.1: Uniform grid for a European Call option.

and T̃ = Mk (see Figure 4.1).
We denote the approximate solution of (4.1) in xi at time τn by Un

i ≈
u(xi, τn) and discretize the initial and boundary conditions (4.2) in the
following way:

U0
i = (1 − e−ih)+,

Un
−N = 0, (4.3)

Un
N = 1 − e−Dnk−Nh.

For a more appropriate treatment of the unbounded spatial domain x ∈ R

so-called artificial boundary conditions [24] can be introduced to confine
the unbounded domain of (4.1) to a bounded computational domain. This
new approach will be an issue of a subsequent paper.

4.1.1.2 Difference Quotients

The spatial derivative can be approximated with forward differences:

ux(x, τ) =
u(x + h, τ) − u(x, τ)

h
+ O(h)

or with backward differences:

ux(x, τ) =
u(x, τ) − u(x − h, τ)

h
+ O(h).

The sum of these differences results in central differences and we get

ux(x, τ) =
u(x + h, τ) − u(x − h, τ)

2h
+ O(h2).

For the second spatial derivative we compute with the Taylor formula

uxx(xi, τn) =
u(x + h, τ) − 2u(x, τ) + u(x − h, τ)

h2
+ O(h2).
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We recall that a function f(h) is in O(hr), if there exists a constant M > 0,
such that |f(h)| ≤ M |hr| as h → 0, meaning that the quantity f(h) is
bounded by a constant multiple of hr for sufficiently small h (cf. [65]). We
call the error between differential quotient and difference quotient the trun-
cation error.
To discretize (4.1) we introduce the following notation for the forward diffe-
rence quotient with the spatial step size h:

D+
h Un

i :=
Un

i+1 − Un
i

h
≈ ux(xi, τn),

where we leave out the error term O(h). Similarly, the backward difference
quotient with respect to the spatial variable is denoted as

D−
h Un

i :=
Un

i − Un
i−1

h
≈ ux(xi, τn)

and the central difference quotient as

D0
hU

n
i :=

Un
i+1 − Un

i−1

2h
≈ ux(xi, τn)

omitting the truncation error of O(h) and O(h2). For the second spatial
derivative we introduce the standard difference quotient

D2
hU

n
i :=

Un
i+1 − 2Un

i + Un
i−1

h2
≈ uxx(xi, τn),

with the error term O(h2). Note that central differences in the time vari-
able are never used in practice because they always lead to bad numerical
schemes, that are inherently unstable (see [74]).
Most of the resulting schemes lead to systems of equations that can be
written in matrix form:

AnUn+1 = BnUn + dn, (4.4)

where
Un =

(
Un
−N+1, · · · , Un

0 , · · · , Un
N−1

)� ∈ R
2N−1,

An =

⎛⎜⎜⎜⎜⎜⎜⎝

a0 a1 0 · · · 0

a−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . a1

0 · · · 0 a−1 a0

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R
(2N−1)×(2N−1),

Bn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 b1 b2 0 · · · 0

b−1
. . .

. . .
. . .

. . .
...

b−2
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . b2
...

. . .
. . .

. . .
. . . b1

0 · · · 0 b−2 b−1 b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

(2N−1)×(2N−1)
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and

dn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−2U
n
−N−1 + b−1U

n
−N − a−1U

n+1
−N

b−2U
n
−N

0
...
0

b2U
n
N

b1U
n
N + b2U

n
N+1 − a1U

n+1
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

2N−1.

The matrix An is triagonal, so that the resulting systems can be solved
with linear effort O(N) using the Thomas algorithm [70, 32]. This is done
by first decomposing the matrix An = LnRn into a lower and an upper
bidiagonal matrix and secondly solving LnRnUn+1 = BnUn+dn by forward
and backward substitution. Hence, we first solve LnY n = BnUn + dn for
Y n and then we solve RnUn+1 = Y n for Un+1.
The schemes we will consider are two-level schemes, meaning that they only
involve U at two time levels n and n + 1. We will introduce both three-
point and five-point schemes, meaning that they involve U at three and
five spatial levels. In case we use a five-point approximation in the spatial
variable, that is b−2, b2 
= 0, the vector dn involves Un

−N−1 and Un
N+1, which

are outside the area we are considering. We will impose the conditions

Un
−N−1 = 0 and Un

N+1 = 1 − e−Dnk−(N+1)h (4.5)

for these ghost or auxiliary values (see [65]). We further suppose that

1∑
i=−1

ai =
2∑

i=−2

bi = 1,

which is satisfied by any consistent scheme after normalization of the coef-
ficients (cf. [59]).
We bear in mind that we say a scheme is of order a in time and b in space,
abbreviated by (a, b), if its truncation error is of order O(ka + hb).

Remark 4.1. A word of caution needs to be said about the accuracy when
approximating the derivatives with finite differences. Taylor’s expansion
assumes the existence of several derivatives for u(x, τ). However, most op-
tion pricing problems have nonsmooth pay-offs and therefore discontinuous
derivatives at the strike price, which is equivalent to nonsmooth initial data
for our transformed problem at u(0, 0) (see Figure 4.2).
In [54] this problem is overcome and the accuracy is improved by a grid
stretching technique, which is based on the idea of placing more points in
the neighborhood of the grid points where the non-differentiable condition
occurs.
We will keep this smoothing strategy in mind, but for the sake of the sim-
plicity of the presentation we use the grid that we described earlier in this
section.
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−1  0 1
0
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x

u
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,0
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Figure 4.2: Nonsmooth initial data (4.3) for the transformed problem (4.1)
at u(0, 0).

4.1.1.3 Volatility Functions

There are different ways of treating the derivatives in the volatility. The
modified volatilities (3.2) can all be written in the form

σ̃2 = σ2
(
1 + s(x, τ)

)
,

where s(x, τ) denotes the volatility correction in x at time τ , which depends
on the first and second spatial derivatives of u.
Düring [21] suggests a smoother approximation of uxx for the volatility
correction by choosing:

uxx(xi, τn) ≈ Un
i+2 − 2Un

i + Un
i−2

4h2
:= D2

2hU
n
i ,

with the truncation error of order O(h2). We will follow Düring’s sugges-
tion and treat the nonlinearity explicitly in all the schemes. Therefore we
denote the volatility correction in xi at time τn for Leland’s model with the
volatility (3.2a) by

sn
i =

√
2

π

κ

σ
√

δt
sign

(
D2

2hU
n
i + D0

hU
n
i

)
, (4.6a)

the volatility correction for Barles’ and Soner’s model with the volatility
(3.2b) by

sn
i = Ψ

(
eDτn+xia2K(D2

2hU
n
i + D0

hU
n
i )
)
, (4.6b)
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the volatility correction in case of treating Ψ(·) as the identity with the
volatility (3.2c) by

sn
i = eDτn+xia2K

(
D2

2hU
n
i + D0

hU
n
i

)
(4.6c)

and the volatility correction for the Risk Adjusted Pricing Methodology
with the volatility (RAPM) (3.2d) by

sn
i = 3

(
C2M

2π
(D2

2hU
n
i + D0

hU
n
i )

) 1
3

. (4.6d)

A problem occurring with sn
i is the calculation at the boundary, since theo-

retically we need Un ∈ R
2N+3 to be able to calculate sn

N−1 and sn
−N+1. This

calculation involves Un
−N−1 and Un

N+1, which are outside the computational
domain. Düring states in [21] that the influence of the nonlinearity at the
boundary is not significant and can be therefore neglected for large R. We
will assume that (4.5) are valid and hence denote

sn =
(

sn
−N+1, · · · , sn

0 , · · · , sn
N−1

)� ∈ R
2N−1.

