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Abstract

This paper is concerned with transparent boundary conditions for the one dimensional
time–dependent Schrödinger equation. They are used to restrict the original PDE prob-
lem that is posed on an unbounded domain onto a finite interval in order to make this
problem feasible for numerical simulations. The main focus of this article is on the appro-
priate discretization of such transparent boundary conditions in conjunction with some
chosen discretization of the PDE (usually Crank–Nicolson finite differences in the case
of the Schrödinger equation). The presented discrete transparent boundary conditions
yield an unconditionally stable numerical scheme and are completely reflection–free at
the boundary.

1. Introduction

Many physical problems are described mathematically by a partial differential equation
(PDE) which is defined on an unbounded domain. If one wants to solve such whole–space
evolution problems numerically, one first has to make it finite dimensional. The stan-
dard approach is to restrict the computational domain by introducing artificial bound-
ary conditions or absorbing layers. Further possible methods that can be applied are
boundary element methods (BEM) (cf. [23]) or infinite element methods (IEM) (see for
example [20]). In this paper we focus on the approach of artificial boundary conditions.

If the initial data is supported in a finite domain Ω, one can construct boundary
conditions (BCs) on ∂Ω with the objective to approximate the exact solution of the
whole–space problem, restricted to Ω. Such BCs are called absorbing boundary conditions
(ABCs) if they yield a well–posed (initial) boundary value problem (IBVP), where some
“energy” is absorbed at the boundary. If the approximate solution coincides on Ω with
the exact solution, one refers to these BCs as transparent boundary conditions (TBCs).
Of course, these boundary conditions should lead to a well–posed (initial) boundary value
problem. Additionally, it is desirable that the BCs are local in space and/or time to allow
for an efficient numerical implementation.

1



1. INTRODUCTION 2

In this paper we shall review the state of the art and we shall present recent develop-
ments of TBCs for the time-dependent Schrödinger equation. Since quantum mechanical
problems are typically posed on a whole space, the “correct” formulation of BCs is of
paramount importance for numerical simulations. Due to the wave–like character of the
Schrödinger equation the construction and careful discretization of TBCs requires spe-
cial care. However, most of the ideas presented here carry over to other linear evolution
equations like wave or diffusion equations [13].

We remark that Schrödinger–type equations also appear in other fields of application.
They arise from “parabolic” equation (PE) models which have been widely used for 1–way
wave propagation problems in various application areas, e.g. seismology [8], [9], optics
and plasma physics (cf. the references in [5]). In underwater acoustics they appear as
wide angle approximation to the Helmholtz equation in cylindrical coordinates and are
called wide angle parabolic equations [24].

The usual strategy of employing TBCs for solving a whole–space problem numerically
consists of first deriving an analytic TBC at the artificial boundary. These TBCs are typ-
ically non–local in time (of “memory–type”) and can be approximated by a local–in–time
BC. Finally, the continuous BC must be discretized to use it with an interior discretization
of the PDE. The analytic TBC for the Schrödinger equation was independently derived
by several authors from various application fields [3], [6], [21], [30], [33], [35].

While continuous TBCs fully solve the problem of cutting off the spatial domain for
the analytical equation, their numerical discretization is far from trivial. Up to now the
standard strategy is to derive first the TBC for the analytic equation, then to discretize
it, and to use it in connection with some appropriate numerical scheme for the PDE.
The defect of this usual approach of discretizing continuous TBCs (discretized TBCs) is
that the inner discretization of the PDE often does not “match” the discretization of the
TBCs. There are two major problems of these existing consistent discretizations of the
continuous TBC:

P1: The discretized TBCs for the Schrödinger equation often destroy the stability of
the whole–space finite difference scheme. E.g. the unconditional stability of the
underlying Crank–Nicolson scheme is destroyed [30] and the overall numerical
scheme is rendered only conditionally stable [6], [30], [34], [42].

P2: The available discretizations often suffer from reduced accuracy (in comparison
to the discretized whole–space problem) and induce numerical reflections at the
boundary, particularly when using coarse grids.