For the volatility model of Barles and Soner with the volatility (3.2b), the
ordinary differential equation (2.13) has to be solved. We solve it with the
ode45 function in MATLAB, which is based on an explicit Runge-Kutta
(4, 5) one-step solver, the Dormand-Prince pair [18] (see Figure 4.3).

−20 −10 0 10 20
−5

0

5

10

15

20

25

x

Ψ
(x

)

Figure 4.3: Solution Ψ to (2.13) using the MATLAB routine ode45 (blue solid
line) and the identity function Ψ = x (red dotted line).

The values at the argument of Ψ(·) in the volatility correction for Barles’s
and Soner’s model (4.6b) are obtained by a cubic spline interpolation be-
tween the values that were calculated by the MATLAB routine.
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4.1.1.4 Existence and Convergence

In order to give a reasonable approximation for the sequence of the solutions
to (4.4),

• a uniform solution Un has to exist for each n ∈ [0, M − 1];

• and Un
i has to converge towards the exact solution of (4.1) as k → 0,

h → 0.

We first recall the terms of existence and convergence for the linear case,
when the volatility correction sn

i is equal to zero – and therefore An := A,
Bn := B and the coefficients in dn are constant.
According to [39], a uniform solution to the system of equations (4.4) exists,
if the matrix A is regular. The scheme (4.4) converges, if it is consistent
and stable. Thus, we specify the terms consistency and stability.

• Consistency:
A scheme Lh,k of order (a, b) is consistent, if there exists a constant
M > 0, such that

max
i,n

|Lh,ku
n
i | ≤ M(ka + hb)

for sufficiently small k, h > 0. Here, un
i is the exact solution to

(4.1) in (xi, τn) and Lh,k is the finite-difference scheme that omits the
truncation error of order O(ka + hb) (such as (4.8), (4.11), etc.).

• Stability:
For the stability of (4.4), we consider the computer-calculated vector

including the rounding errors Ûn. Then AÛn+1 = BÛn + dn + rn,
where rn denotes the rounding errors. The error vector en = Ûn−Un

complies with Aen+1 = Ben +rn. For simplicity, we assume that e0 
=
0, meaning that there is already a rounding error when evaluating
the initial condition. At the same time, we assume that the matrix-
vector multiplication to obtain Un+1 works accurately, hence rn = 0
for n ∈ [0, M − 1]. Therefore, we have the error evolution

en+1 = A−1Ben = (A−1B)2en−1 = · · · = (A−1B)n+1e0.

In order to have a stable system, previous errors have to be damped
and therefore we require (A−1B)n+1e0 → 0 as n → ∞. According
to Lemma 6.7 in [31], this is equivalent to the absolute value of the
eigenvalues of A−1B being less than 1. Hence, in the linear case, a
scheme is stable, if

ρ(A−1B) = max{|ζ | : ζ is eigenvalue of A−1B} < 1.
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When the above statements are true, a reasonable approximation to the
linear system (4.4) can be found. Whether the solution to (4.4) contains
small oscillations, depends on the dissipation. A scheme is called non-
oscillatory or dissipative, if the eigenvalues ζ of A−1B satisfy an inequality
of the form

|ζ | ≤ 1 − p|ih|2q,

when |ih| ≤ π, for some real constant p > 0 and q ∈ N. Note, that these
oscillations are not the result of instability, but of inadequate resolution
(cf. [65, 58]).
The above statements are valid for the linear case sn

i = 0. In the nonlinear
case, when sn

i 
= 0, these terms are hard to state and prove for arbitrary
schemes and arbitrary coefficients in An, Bn and dn. One approach is to
freeze the coefficients in (4.4) by assuming them to be constant at each
point (xi, τn) and check for stability. It is known that for linear parabolic
problems with variable coefficients a mild strengthening of the local sta-
bility is sufficient to ensure overall stability [58]. For nonlinear problems,
however, the limits of what can be generally proved are reached quickly.
We will study the nonlinear case numerically in Section 4.1.2 and now in-
troduce different finite-difference schemes for the European Call option and
recall their properties corresponding to the linear case.
For the future we introduce the abbreviations

λ = −(1 + D), α =
λh

2
, r =

k

h2
, µ =

k

h
.

4.1.1.5 Forward-Time Central-Space (explicit)

We remember that we are replacing the derivatives in the transformed
Black–Scholes equation (4.1) for the European Call option by appropriate
finite-difference quotients. Equation (4.1) can also be rearranged to:

uτ = (1 + s)(uxx + ux) + Dux = s(uxx + ux) + (1 + D)ux + uxx, (4.7)

where s is the continuous volatility correction depending on the model.
Now, (4.7) has the form of a convection-diffusion equation with a nonlinear
term. In case of this explicit scheme, the time derivative is approximated by
D+

k Un
i , the first spatial derivative by D0

hU
n
i and the second spatial derivative

by both D2
hU

n
i and D2

2hU
n
i , leaving the error terms of order O(k + h2).

Hence, this scheme is of order (1, 2). Replacing all the derivatives of (4.7)
by their corresponding finite-difference quotients we get:

D+
k Un

i = sn
i

(
D2

2hU
n
i + D0

hU
n
i

)
+ (1 + D)D0

hU
n
i + D2

hU
n
i (4.8)

or

Un+1
i − Un

i

k
= sn

i

(
Un

i+2 − 2Un
i + Un

i−2

4h2
+

Un
i+1 − Un

i−1

2h

)
+(1 + D)

Un
i+1 − Un

i−1

2h
+

Un
i+1 − 2Un

i + Un
i−1

h2
.
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This is equivalent to

Un+1
i = Un

i + ksn
i

(
Un

i+2 − 2Un
i + Un

i−2

4h2
+

Un
i+1 − Un

i−1

2h

)
+k(1 + D)

Un
i+1 − Un

i−1

2h
+ k

Un
i+1 − 2Un

i + Un
i−1

h2

=
ksn

i

4h2
Un

i−2 +

(
k

h2
− k(1 + D + sn

i )

2h

)
Un

i−1 +

(
1 − k(sn

i + 4)

2h2

)
Un

i

+

(
k(1 + D + sn

i )

2h
+

k

h2

)
Un

i+1 +
ksn

i

4h2
Un

i+2.

Writing this scheme for i ∈ [−N, N ] resolves in the system of equations
(4.4) with the matrix coefficients:

b−2 =
ksn

i

4h2 ,

a−1 = 0, b−1 = k
h2 − k(1+D+sn

i )

2h
,

a0 = 1, b0 = 1 − k(sn
i +4)

2h2 ,

a1 = 0, b1 =
k(1+D+sn

i )

2h
+ k

h2 ,

b2 =
ksn

i

4h2 ,

or in our notation

b−2 =
rsn

i

4
,

a−1 = 0, b−1 =
µ(λ−sn

i )

2
+ r,

a0 = 1, b0 = 1 − r(sn
i +4)

2
,

a1 = 0, b1 =
µ(sn

i −λ)

2
+ r,

b2 =
rsn

i

4
.

According to the stability requirement in the linear case (see [65]), we need
to have the necessary stability condition:

r ≤ 1

2
. (4.9)

The solution is non-oscillatory in the linear case if:

|α| ≤ 1. (4.10)

4.1.1.6 Backward-Time Central-Space (implicit)

The backward Euler finite-difference scheme implies

D−
k Un+1

i = sn
i

(
D2

2hU
n
i + D0

hU
n
i

)
+ (1 + D)D0

hU
n+1
i + D2

hU
n+1
i ,(4.11)

or

Un+1
i − Un

i

k
= sn

i

(
Un

i+2 − 2Un
i + Un

i−2

4h2
+

Un
i+1 − Un

i−1

2h

)
+(1 + D)

Un+1
i+1 − Un+1

i−1

2h
+

Un+1
i+1 − 2Un+1

i + Un+1
i−1

h2
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with the error order (1, 2). Rearranging and grouping leads to the following
matrix coefficients:

b−2 =
ksn

i

4h2 ,

a−1 = k(1+D)
2h

− k
h2 , b−1 = −ksn

i

2h
,

a0 = 1 + 2k
h2 , b0 = 1 − ksn

i

2h2 ,

a1 = −k(1+D)
2h

− k
h2 , b1 =

ksn
i

2h
,

b2 =
ksn

i

4h2 ,

or
b−2 =

rsn
i

4
,

a−1 = λµ
2
− r, b−1 = −µsn

i

2
,

a0 = 1 + 2k
h2 , b0 = 1 − rsn

i

2
,

a1 = −λµ
2
− r, b1 =

µsn
i

2
,

b2 =
rsn

i

4
.

According to [65] it is unconditionally stable and non-oscillatory in the
linear case if (4.10) is satisfied.

4.1.1.7 Crank-Nicolson

This classical finite-difference scheme computes the solution better than
the forward and backward difference methods due to its superior order of
(2, 2) (cf. [61, 65]). To improve the order and the stability we average the
forward- (4.8) and backward (4.11) difference method by summing them up.
However, this time we exclusively approach the second spatial derivative
by D2

hU
n
i except in the nonlinear volatility term sn

i . Replacing all the
derivatives in (4.7) by their corresponding finite-difference quotients we
get:

D+
k Un

i + D−
k Un+1

i = sn
i

(
D2

hU
n
i + D0

hU
n
i

)
+ sn

i

(
D2

hU
n+1
i + D0

hU
n+1
i

)
+ (1 + D)

(
D0

hU
n
i + D0

hU
n+1
i

)
+ D2

hU
n
i + D2

hU
n+1
i .

(4.12)

This is equivalent to

Un+1
i − Un

i

k
=

sn
i

2

(
Un

i+1 − 2Un
i + Un

i−1

h2
+

Un
i+1 − Un

i−1

2h

)
+

sn
i

2

(
Un+1

i+1 − 2Un+1
i + Un+1

i−1

h2
+

Un+1
i+1 − Un+1

i−1

2h

)
+ (1 + D)

Un
i+1 − Un

i−1 + Un+1
i+1 − Un+1

i−1

4h

+
Un

i+1 − 2Un
i + Un

i−1 + Un+1
i+1 − 2Un+1

i + Un+1
i−1

2h2
.

Rearranging leads to the linear system (4.4) with the following coefficients:

a−1 = sn
i (− r

2
+ µ

4
) − r

2
− λµ

4
,

a0 = 1 + r(1 + sn
i ),

a1 = sn
i (− r

2
− µ

4
) − r

2
+ λµ

4
,
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b−1 = sn
i ( r

2
− µ

4
) + r

2
+ λµ

4
,

b0 = 1 − r(1 + sn
i ),

b1 = sn
i ( r

2
+ µ

4
) + r

2
− λµ

4
.

The Crank-Nicolson scheme is unconditionally stable in the linear case
[65].

4.1.1.8 Rigal’s Compact Schemes

Compact difference schemes differ from classical schemes because they im-
prove the order of the scheme by eliminating lower order terms in the
truncation error. Rigal [59] develops two-level three-point finite-difference
schemes of order (2, 4) that are stable and non-oscillatory and yield more
efficient and accurate results than implicit fourth-order schemes. Düring
follows Rigal’s ideas and generalizes his results for a nonlinear Black–
Scholes equation [21]. A general two-level three-point scheme for the prob-
lem (4.7) can be written as:

D+
k Un

i = (1 + sn
i )

((1
2

+ A1

)
D2

hU
n
i +

(1
2

+ B1

)
D0

hU
n
i

)
+ (1 + sn

i )

((1
2

+ A2

)
D2

hU
n+1
i +

(1
2

+ B2

)
D0

hU
n+1
i

)
+ D

(1
2

+ B1

)
D0

hU
n
i + D

(1
2

+ B2

)
D0

hU
n+1
i ,

(4.13)

where A1, A2, B1 and B2 are real constants which should be chosen in such
a way that they eliminate the lower order terms in the truncation error.
Note, that if these constants are equal to zero, then (4.13) reduces to the
classical Crank-Nicolson scheme (4.12) of order (2, 2). If we choose

B1 = 1+4r2α2

12βr
,

B2 = −1+4r2α2

12βr
,

A1 = − 1
12kβ

(−2h2 + 6λ̃2k2B2 − k2λ̃2 − 12kβ2B2),

A2 = − 1
12kβ

(2h2 + 6λ̃2k2B2 + k2λ̃2 + 12kβ2B2),

with β := 1 + sn
i and λ̃ := −(1 + sn

i + D), plug them into the equation
(4.13) and rearrange the Un

i s, then our coefficients become

a−1 = −12rβ2−2β+rλ̃2h2+r3λ̃4h4+6rλ̃hβ−λ̃h−r2λ̃3h3

24β
,

a0 = 10β+12rβ2+rλ̃2h2+r3λ̃4h4

12β
,

a1 = −12rβ2−2β+rλ̃2h2+r3λ̃4h4−6rλ̃hβ+λ̃h+r2λ̃3h3

24β
,

b−1 = 12rβ2+2β+rλ̃2h2+r3λ̃4h4+6rλ̃hβ+λ̃h+r2λ̃3h3

24β
,

b0 = −10β+12rβ2+rλ̃2h2+r3λ̃4h4

12β
,

b1 = 12rβ2+2β+rλ̃2h2+r3λ̃4h4−6rλ̃hβ−λ̃h−r2λ̃3h3

24β
.

This scheme is known as the R3C scheme [21]. Note that if β = 1 or
sn

i = 0 this scheme reduces to the R3B scheme developed by Rigal [59],
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which is also unconditionally stable and non-oscillatory in the linear case.
It is proved in [22], that the R3C scheme is of order (2, 4), unconditionally
stable and non-oscillatory for the volatility model of Barles and Soner.

4.1.1.9 Algorithm

The following algorithm summarizes the calculation of the price V (S, t) for
a European Call option in the presence (or absence) of transaction costs
by the above-described finite-difference schemes:

Algorithm 1 Computation of the price V (S, t) for the European Call

Input parameters: R, T , h, k, M , N , r, K, D, σ, Le, a, C, M
1: solve the ODE (2.13) required for the volatility model of Barles and

Soner and interpolate the solution
2: initialize U0 according to (4.3) and transform U0 into V 0

3: for i = −N + 1, .., N − 1 do
4: U0

i = max(1 − exp(−ih), 0)
5: V 0

i = U0
i K exp(ih)

6: end for
7: set u = [0; U0; 1 − exp(−Nh)]
8: set v = [0; V 0; K(exp(Nh) − 1)]
9: calculate Un+1 at each time level

10: for n = 0 : M − 1 do
11: calculate the volatility correction sn depending on the volatility

model using Un (in the case of Barles’ and Soner’s model use the
interpolated solution of (2.13), in the case without transaction costs
sn = (0, · · · , 0)� ∈ R

2N−1)
12: fill the matrices An and Bn and the vector dn with the corresponding

coefficients depending on the finite-difference scheme using sn

13: L-R-decompose An = LnRn

14: solve Lnyn = BnUn + dn for yn

15: solve RnUn+1 = yn for Un+1

16: transform Un+1 into V n+1

17: save the solution in the array
u =

[
u [0; Un+1; 1 − exp(−Nh − D(n + 1)k)]

]
18: save the solution in the original variables in the array

v =
[
v [0; V n+1; K(exp(Nh) − exp(−D(n + 1)k))]

]
19: start over with the loop over n
20: end for
21: plot v at each time level and each stock price

4.1.2 Comparison Study

In [20] the above described finite-difference schemes are compared to each
other for the volatility model of Barles and Soner (4.6b). Conclusively, the
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Crank-Nicolson (CN) and the R3C schemes are superior to the Forward-
Time Central-Space and Backward-Time Central-Space schemes. We will
therefore concentrate on the CN and the R3C scheme and compare the four
different transaction cost models (4.6) calculated by those two schemes to
each other and to the linear model without transaction costs.
For our calculations we use the following parameters:

r = 0.1, σ = 0.2, K = 100, T = 1 (one year),

R = 1, k = 0.001, h = 0.1.