In this paper we discuss in detail a recently developed approach (first outlined in [3])
which overcomes both the stability problem (P1) and the problem of reduced accuracy
(P2). In our discrete approach we propose to change the order of the two steps of the
usual strategy, i.e. we first consider the discretization of the PDE on the whole space and
then derive the TBC for the difference scheme directly on a purely discrete level.

There are several advantages of the discrete approach. It completely avoids any numer-
ical reflections at the boundary: no additional discretization errors due to the boundary
conditions occur. The discrete TBC is already adapted to the inner scheme and therefore
the numerical stability is often better–behaved than for a discretized differential TBC. An
additional motivation for this discrete approach arises from the fact that the numerical
scheme often needs more boundary conditions than the analytical problem can provide
(especially hyperbolic equations, systems of equations and high–order schemes).
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In the literature the discrete approach did not gain much attention yet. The first
discrete derivation of artificial boundary conditions was presented in [15, Section 5]. This
discrete approach was also used in [36], [43], [44] for linear hyperbolic systems and in [19]
for the wave equation in one dimension, also with error estimates for the reflected part.
In [43] a discrete (nonlocal) solution operator for general difference schemes (strictly hy-
perbolic systems, with constant coefficients in 1D) is constructed. Lill generalized in [26]
the approach of Engquist and Majda [15] to boundary conditions for a convection diffusion
equation and drops the standard assumption that the initial data is compactly supported
inside the computational domain. However, the derived Z–transformed boundary condi-
tions were approximated in order to get local–in–time artificial boundary conditions after
the inverse Z–transformation.

Here we construct discrete transparent boundary conditions (DTBC) for a Crank–
Nicolson finite difference discretization of the Schrödinger equation such that the overall
scheme is unconditionally stable and as accurate as the discretized whole–space problem.
The same strategy applies to the θ–scheme for convection diffusion equations [13] and
was also used in [12] for the wave equation in the frequency domain.

Although this work concentrates on the discrete derivation of BCs, we will also consider
the continuous problem, since the basic ideas of the construction and derivation carry over
to the discrete case, e.g. we can use discrete versions of the L2–estimates. Moreover the
well–posedness of the continuous problem is necessary for the stability of the numerical
scheme. Just like the analytic TBC, the discrete TBC will be nonlocal in the time variable.

This paper is organized as follows: In Section 2 we first review the continuous TBC
for the Schrödinger equation in one space dimension and in §3 we derive and analyze
the discrete TBCs which are in the form of a discrete convolution. In order to obtain
an efficient implementation one can easily localize these nonlocal in time DTBCs just by
cutting off the rapidly decaying sequence of the convolution coefficients. Various numerical
examples in Section 3 illustrate the superiority of our DTBC over existing discretizations.
In §4 we discuss the DTBC in the case that the initial data is not supported in the
computational domain and, finally, in §5 we show how to apply a numerical inverse Z–
transform if the exact inverse Z–transform cannot be determined analytically.

2. Transparent Boundary Conditions

In this Section we shall sketch the derivation of the TBC and discuss the well–
posedness of the resulting IBVP. Here we will treat the case of the Schrödinger equation

i~ψt = −~
2

2
∆ψ + V (x, t)ψ, x ∈ IR, t > 0,

ψ(x, 0) = ψI(x),

(2.1)

where ψI ∈ L2(IR), V (., t) ∈ L∞(IR) and V (x, .) is piecewise continuous.

2.1. Derivation of the TBC. Our goal is to design transparent boundary conditions
(TBCs) at x = 0 and x = L, such that the resulting IBVP is well–posed and its solution
coincides with the solution of the whole–space problem restricted to (0, L).

We make the following two basic assumptions :

A1: The initial data ψI is supported in the computational domain 0 < x < L.
A2: The given electrostatic potential is constant outside this finite domain: V (x, t) =

0 for x ≤ 0, V (x, t) = VL for x ≥ L.
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Remark 2.1. Without the first assumption information would be lost, and the whole–
space evolution could not be reproduced on the finite interval [0, L]. The second assump-
tion allows to explicitly solve the equation in the exterior of the computational domain
(by the Laplace–method) which is the basic idea of the derivation of the TBC. In Section 4
we will see how to drop the assumption (A1).

We present a formal derivation of the TBC for smooth (i.e. C1) solutions. Afterwards,
the obtained TBC can be regarded for less regular solutions. The first step is to cut the
original whole–space problem (2.1) into three subproblems, the interior problem on the
domain 0 < x < L, and a left and right exterior problem. They are coupled by the
assumption that ψ, ψx are continuous across the artificial boundaries at x = 0, x = L.
The interior problem reads

i~ψt = −~
2

2
∆ψ + V (x, t)ψ, 0 < x < L, t > 0,

ψ(x, 0) = ψI(x),

ψx(0, t) = (T0ψ)(0, t),

ψx(L, t) = (TLψ)(L, t).

(2.2)

T0,L denote the Dirichlet–to–Neumann maps at the boundaries, and they are obtained by
solving the two exterior problems:

i~vt = −~
2

2
∆v + VLv, x > L, t > 0,

v(x, 0) = 0,

v(L, t) = Φ(t), t > 0, Φ(0) = 0,

v(∞, t) = 0,

(TLΦ)(t) = vx(L, t),

(2.3)

and analogously for T0. Since the potential is constant in the exterior problems, we can
solve them explicitly by the Laplace method and thus obtain the two boundary operators
T0,L needed in (2.2). This idea is illustrated in Figure 1.

The Laplace transformation of v is given by

(2.4) v̂(x, s) =

∫ ∞

0

v(x, t) e−st dt,

where we set s = η + iξ, ξ ∈ IR, and η > 0 is fixed, with the idea to later perform the
limit η → 0. Now the right exterior problem (2.3) is transformed to

v̂xx + i
2

~

(
s+ i

VL

~

)
v̂ = 0, x > L,

v̂(L, s) = Φ̂(s).
(2.5)

Since its solutions have to decrease as x→ ∞ (since we have ψ(., t) ∈ L2(IR)), we obtain

(2.6) v̂(x, s) = e−
+
q

−i 2
~
(s+i

VL
~

)(x−L)Φ̂(s).
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problem

(explicitly solvable) right

input:

exterior

L

output: v (0,t)x

ψboundary data      (0,t)

interior problem

x
0

left exterior problem

(x,t)ψ

Iψ

ψ

Figure 1. Schrödinger equation : Construction idea for transparent
boundary conditions

Hence the Laplace–transformed Dirichlet–to–Neumann operator TL reads

(2.7) T̂LΦ(s) = v̂x(L, s) = −
√

2

~
e−i π

4
+

√
s+ i

VL

~
Φ̂(s),

and T0 is calculated analogously. Here, +
√

denotes the branch of the square root with
nonnegative real part.

An inverse Laplace transformation yields the right TBC at x = L:

(2.8) ψx(L, t) = −
√

2

~π
e−i π

4 e−i
VL
~

t d

dt

∫ t

0

ψ(L, τ) ei
VL
~

τ

√
t− τ

dτ.

Similarly, the left TBC at x = 0 is obtained as

(2.9) ψx(0, t) =

√
2

~π
e−i π

4
d

dt

∫ t

0

ψ(0, τ)√
t− τ

dτ.

These BCs are non–local in t and of memory–type, thus requiring the storage of all
previous time levels at the boundary in a numerical discretization. A second difficulty
in numerically implementing (2.8), (2.9) is the discretization of the singular convolution
kernel. A simple calculation shows that (2.8) is equivalent to the impedance boundary
condition [33]:

(2.10) ψ(L, t) = −
√

~

2π
ei π

4

∫ t

0

ψx(L, t− τ) e−i
VL
~

τ

√
τ

dτ.