Figure 4.4 shows the structure of the price for the European Call option
without transaction costs, computed with the Crank-Nicolson scheme. The
structure computed with the R3C scheme is similar, hence we abstain from
including this figure.
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Figure 4.4: Value of a European Call option V (S, t) in the absence of
transaction costs computed with the Crank-Nicolson scheme.

The influence of transaction costs modeled by the volatilities (2.8), (2.12),
(2.15) and (2.16) and computed with the Crank-Nicolson finite-difference
scheme can be seen in Figure 4.5. There, we plot the difference

Vnonlinear(S, t) − Vlinear(S, t)

between the price of the European Call option with transaction costs and
the price of the European Call without transaction costs for each model.
As expected, the numerical results show an economically significant price
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(a) Barles’ and Soner’s model (a = 0.02)
vs. linear model.
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(b) Ψ(x) := x chosen as the identity (a =
0.02) vs. linear model.
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(c) Leland’s model (δt = 0.01, κ = 0.05)
vs. linear model.
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(d) RAPM model (M = 0.01, C = 30) vs.
linear model.

Figure 4.5: The influence of transaction costs Vnonlinear(S, t)− Vlinear(S, t).

deviation between the standard (linear) Black–Scholes model and the non-
linear models.
The difference is not symmetric for all the transaction cost models, but de-
creases closer to the expiry date. This is an expected consequence of the de-
creasing necessity of portfolio adjustment and hence lower transaction costs
closer to expiry. The difference is maximal at one year to expiry at S ≈ 95,
where the nonlinear price is significantly higher than the linear price. At
this point with the given parameters Barles’ and Soner’s model provides
the highest price (≈ 12.4), followed by Leland’s model (≈ 11.9), Risk Ad-
justed Pricing Methodology (RAPM) (≈ 11.0), the identity (≈ 10.0) and
finally the linear model with the constant volatility without transaction
costs (≈ 9.9) (see Figure 4.6).
For each volatility model and each difference scheme we compare the error
of accuracy of the above computation one year to expiry, that is at t = 0
or τ = T̃ = Mk, and denote this �2-error by

err2(Mk) =

(
h

N∑
i=−N

|u(xi, T̃ ) − UM
i |2
) 1

2

.
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Figure 4.6: Price of a European Call option V (S, 0) for different transaction
cost models vs. the price without transaction costs.

For the reference solution u(xi, T̃ ) we compute a solution for each model
with the corresponding finite-difference scheme on a very fine grid with
the step sizes k = 0.001 and h = 0.01. For UM

i we use the parameters as
indicated above.
We see that in the linear case the compact R3C scheme yields better re-
sults than the Crank-Nicolson scheme in terms of accuracy, even though
the error resulting from the Crank-Nicolson scheme is only slightly big-
ger (see Table 4.1). Reducing the spatial step size to h = 0.001 improves
the accuracy considerably, however, it increases the computational time
tremendously.

Volatility model err2(Mk) with CN err2(Mk) with R3C

Constant (sn
i = 0) 0.0016 0.0009

Barles and Soner 0.0006 0.0009
Identity 0.0031 0.0024
Leland 0.0047 0.0056
RAPM 0.0006 0.0005

Table 4.1: �2 error for different models and schemes.
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4.2 American Call option

In this section we want to solve the transformed problem from Section 3.2

0 = Πτ +
(
b(τ)− σ̃2

2

)
Πx − 1

2
∂x(σ̃

2Πx)+rΠ, x ∈ R
+, 0 ≤ τ ≤ T (4.14)

with the corresponding volatilities (3.7) subject to the conditions

Π(x, 0) =

{ −K for x < ln �(0)
K

0 otherwise

Π(x, τ) = 0 as x → ∞, 0 ≤ τ ≤ T,

Π(0, τ) = −K for 0 ≤ τ ≤ T,

(4.15)

and the constraint

�(τ) =
1

2q
σ̃2Πx(0, τ) +

rK

q
with �(0) =

rK

q
. (4.16)

We therefore first describe the solution of (4.14) subject to (4.15) and
(4.16) with the corresponding volatilities (3.7) by finite-difference schemes
and then present the numerical results.

4.2.1 Finite-Difference Schemes

There have been many approaches to calculate the value of an American
option numerically by compact finite-difference schemes in the absence of
transaction costs. Recently, Tangman et al. [67, 68] introduced a com-
pact scheme of order (2, 4). Two other compact schemes, known as the
Numerov-type (see [66, 77]) and the Crandall-Douglas scheme (see [50]),
are analyzed for linear Black-Scholes equations. However, these schemes
are not directly transferable to the model in the presence transaction costs.
In order to find a solution for the nonlinear Black–Scholes equation (4.14)
subject to (4.15) with the corresponding volatilities (3.7) and the constraint
(4.16), Ševčovič suggests to combine two approaches that solve the problem
for the American Call with a constant volatility numerically [72]. One of
them is the transformation of the problem into a variational inequality and
its solution by the PSOR algorithm [31, 61]. The other one is the deriva-
tion of a nonlinear integral equation for the position of the free boundary
without the knowledge of the price itself [47, 76].
Even though these methods are not directly applicable, since they require
a constant volatility σ, this approach is successful when it is combined with
an operator splitting technique. The idea is to discretize (4.14) in time,
to split the equation into a convective and a diffusive part and to find an
approximation for the solution pair (Π, �) at each time level. The detailed
derivation is given in the sequel.
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4.2.1.1 Grid

We discretize the problem (4.14) subject to the conditions (4.15) with the
corresponding volatilities (3.7) by confining the unbounded domain x ∈ R

+

and τ ∈ [0, T ] to x ∈ (0, R) with R > 0 sufficiently large (see [72]). For
the calculation Ševčovič chooses to take R = 3, since this is equivalent to
S ∈ (Sf(t)e

−R, Sf(t)) and yields a good approximation for S ∈ (0, Sf(t))
(as the transformation was S = Sf(t)e

−x). As previously, we refer to h > 0
as the spatial step and to k > 0 as the time step, xi = ih, i ∈ [0, N ],
R = Nh and τn = nk, n ∈ [0, M ], T = Mk (see Figure 4.7).

time

space

τ

x

xi xi+1

τn

τn+1

k

h

R = Nh

T = Mk

0

Figure 4.7: Uniform grid for an American Call option.

The approximate solution of (4.14) in xi at time τn is denoted by Πn
i :=

Π(xi, τn), the value of the free boundary at time τn by �n := �(τn) and the
value of the coefficient b(τ) at τn by bn := b(τn).
We treat the initial and boundary conditions (4.15) in the following way:

Π0
i = Π(xi, 0) =

{ −K for xi < ln �(0)
K

= ln r
q

0 otherwise
,

Πn
0 = −K,

Πn
N = 0.