Likewise, (2.9) is equivalent to

(2.11) ψ(0, t) =

√
~

2π
ei π

4

∫ t

0

ψx(0, τ)√
t− τ

dτ.

Remark 2.2 (Inhomogeneous TBC). The (homogeneous) TBC (2.9) was derived for
modeling the situation where an initial wave function is supported in the computational
domain [0, L], and it is leaving this domain without being reflected back. If an incoming
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wave function ψin(t) is given at the left boundary (e.g. a right traveling plane wave), the
inhomogeneous TBC

(2.12)
[
ψ(0, t) − ψin(0, t)

]
x

=

√
2

~π
e−i π

4
d

dt

∫ t

0

ψ(0, τ) − ψin(τ)√
t− τ

dτ,

has to be prescribed at x = 0. This is the TBC (2.9) formulated for ψ(0, t) − ψin(t)
since the TBC was only derived for outgoing wave functions. The inhomogeneous TBC
is described and analyzed in detail in [4].

Remark 2.3 (Factorization). It should be noted that the Schrödinger equation can
formally be factorized into left and right travelling waves (cf. [6]):

(2.13)
( ∂

∂x
−

√
2

~
e−i π

4

√
∂

∂t
+ i

VL

~

)( ∂

∂x
+

√
2

~
e−i π

4

√
∂

∂t
+ i

VL

~

)
ψ = 0,

and in the potential–free case:

(2.14)
( ∂

∂x
−

√
2

~
e−i π

4

√
∂

∂t

)( ∂

∂x
+

√
2

~
e−i π

4

√
∂

∂t

)
ψ = 0,

where the term

(2.15)

√
d

dt
ψ :=

1√
π

d

dt

∫ t

0

ψ(τ)√
t− τ

dτ

can be interpreted as a fractional (1
2
) time derivative.

2.2. Well–posedness of the IBVP. We now turn to the discussion of the well–
posedness of (2.2). The existence of a solution to the 1D Schrödinger equation with the
TBCs (2.8), (2.9) is clear from the used construction. For regular enough initial data, e.g.
ψI ∈ H1(0, L), the whole–space solution ψ(x, t) will satisfy the TBCs at least in a weak
sense. A more detailed discussion is presented in [10].

It remains to check the uniqueness of the solution, i.e. whether the TBC gives rise
to spurious solutions. In order to prove uniform boundedness of ‖ψ(., t)‖L2(0,L) in t we
will need the following simple lemma which states that the kernel of the Dirichlet–to–
Neumann operator eiπ/4

√
d/dt is of positive type in the sense of memory equations (see,

e.g. [17]).
Using the Plancherel equality for the Laplace transformation the following lemma can

be shown:

Lemma 2.4 ( [3]). For any T > 0, let u ∈ H
1
4 (0, T ) with the extension u(t) = 0 for

t > T . Then

(2.16) Re

{
ei π

4

∫ ∞

0

ū(t)
d

dt

[ ∫ t

0

u(s)√
t− s

ds
]
dt

}
≥ 0.

With this lemma we shall now derive an estimate for the L2–norm of solutions to the
Schrödinger equation (2.2). We multiply (2.2) by ψ̄ :

(2.17) ψ̄ψt =
i~

2
ψ̄ψxx −

i

~
V (x, t) |ψ|2 , 0 < x < L, t > 0.
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Integrating by parts on 0 < x < L, and taking the real part gives

∂t

∫ L

0

|ψ(., t)|2 dx = ~ Re
{
i ψ̄(x, t)ψx(x, t)

∣∣x=L

x=0

}

= −
√

2~

π
Re

{
ei π

4 ψ̄(L, t) e−i
VL
~

t d

dt

∫ t

0

ψ(L, τ) ei
VL
~

τ

√
t− τ

dτ

}

−
√

2~

π
Re

{
ei π

4 ψ̄(0, t)
d

dt

∫ t

0

ψ(0, τ)√
t− τ

dτ

}
.