(4.17)

4.2.1.2 Difference Quotients

As previously, we denote the forward difference quotient with respect to
the spatial variable in xi at time τn with the spatial step size h by:

D+
h Πn

i :=
Πn

i+1 − Πn
i

h
≈ Πx(xi, τn),

the backward difference quotient by:

D−
h Πn

i :=
Πn

i − Πn
i−1

h
≈ Πx(xi, τn)
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and the central difference quotient by

D0
hΠ

n
i :=

Πn
i+1 − Πn

i−1

2h
≈ Πx(xi, τn),

omitting the truncation error O(h), O(h) and O(h2), respectively.

4.2.1.3 Volatility Functions

As in the case of the European Call option the volatilities (3.7) can all be
written in the form (

σ̃n
i

)2
= σ2(1 + sn

i ),

where sn
i denotes the volatility correction in xi at time τn. We choose

forward differences to approximate Πx in the volatility formulae, so that for
Leland’s model with the volatility (3.7a) our volatility correction becomes

sn
i = Le sign(D+

h Πn
i ), (4.18a)

for the volatility correction in Barles’ and Soner’s model with the volatility
(3.7b) we get

sn
i = Ψ

(
erτna2D+

h Πn
i

)
, (4.18b)

for the volatility correction in case of treating Ψ(·) as the identity with the
original volatility (3.7c) we obtain

sn
i = erτna2D+

h Πn
i , (4.18c)

and for the volatility (3.7d) in the Risk Adjusted Pricing Methodology the
volatility correction is

sn
i = 3

(
C2M

2π
D+

h Πn
i �ne−xi

) 1
3

. (4.18d)

4.2.1.4 Free Boundary

We discretize the free boundary (4.16) by approximating the spatial deriva-
tive at the origin x = 0 by forward differences and obtain:

�n =
1

2q
σ2(1 + sn

0 )D+
h Πn

0 +
rK

q
with �0 =

rK

q
, (4.19)

where sn
0 denotes (4.18) at x = 0 depending on the volatility model.

Note, that in case of the RAPM, where the volatility correction is given by
equation (4.18d), sn

0 depends on �n and therefore �n in (4.19) is expressed
by a fixed point equation.

Remark 4.2. For the American Call option (in contrast to the American
Put option) it is possible to derive a series for the location of the optimal
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exercise boundary close to expiry using standard asymptotic analysis (cf.
[1, 75]). This local analysis of the free boundary Sf(t) yields

Sf (t) ∼ Sf(T )

(
1 + ξ0

√
1

2
σ2(T − t) + . . .

)
, as t → T, (4.20)

where ξ0 = 0.9034 . . . is a universal constant of Call option pricing.
Equation (4.20) can be rewritten as

�(τ) ∼ �(0)

(
1 + ξ0

√
1

2
σ2(τ) + . . .

)
, as τ → 0. (4.21)

With only very few terms we get a fairly accurate result for the free boundary
and thus equation (4.21) will serve us as a check for the case of a constant
volatility σ̃2 = σ2 (see Figure 4.8). Note that this result is especially useful
in the first time levels of a numerical calculation where rapid changes in
�(τ) influence the whole solution region.

10
20

21

22

23

�
(τ

)

τ

Figure 4.8: Asymptotic solution for the free boundary �(τ) with T = 1,
K = 10, σ = 0.2, r = 0.1, q = 0.05.

4.2.1.5 Splitting in Time Method

We approximate the time derivative of (4.14) by backward differences
D−

k Πn
i , the first and second spatial derivatives by central differences D0

hΠ
n
i
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and D2
hΠ

n
i . Then, (4.14) becomes:

0 = D−
k Πn

i +
(
bn − σ2

2
(1+ sn

i )
)
D0

hΠ
n
i −

1

2
∂x

(
σ2(1+ sn

i )D
0
hΠ

n
i

)
+ rΠn

i (4.22)

subject to the Dirichlet conditions (4.17). We introduce an intermediate
step at time τn− 1

2
, so that

D−
k Πn

i =
Πn

i − Πn−1
i

k
=

Πn
i − Π

n− 1
2

i + Π
n− 1

2
i − Πn−1

i

k
,

and then split the problem (4.22) into a convective part with the linear
first-order term bnD0

hΠ
n
i :

0 =
Π

n− 1
2

i − Πn−1
i

k
+ bnD0

hΠ
n
i (4.23)

and a diffusive part with the nonlinear first- and second-order terms σ2/2(1+
sn

i )D0
hΠ

n
i and −∂x

(
σ2/2(1 + sn

i )D0
hΠ

n
i

)
:

0 =
Πn

i − Π
n− 1

2
i

k
− σ2

2
(1 + sn

i )D0
hΠ

n
i −

1

2
∂x

(
σ2(1 + sn

i )D
0
hΠ

n
i

)
+ rΠn

i . (4.24)

Assuming that D0
hΠ

n
i ≈ D0

hΠ
n− 1

2
i , which is reasonable for small time steps

k, we can approximate the convective part (4.23) as

0 =
Π

n− 1
2

i − Πn−1
i

k
+ bnD0

hΠ
n− 1

2
i . (4.25)

Now the solution to (4.24)-(4.25) gives a good approximation to the so-
lution of (4.22) (see [72]). This decomposition of the problem is called
Lie-Splitting and is a spitting of order 1 in time.

Convective part:

First, we solve the convective part (4.25), which can be approximated by
an explicit solution to the transport equation

Πτ + b(τ)Πx = 0, (4.26)

for (x, τ) ∈ R × [0, T ], subject to the boundary and initial conditions

Π(0, τ) = −K,

Π(x, 0) =

{ −K for x < ln r
q

0 otherwise
= Π0(x).

(4.27)

We then know by the theory of partial differential equations (see e.g. [25])
that the solution for this problem (4.26)–(4.27) is

Π(x, τ) = Π(x −
∫ τ

0

b(s) ds, 0) = Π0(x −
∫ τ

0

b(s) ds) (4.28)
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with the primitive function
∫

b(s) ds = B(τ) + c = ln �(τ) + (r − q)τ + c.
Hence, considering the problem (4.26) for (xi, τj) ∈ R × [τn−1, τn] subject
to the boundary and initial conditions

Π(0, τj) = −K,

Π(xi, τn−1) = Πn−1(xi),
(4.29)

we know that the solution is given by

Π(xi, τj) = Π(xi −
∫ τj

τn−1

b(s) ds, τn−1)

=

{
Π(ξj

i , τn−1) for ξj
i > 0

−K otherwise,

(4.30)

where we set ξj
i = xi −B(τj) + B(τn−1) = xi − ln �j

�n−1 − (τj − τn−1)(r − q).
Then we can write

Π
n− 1

2
i =

{
Π(ξn

i , τn−1) ξn
i = xi − ln �n

�n−1 − k(r − q) > 0

−K otherwise.
(4.31)

Here, we use a linear approximation between the discrete values Π(xi, τn−1),
i ∈ N in order to compute the value of Π(ξn

i , τn−1).
Hence, (4.31) is the solution to the convective part (4.25) of the problem
(4.22).

Diffusive part:

We solve the diffusive part (4.24) of the problem (4.22) by the finite-
difference method. We approximate the second spatial derivative by central
differences D2

hΠ
n
i and the first spatial derivative by both central D0

hΠ
n
i and

backward differences D−
h Πn

i . Then, (4.24) becomes:

0 =
Πn

i − Π
n− 1

2
i

k
− σ2

2
(1 + sn

i )
Πn

i+1 − Πn
i−1

2h
+ rΠn

i

− σ2

2

(
(1 + sn

i )
Πn

i+1 − 2Πn
i + Πn

i−1

h2
+

(1 + sn
i ) − (1 + sn

i−1)

h

Πn
i − Πn

i−1

h

)
=

Πn
i − Π

n− 1
2

i

k
− σ2

2
(1 + sn

i )
Πn

i+1 − Πn
i−1

2h
+ rΠn

i

− σ2

2

(
(1 + sn

i )
Πn

i+1 − Πn
i

h2
− (1 + sn

i−1)
Πn

i − Πn
i−1

h2

)
.