(2.18)

Now integrating in time and applying Lemma 2.4 for the second term and an analogous
lemma for the first term yields the estimate

(2.19) ‖ψ(., t)‖L2(0,L) ≤ ‖ψI‖L2(0,L), t > 0.

This implies uniqueness of the solution to the Schrödinger IBVP. Equation (2.19) reflects
the fact that some of the initial mass or particle density n(x, t) = |ψ(x, t)|2 leaves the
computational domain [0, L] during the evolution. In the whole–space problem, x ∈ IR,
‖ψ(t)‖L2(IR) is of course conserved.

Finally, we address the question of the well–posedness of the Schrödinger equation
(2.2) with inhomogeneous TBCs (cf. Remark 2.2). We assume that the incoming wave
function ψin(t) is given at the left boundary by

(2.20) ψin(x, t) = α e−i(ωt+
√

2
~
ωx), ω ≥ 0,

i.e. a right traveling plane wave. Then the auxiliary function

(2.21) ϕ(x, t) := ψ(x, t) −
(
1 − x

L

)
ψin(0, t), 0 ≤ x ≤ L, t > 0,

fulfils the following inhomogeneous Schrödinger equation

i~ϕt = −~
2

2
∆ϕ + V (x, t)ϕ+ f(x, t),

f(x, t) :=
(
1 − x

L

)
ψin(0, t)

[
V (x, t) − ω

]
,

ϕ(x, 0) = ϕI(x) = ψI(x) −
(
1 − x

L

)
α,

(2.22)

with the homogeneous left TBC

(2.23)
( ∂

∂x
−

√
2

~
e−i π

4

√
∂

∂t

)
ϕ(0, t) = 0,

and the right TBC (2.8). Proceeding as in the homogeneous case we obtain

(2.24) ∂t‖ϕ(., t)‖2
L2(0,L) ≤

1

~
Im

∫ L

0

fϕ̄ dx ≤ 1

~
‖f(., t)‖L2(0,L)‖ϕ(., t)‖L2(0,L).

If we further assume ‖f(., t)‖L2(0,L) ≤ F~, t ≥ 0 then it follows easily that

(2.25) ‖ψ(., t)‖L2(0,L) ≤ ‖ϕI‖L2(0,L) + α

√
L

3
+
F

2
t, t > 0,

and this implies the well–posedness.
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3. Discrete Transparent Boundary Conditions

In this Section we shall discuss how to discretize the TBC (2.8) in conjunction with a
Crank–Nicolson finite difference scheme and review the derivation of the DTBC from [3].

With the uniform grid points xj = j∆x, tn = n∆t, and the approximations ψn
j ∼

ψ(xj , tn) the discretized Schrödinger equation (2.1) reads:

(3.1) i~D+

t ψ
n
j = −~

2

2
D2

xψ
n+ 1

2
j + V

n+ 1
2

j ψ
n+ 1

2
j , V

n+ 1
2

j = V (xj , tn+ 1
2
),

with the time averaging ψ
n+1/2
j = (ψn+1

j +ψn
j )/2. Here D+

t denotes the forward difference
quotient in time and D2

x is the second order difference quotient in space, i.e.

D+

t ψ
n
j =

ψn+1
j − ψn

j

∆t
, D2

xψ
n
j =

ψn
j+1 − 2ψn

j + ψn
j−1

(∆x)2
.

Remark 3.1. Most existing discretization schemes for the Schrödinger equation with
TBCs are also based on the Crank–Nicolson finite differences ( [6], [30], [34]).

For our analysis, one of the main advantages of this second order (in ∆x and ∆t)
scheme is, that it is unconditionally stable [40] and an easy calculation shows that it
preserves the discrete L2–norm: ‖ψn‖2

2 = ∆x
∑

j∈ZZ |ψn
j |2, which is the discrete analogue

of the mass conservation property of (2.1).
In order to derive this discrete mass conservation property we multiply (3.1) with

−iψ̄n+1/2
j /~ :

(3.2) ψ̄
n+ 1

2
j D+

t ψ
n
j =

i~

2
ψ̄

n+ 1
2

j D2

xψ
n+ 1

2
j − i

~
V

n+ 1
2

j

∣∣∣ψn+ 1
2

j

∣∣∣
2

.

Summing it up for j ∈ ZZ (i.e. in absence of boundary conditions) gives with summation
by parts

(3.3)
∑

j∈ZZ

ψ̄
n+ 1

2
j D+

t ψ
n
j = −i~

2

∑

j∈ZZ

∣∣∣D+

xψ
n+ 1

2
j

∣∣∣
2

− i

~

∑

j∈ZZ

V
n+ 1

2
j

∣∣∣ψn+ 1
2

j

∣∣∣
2

.

Finally, taking the real part by using the simple identity (“discrete product rule”)

(3.4) D+

t (ψn υn) = ψn+ 1
2D+

t (υn) + υn+ 1
2D+

t (ψn),

i.e. with υn = ψ̄n

(3.5) D+

t |ψn|2 = 2 Re {ψ̄n+ 1
2D+

t ψ
n},

yields the conservation of the mass :

(3.6) D+

t

∑

j∈ZZ

∣∣ψn
j

∣∣2 = 0.

Remark 3.2. We remark that an arbitrary high (even) order conservative scheme for
the Schrödinger equation (2.1) can be obtained by using the diagonal Padé approximations
to the exponential [7]. The Crank–Nicolson scheme corresponds to second order, and the
fourth order is known in the ODE literature as Hammer and Hollingsworth method [18].
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3.1. Discretization strategies for the TBC. We shall now compare three strate-
gies to discretize the TBC (2.8) with its mildly singular convolution kernel. First we review
a known discretization from the literature, where the analytic TBC in the equivalent form
(2.10) at L = J∆x was discretized in an ad–hoc fashion.

Discretized TBC of Mayfield. In [30] Mayfield proposed the approximation
∫ tn

0

ψx(L, tn − τ) e−i
VL
~

τ

√
τ

dτ ≈ 1

∆x

n−1∑

m=0

(ψn−m
J − ψn−m

J−1 ) e−i
VL
~

m∆t

∫ tm+1

tm

dτ√
τ

=
2
√

∆t

∆x

n−1∑

m=0

(ψn−m
J − ψn−m

J−1 ) e−i
VL
~

m∆t

√
m+ 1 +

√
m

,

(3.7)

where she used the left–point rectangular quadrature rule. This leads to the following
discretized TBC for the Schrödinger equation:

(3.8) ψn
J − ψn

J−1 =
∆x

2B
√

∆t
ψn

J −
n−1∑

m=1

(
ψn−m

J − ψn−m
J−1

)
ℓ̃m,

with

B = −
√

~

2π
ei π

4 , ℓ̃m =
e−i

VL
~

m∆t

√
m+ 1 +

√
m
.

On the fully discrete level this BC is no longer perfectly transparent. For the resulting
scheme with a homogeneous Dirichlet BC at j = 0 and (3.8), Mayfield obtained the
following result:

Theorem 3.3 ( [30]). The numerical scheme (3.1), (3.8) is stable, if and only if

(3.9) 4π~
∆t

∆x2
∈

⋃

j∈IN0

[
(2j + 1)−2, (2j)−2

]
.

This shows that the chosen discretization of the TBC (3.8) destroys the unconditional
stability of the underlying Crank–Nicolson scheme. The stability regions of Theorem 3.3
are illustrated in Figure 2 as light areas. The dark intervals are regions of instability.

1111

∆x2
__C ∆t

______
4916

Figure 2. Discretized TBC of Mayfield : Stability regions.

As the numerical example in Section 3.5 will show this discretization gives rise to
unphysical reflections at the boundary.