Rearranging leads to a tridiagonal system of equations

Π
n− 1

2
i = an

i Πn
i−1 − bn

i Πn
i + cn

i Πn
i+1, (4.32)

with the coefficients

an
i = σ2

2
(1 + sn

i ) k
2h

− σ2

2
(1 + sn

i−1)
k
h2 ,

bn
i = 1 + kr + σ2

2
(1 + sn

i ) k
h2 + σ2

2
(1 + sn

i−1)
k
h2 ,

cn
i = −σ2

2
(1 + sn

i ) k
2h

− σ2

2
(1 + sn

i ) k
h2 .
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Equation (4.32) can be written in the form of matrices:

Πn− 1
2 = AnΠn + dn, (4.33)

where
Πn =

(
Πn

1 , · · · , Πn
N−1

)� ∈ R
N−1,

An =

⎛⎜⎜⎜⎜⎜⎜⎝

bn
1 cn

1 0 · · · 0

an
2 bn

2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . bn
N−2 cn

N−2

0 · · · 0 an
N−1 bn

N−1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R
(N−1)×(N−1),

and
dn =

(
an

1Πn
0 , 0, · · · , 0, cn

N−1Π
n
N

)� ∈ R
N−1.

Therefore (4.33) solves the diffusive part (4.24) of the problem (4.22).

Now, we have a set of nonlinear equations (4.18), (4.19), (4.31) and (4.33)
that delivers the solution to our portfolio Π(x, τ) and to the free boundary
�(τ), from which we can calculate the value of the American Call option
V (S, t) with equation (3.8).
In order to see the dependencies of the equations, we rewrite them in the
following abstract form:

sn = D(Πn, �n),

�n = F(Πn, sn
)

= F(Πn, �n
)
,

Πn− 1
2 = G(Πn−1, �n, �n−1

)
= G(Πn−1, �n

)
,

A
(
sn
)
Πn = A

(
Πn, �n

)
Πn = Πn− 1

2 − d(sn),

(4.34)

where
sn =

(
sn
0 , · · · , sn

N

)� ∈ R
N+1,

D(·) is the right-hand side of (4.18), F(·) is the right-hand side of (4.19),
G(·) is the right-hand side of the transport equation (4.31), A(·) is the
tridiagonal matrix and d(sn) the vector as defined in (4.33).
As we can see by this notation (4.34), both �n and Πn are given in terms of
themselves, hence each is given in terms of �n and Πn. This problem can
be approximately solved by a successive fixed point iteration over p ∈ N at
each time level n.
Following Ševčovič [72] we define for n ≥ 1: Πn,0 = Πn−1, �n,0 = �n−1 and
sn,0 = sn−1. Then the (p+1)-th approximation of Πn, �n and sn is obtained
as the solution of the system:

sn,p+1 = D(Πn,p, �n,p),

�n,p+1 = F(Πn,p, sn,p+1
)
,

Πn− 1
2
,p+1 = G(Πn−1,p, �n,p+1

)
,

A
(
sn,p+1

)
Πn,p+1 = Πn− 1

2
,p+1 − d(sn,p+1).

(4.35)
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Both the volatility correction sn,p+1
i , the free boundary �n,p+1 and the solu-

tion Πn− 1
2
,p+1 to the convective part (4.23) can be directly computed from

(4.18), (4.19) and (4.31) respectively. The solution Πn,p+1 to the diffusive
part (4.24) has to be calculated from the system of equations (4.33).
Assuming that the system (4.35) converges to some limiting values sn,pmax ,

�n,pmax, Πn− 1
2
,pmax and Πn,pmax at each time level n [72], we can calculate

V (Si, tn) = V (e−xi�n, T − τn) with these values and proceed to the next
time level n + 1.
From (3.8) we then know that:

V (Si, tn) = e−xi
(
�n − K + Ii

)
, (4.36)

where

Ii =
i−1∑
j=0

Ik +

∫ xi

xi−1

exΠ(x, τ)dx

=
i−1∑
j=0

Ik +
xi − xi−1

2

(
exi−1Πn

i−1 + exiΠn
i

)
.

Here, we use the trapezoidal rule in order to approximate the integral in
equation (3.8).
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4.2.1.6 Algorithm

Therefore, we can summarize the calculation of the price V (S, t) for the
American Call option in the presence or absence of transaction costs by
the following algorithm:

Algorithm 2 Computation of the price V (S, t) for the American Call

Input parameters: R, T , h, k, M , N , r, K, D, σ, Le, a, C, M
1: solve the ODE (2.13) required for the volatility model of Barles and

Soner and interpolate the solution
2: initialize Π0

3: initialize the free boundary �0 = rK/q
4: transform Π0 into V 0

5: set π = Π0 and v = V 0

6: set Π1,0 = Π0 and �1,0 = �0

7: calculate Πn, �n at each time level
8: for n = 1 : M do
9: calculate sn,p, �n,p, Πn−1/2,p and Πn,p in the successive loop over p

10: for p = 1 : pmax do
11: calculate the volatility correction sn,p depending on the volatility

model using Πn,p−1 and �n,p−1 (in the case of Barles’ and Soner’s
model use the interpolated solution of (2.13), in the case without
transaction costs sn,p = (0, · · · , 0)� ∈ R

N+1)
12: calculate �n,p using Πn,p−1 and sn,p

13: calculate Πn−1/2,p using Πn−1 and �n,p

14: fill the matrix An,p and the vector dn,p with the corresponding
coefficients using sn,p

15: L-R-decompose An,p = Ln,pRn,p

16: solve Ln,pyn,p = Πn−1/2,p − dn,p for yn,p

17: solve Rn,pΠn,p = yn,p for Πn,p

18: start over with the loop over p
19: end for
20: set Πn = Πn,p and �n = �n,p

21: transform Πn into V n

22: save the solution in the transformed variables in the array
π =

[
π [−K; Πn; 0]

]
23: save the solution in the original variables in the array

v =
[
v [�n − K; V n; 0]

]
24: start over with the loop over n
25: end for
26: plot v at each time level and each stock price, plot � at each time level
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4.2.2 Comparison Study

Based on the iterative algorithm described in the previous sections (Al-
gorithm 2), we solve the transformed Black–Scholes equation (4.14) with
the corresponding volatilities (3.7) for the American Call option and finally
transform Π(x, τ) back to the original option price V (S, t).
The main purpose of this section is to compare the resulting option value
V (S, t) and the free boundary Sf(T − t) = �(τ), that determines the exer-
cise region for the option V (S, t), for the four different transaction cost
models (4.18) to the linear model and to each other.
We choose pmax = 5 for the successive iteration over p in our algorithm in
order to solve the system (4.34) with the precision of 10−7 [72]. We use the
following parameters for our calculations of Π(x, τ) and �(τ):

r = 0.1, σ = 0.2, K = 10, T = 1 (one year), R = 3.

We start by comparing the free boundary �(τ) computed with Algorithm
2 to the asymptotic solution (4.21) from Remark 4.2 for the linear case
(sn

i = 0). In Figure 4.9 we see that for smaller spatial steps h → 0 the free
boundary computed by our iterative algorithm converges monotonically
towards the asymptotic solution (4.21) from below.
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Figure 4.9: Free boundary positions for various spatial steps h with a
constant time step k = 0.0008 and a constant volatility σ2 computed by
Algorithm 2 vs. the asymptotic solution of (4.21).