Remark 3.4 (Approach of Baskakov and Popov). A similar strategy using a higher-
order quadrature rule for the l.h.s. of (3.7) was introduced by Baskakov and Popov in [6].
This approach typically induces less numerical reflections compared to the results when
using the discretized TBC of Mayfield.
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Semi–Discrete TBC of Schmidt and Deuflhard. In the semi–discrete approach
of Schmidt and Deuflhard [38] a TBC is derived for the semi–discretized (in t) Schrödinger
equation. This method also applies for a nonuniform in t (e.g. adaptive) interior scheme
and it admits a time–dependent potential in the exterior domain (i.e. VL = VL(t)). While
being unconditionally stable (in conjunction with an interior finite element scheme) [39],
it still exhibits small residual reflections at the artificial boundary. In [39] this approach
is also applied to uniform exterior z–discretizations, and one then recovers — through a
different derivation — the discrete TBC from [3].

Approach of Lubich and Schädle. The time discretization is done by the trape-
zoidal rule in the interior and by convolution quadrature on the boundary. The numerical
integration of the convolution integral is done in the following way (cf. [27], [28] [37]). If

f̂(s) denotes the Laplace transform of f , then formally setting s = ∂t yields

f̂(∂t) g(t) =

∫ ∞

0

f(τ) e−τ∂tg(t) dτ

=

∫ ∞

0

f(τ) g(t− τ) dτ

= f ∗ g,

(3.10)

where g is a function satisfying g(t) = 0 for t < 0. Now f̂(∂t) g(t) is approximated by the
discrete convolution

(3.11) f̂(∂t) g(t) :=
∑

n≥0

ωn g(t− nk),

with the stepsize k = ∆t. The quadrature weights ωn are defined as the coefficients of
the generating power series:

(3.12)
∑

n≥0

ωn ξ
n := f̂

(
δ(ξ)

k

)
, |ξ| small.

Here δ(ξ) =
∑∞

n=0 δnξ
n is the quotient of the generating polynomials of a linear multistep

method, e.g. δ(ξ) = 2(1 − ξ)/(1 + ξ) for the trapezoidal rule. If one chooses for the
quadrature the same numerical scheme as in the interior then one obtains also a reflection–
free discrete TBC.

Discrete TBC. Instead of using an ad–hoc discretization of the analytic TBC like
(3.7) we will construct discrete TBCs of the fully discretized whole–space problem. Our
new strategy solves both problems of the discretized TBC at no additional computational
costs. With our DTBC the numerical solution on the computational domain 0 ≤ j ≤ J ex-
actly equals the discrete whole–space solution (on j ∈ ZZ) restricted to the computational
domain. Therefore, our overall scheme prevents any numerical reflections at the bound-
ary and inherits the unconditional stability of the whole–space Crank–Nicolson scheme
(see Theorem 3.13). These different approaches, discretization of the analytic TBC and
(semi–)discrete TBC, are sketched in Figure 3.



3. DISCRETE TRANSPARENT BOUNDARY CONDITIONS 11

Discrete Schrodinger Equation
..

same computational effort

(Analytic) Transparent BC

Discrete TBCDiscretized TBC
Arnold & Ehrhardt

semi-discrete TBC
Mayfield

Baskakov & Popov

only conditionally stable

numerical reflections

unconditionally stable

small reflections

Lubich & Schadle

unconditionally stable

reflection-free

Schmidt & Deuflhard
..

..
Schrodinger Equation

Figure 3. Discretization strategies for the TBC

Consequently, when considering the discretization of TBCs, it should be a standard
strategy to derive the discrete TBCs of the fully discretized problem, rather then attempt-
ing to discretize the differential TBC whenever it is possible. A comparison of these two
strategies for a 1D wave propagation problem is given in [12].