We keep the time step k = 0.0008 constant and see that for h = 0.0086
(purple line) the free boundary at T is computed by our algorithm as
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�(T ) ≈ 22.2201. The asymptotic solution at T is �(T ) ≈ 22.5552, which
means a relative error of 1.49%. The free boundary values for the other
spatial steps can be seen in Table 4.2.

h 0.03 0.015 0.012 0.01 0.0086
�(T ) 21.8764 22.1111 22.1619 22.1955 22.2201

Table 4.2: Values of the free boundary position for various spatial steps h
with a constant time step k = 0.0008 and a constant volatility σ2.

Since the asymptotic solution of (4.21) is only an approximation, we are
satisfied by our results and take the free boundary �(T ) ≈ 22.1111 for
k = 0.0008, h = 0.015 (blue line in Figure 4.9) as our reference solution in
the absence of transaction costs for the sake of the computational time.
Figure 4.10 shows the structure of the price for the American Call option
V (S, t) without transaction costs with k = 0.0008 and h = 0.015. It is
computed with the iterative algorithm described in the previous sections
and the parameters above.
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Figure 4.10: Value of an American Call option V (S, t) in the absence trans-
action costs computed with Algorithm 2 determined by the free boundary
(red line).

The corresponding synthetic portfolio Π(x, τ) in the absence of transaction
costs is illustrated in Figure 4.11. Note, that we include rounding and
discretization errors when transforming Π(x, τ) back into V (S, t), since
equation (4.36) involves an integral approximation. However, the analysis
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of V (S, t) is more interesting for us and we therefore assume that these
errors are sufficiently small due to the chosen mesh.
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Figure 4.11: Value of the synthetic portfolio Π(x, τ) in the absence of
transaction costs computed with Algorithm 2.

We now compare the price V (S, 0) computed by Algorithm 2 to the price
VPSOR(S, 0) computed by the PSOR algorithm in the linear case sn

i = 0.
Figure 4.12 shows that with the given mesh size k = 0.0008 and h = 0.015
the price computed by our algorithm (Figure 4.12(a)) only slightly differs
from the price computed by the PSOR algorithm (Figure 4.12(b)).
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(a) Computed with Algorithm 2.
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(b) Computed with PSOR.

Figure 4.12: Price of an American Call option V (S, 0) in the absence of
transaction costs and the pay-off V (S, T ) (red dotted line).

We calculate the error of accuracy of our computation one year to expiry
at t = 0, denoted by the �2-error

err2(0) =

(
h

N∑
i=0

|VPSOR(Si, 0) − V 0
i |2
) 1

2

,

where VPSOR(Si, 0) denotes the solution computed by the PSOR algorithm
at Si = e−ih�(T ) and �(T ) depends on the step size h. For this purpose, we
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interpolate the solution computed by the PSOR algorithm by the MATLAB

routines spline and ppval. For V 0
i we use our corresponding solution,

where k = 0.0008. The error can be seen in Table 4.3, which reveals that
it is reasonable to assume the accuracy O(h).

h 0.03 0.015 0.012 0.01 0.0086
�2-error 0.0365 0.0162 0.0257 0.0084 0.0167

Table 4.3: �2-error of accuracy of Algorithm 2 compared to the PSOR
algorithm in the absence of transaction costs.

We further compute the free boundary profiles for the four different trans-
action cost models (4.18) by Algorithm 2 and compare them to the profile
of the free boundary in the absence transaction costs. For our computa-
tions we take k = 0.0008 and h = 0.015. As expected, we see that for all
the transaction cost models the free boundary values are greater than in
the case without transaction costs (Figure 4.13). With the given parame-
ters the free boundary in the absence of transaction costs is �(T ) ≈ 22.11,
followed by the identity model with a = 0.02 (�(T ) ≈ 22.16), Barles’ and
Soner’s model with a = 0.02 (�(T ) ≈ 22.34), Leland’s model with δt = 0.1,
κ = 0.02 (�(T ) ≈ 22.44) and finally the RAPM with C = 0.01, R = 30
(�(T ) ≈ 23.39).
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Figure 4.13: Free boundary positions for various transaction cost models
vs. the free boundary profile in the absence of transaction costs.

Furthermore, we compute the corresponding values V (S, t) for the Ameri-
can Call option by Algorithm 2 and check the price difference between the
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American Call option with transaction costs and the American Call option
without transaction costs

Vnonlinear(S, t) − Vlinear(S, t).

The influence of transaction costs for the four models can be seen in Fi-
gure 4.14. We notice that the difference is maximal one year to expiry at
t = 0 and S ≈ 9.5. As well as in the case of the European Call option, the
difference is not symmetric, but decreases towards the expiry. This seems
plausible, since towards expiry the portfolio can not be adjusted as often
at it could be adjusted before. Hence, the transaction costs and the value
of the American Call option with transaction costs decrease towards t = 1.
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(a) Barles’ and Soner’s model (a = 0.02)
vs. linear model.
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(b) Ψ(x) := x chosen as the identity (a =
0.02) vs. linear model.
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(c) Leland’s model (δt = 0.1, κ = 0.02)
vs. linear model.
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(d) RAPM model (M = 0.01, C = 30) vs.
linear model.

Figure 4.14: The influence of transaction costs Vnonlinear(S, t)−Vlinear(S, t).

The corresponding prices V (S, 0) in the presence of transaction costs can
be seen in Figure 4.15. At S ≈ 9.5 with the parameters as indicated above
and k = 0.0008, h = 0.015 the price of the American Call option evaluated
with the RAPM transaction cost model is the highest (≈ 1.06). It is fol-
lowed by Barles’ and Soner’s model (≈ 0.82), Leland’s model (≈ 0.78), the
identity model (≈ 0.74) and finally the model in the absence of transaction
costs (≈ 0.71). As already shown in Table 4.3, the linear price computed
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by our algorithm (light blue solid line in Figure 4.15) only slightly deviates
from the price computed by the PSOR algorithm (black dotted line in Fi-
gure 4.15).
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Figure 4.15: Price of an American Call option V (S, 0) for different trans-
action cost models vs. the price without transaction costs.

For other numerical experiments in the future is recommendable to use
rather C or C++ in order to reduce the computational time which is rela-
tively high in MATLAB.

Summing up, our numerical results show us a considerable price difference
between linear and nonlinear prices for both American and European Call
options.





Chapter 5

Conclusion

This diploma thesis provided a profound overview over nonlinear Black–
Scholes equations for European and American options and the numerical
methods for their adequate solution.
We started by introducing the reader to the financial terminology and to
Black–Scholes equations in Chapter 1. In Chapter 2 we investigated seve-
ral reasons for their nonlinearity and focused on the nonlinearity resulting
from a modified volatility function due to transaction costs. We concen-
trated on several transaction cost models, including Leland’ model, Barles’
and Soner’s model, the identity model and the Risk Adjusted Pricing Me-
thodology.
The analytical approach to the solution of nonlinear Black–Scholes equa-
tions for the European and American Call option was given in Chapter
3. In order to solve the nonlinear problems numerically we transformed
the original problem into a forward convection-diffusion equation with a
nonlinear term for the European Call option. The preparation for the nu-
merical solution in case of the American Call option in the presence of
transaction costs was achieved by a transformation of the free boundary
problem into a fully nonlinear parabolic equation defined on a fixed do-
main.
In Chapter 4 we introduced the reader to the broad field of numerical ap-
proaches to the solution of Black–Scholes equations. We focused on finite-
difference schemes.
For the European Call option, we compared several transaction cost models
to each other and used two difference schemes for the numerical computa-
tion of the option prices. Both the Crank-Nicolson and the R3C scheme
provided accurate approximations to the European Call option price. They
are unconditionally stable in the linear case and serve as excellent methods
for the computation in case of European options in the nonlinear case due
to their superiority to standard difference schemes.
For the computation of the prices for American options in a market with
transaction costs we used finite difference schemes combined with an opera-
tor splitting iterative technique. We compared the influence of transaction
costs on the free boundary and the option price for different transaction
cost models and obtained substantially higher prices in the presence of
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transaction costs.
The obtained results provide a firm basis for further numerical investiga-
tions for the solution of nonlinear Black–Scholes equations.



Appendix A

Differential Equations

Since this work deals with several kinds of differential equations, we recall
some definitions (see e.g. [25]).

Definition: An ordinary differential equation (ODE) is an
equation involving an unknown function of a single variable and its
derivatives.

Definition: A stochastic differential equation (SDE) is a
differential equation in which one or more of the terms is a stochastic
process (see Appendix B.3).

Definition: A partial differential equation (PDE) is an equation
involving an unknown function of two or more variables and some of its
partial derivatives. It is called a kth-order PDE if it has the form

F (Dku(x), Dk−1u(x), ..., Du(x), u(x), x) = 0, (A.1)

where

F : R
nk × R

nk−1 × · · · × R
n × R × U → R

is given and

u : U → R

is the unknown. The PDE (A.1) is called

(i) linear if it has the form∑
|α|≤k

aα(x)Dαu(x) = f(x)

for given functions aα (α = (α1, ..., αn), |α| = α1 + · · ·+ αn ≤ k)
and f , Dku(x) :=

{
Dαu(x)||α| = k

}
being the set of all partial

derivatives of order k;
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(ii) semilinear if it has the form∑
|α|=k

aα(x)Dαu(x) + a0(D
k−1u, ..., Du, u, x) = 0;

(iii) quasilinear if it has the form∑
|α|=k

aα(Dk−1u, ..., Du, u, x)Dαu(x) + a0(D
k−1u, ..., Du, u, x) = 0;

(iv) and fully nonlinear if it depends nonlinearly upon the highest
order derivatives.

In this thesis we are mainly interested in second-order PDEs, hence:

Definition: Let

u(x, t) : D1 × D2 → R, D1, D2 ⊂ R,

be the unknown function that solves the second-order PDE

auxx + 2buxt + cutt + dut + eux + fu + g = 0, (A.2)

where a, b, c, d, e, f and g are given functions. The PDE (A.2) is called

(i) parabolic, if b2 − ac = 0;

(ii) elliptic, if b2 − ac < 0;

(iii) and hyperbolic, if b2 − ac > 0

for all (x, t) ∈ R × R [31].

Note, that (A.2) is semi-, quasi- or fully nonlinear depending on the func-
tions a–g.



Appendix B

Stochastics

In this thesis, we use several terms and concepts of probability theory
and stochastics. Thus, we recall some definitions (see [31, 61, 62] and the
references therein).

B.1 Probability Space

Let Ω be a sample space representing all possible scenarios (e.g. all
possible paths for the stock price over time). A subset of Ω is an event and
ω ∈ Ω a sample point.

Definition: Let Ω be a nonempty set and F be a collection of subsets of
Ω. F is called a σ-algebra (not related to the volatility σ), if

(i) Ω ∈ F ,

(ii) whenever a set A belongs to F , its complement Ac also belongs to F
and

(iii) whenever a sequence of sets An, n ∈ N belongs to F , their union⋃∞
n=1 An also belongs to F .

In our financial scenario, F represents the space of events that are obser-
vable in the market and therefore, all the information available until the
time t can be regarded as a σ-algebra Ft. It is logical that Ft ⊆ Fs for
t < s, since the information that has been available t is still available at s.

Definition: Let Ω be a nonempty set and F be a σ-algebra of subsets of
Ω. A probability measure P is a function that assigns a number in
[0, 1] to every set A ∈ F . The number is called the probability of A and is
written P (A). We require:

(i) P (Ω) = 1 and

(ii) whenever a sequence of disjoint sets An, n ∈ N belongs to F , then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An).
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The tripel (Ω,F , P ) is called a probability space.

B.2 Random Variable

Definition: A real-valued function X on Ω is called a random
variable if the sets

{X ≤ x} := {ω ∈ Ω : X(ω) ≤ x} = X−1(] −∞, x])

are measurable for all x ∈ R. That is, {X ≤ x} ∈ F .

B.3 Stochastic Process

Definition: A (continuous) stochastic process X(t) = X(·, t),
t ∈ [0,∞[, is a family of random variables X : Ω × [0,∞[→ R with
t �→ X(ω, t) continuous for all ω ∈ Ω.

B.4 Itô Process

Definition: An Itô process is a stochastic process of the form

dX = a(X, t)dt + b(X, t)dW,

which is equivalent to

X(t) = X(0) +

∫ t

0

a(X, s)ds +

∫ t

0

b(X, s)dW,

where X(0) is nonrandom, W (t) is a standard Wiener process, a(·) and
b(·) are sufficiently regular functions and the integrals are Itô integrals.

B.5 Stopping Time

Definition: A stopping time t is a random variable taking values in
[0,∞] and satisfying

{t ≤ s} ∈ Fs ∀s ≥ 0.
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B.6 Brownian Motion

Definition: A Brownian motion or Wiener process is a
time-continuos stochastic process W (t) with the properties:

(i) W (0) = 0.

(ii) W (t) ∼ N (0, t) for all t ≥ 0. That is, for each t the random variable
W (t) is normally distributed with mean E[W (t)] = 0 and variance
V ar[W (t)] = E[W 2(t)] = t.

(ii) All increments ∆W (t) := W (t + ∆t) − W (t) on non-overlapping
time intervals are independent. That is, W (t2) − W (t1) and
W (t4) − W (t3) are independent for all 0 ≤ t1 < t2 ≤ t3 < t4.

(iv) W (t) depends continuously on t.

B.7 Itô’s Lemma

Theorem B.1. Consider a function V (S, t) : R × [0,∞[→ R with V ∈
C2,1(R × [0,∞[) and suppose that S(t) follows the Itô process

dS = a(S, t)dt + b(S, t)dW,

where W (t) is a standard Wiener process. Then V follows an Itô process
with the same Wiener process W (t):

dV = (aVS +
1

2
b2VSS + Vt)dt + bVSdW, (B.1)

where a := a(S, t) and b := b(S, t).

If we consider a special case, where a(S, t) = µS and b(S, t) = σS, then
S(t) follows the Geometric Brownian motion, where W (t) is a standard
Wiener process, and we have

dS = µSdt + σSdW.

Then, Itô’s Lemma yields

dV = (µSVS +
1

2
σ2S2VSS + Vt)dt + σSVSdW

= (
1

2
σ2S2VSS + Vt)dt + VSdS.





Appendix C

Pricing Formulae

Theorem C.1. The solution to the linear Black-Scholes equation (1.1) with
the terminal and boundary conditions (1.5), or the value of the European
Call option, is given by

V (S, t) = Se−q(T−t)N (d1) − Ke−r(T−t)N (d2), (C.1)

where

d1 :=
ln
(

S
K

)
+ (r − q + σ2

2
)(T − t)

σ
√

T − t

d2 :=
ln
(

S
K

)
+ (r − q − σ2

2
)(T − t)

σ
√

T − t

and N (x) is the standard normal cumulative distribution function

N (x) =
1√
2π

∫ x

−∞
e−

y2

2 dy, x ∈ R.

Respectively, the value of the European Put option is the solution to the
linear Black-Scholes equation (1.1) with the terminal and boundary condi-
tions (1.6) and is given by

V (S, t) = Se−q(T−t)N (d1) − Ke−r(T−t)N (d2). (C.2)
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