3.2. Derivation of the DTBC. To derive the discrete TBC we will now mimick the
derivation of the analytic TBC from Section 2 on a discrete level. The Crank–Nicolson
scheme (3.1) can be written in the form:

(3.13) −iR (ψn+1
j − ψn

j ) = ∆2

xψ
n+1
j + ∆2

xψ
n
j + wV

n+ 1
2

j (ψn+1
j + ψn

j ),

with

R =
4

~

(∆x)2

∆t
, w = −2(∆x)2

~2
, V

n+ 1
2

j = V (xj , tn+ 1
2
),

where ∆2
xψ

n
j = ψn

j+1 − 2ψn
j + ψn

j−1, and R is proportional to the parabolic mesh ratio.
Again, we will only consider the right BC. In analogy to the continuous problem we

assume for the potential and initial data: V n
j = VL = const, j ≥ J − 1, ψ0

j = 0, j ≥ J − 2
and solve the discrete right exterior problem by using the discrete analogue of the Laplace
transformation, the Z–transform :

(3.14) Z{ψn
j } = ψ̂j(z) :=

∞∑

n=0

ψn
j z

−n, z ∈ IC, |z| > 1.

Hence, the Z–transformed Crank–Nicolson finite difference scheme (3.13) for j ≥ J − 1
reads

(3.15) (z + 1)∆2

xψ̂j(z) = −iR
[
z − 1 + iκ(z + 1)

]
ψ̂j(z), κ =

∆t

2

VL

~
.

The two linearly independent solutions of the resulting second order difference equation

(3.16) ψ̂j+1(z) − 2

[
1 − iR

2

(z − 1

z + 1
+ iκ

)]
ψ̂j(z) + ψ̂j−1(z) = 0, j ≥ J − 1,
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take the form ψ̂j(z) = νj
1,2(z), j ≥ J − 1, where ν1,2(z) solve

(3.17) ν2 − 2

[
1 − iR

2

(z − 1

z + 1
+ iκ

)]
ν + 1 = 0.

For the decreasing mode (as j → ∞) we have to require |ν1(z)| < 1 and obtain (using
ν1(z)ν2(z) = 1) the Z–transformed right DTBC as

(3.18) ψ̂J−1(z) = ν2(z) ψ̂J (z).

Analogously, the Z–transformed left DTBC reads:

(3.19) ψ̂1 (z) = ν̃2(z) ψ̂0 (z),

where ν̃2(z) with |ν̃2(z)| > 1 is obtained from a solution to the left discrete problem, i.e.
(3.16) on the range j ≤ 1.

Remark 3.5 (Discrete Factorization). If S denotes the usual shift operator given by

Sψ̂j (z) = ψ̂j+1(z), then analogously to the continuous case (cf. Remark 2.3) the discretized
Schrödinger equation (3.16) can formally be factorized as:

(3.20)
(
S − ν1(z)

)(
S − ν2(z)

)
ψ̂j (z) = 0, j ≥ J − 1,

which leads to the same DTBCs (3.18), (3.19).

It remains to inverse transform (3.18) using the inversion rules of the Z-transform
(cf. [11], e.g.). By the following tedious calculation this can be achieved explicitly.

Calculation (of Z−1 {ν2(z)}). First we rewrite ν1,2(z) as:

ν1,2(z) = 1 − iR

2

(z − 1

z + 1
+ iκ

)
± +

√
−iR

2

(z − 1

z + 1
+ iκ

)[
2 − iR

2

(z − 1

z + 1
+ iκ

)]

= 1 +
iR

2
+
Rκ

2
− iR

z

z + 1
∓ iR

2

1

z + 1
+
√
Az2 − 2Bz + C,

(3.21)

with the constants

A = (1 + iκ)
(
1 + iκ + i

4

R

)
,(3.22a)

B = 1 + κ2 +
4κ

R
,(3.22b)

C = (1 − iκ)
(
1 − iκ− i

4

R

)
.(3.22c)

For the inverse Z–transform we use

(3.23)
+
√
Az2 − 2Bz + C =

1
+
√
A

Az2 − 2Bz + C

z

+√A
+√C

z

+

√
A
C
z2 − 2B

C
z + 1

.

With the abbreviations

(3.24) F (z, µ) =
z

+
√
z2 − 2µz + 1

, λ =
+
√
A

+
√
C
, µ =

B
+
√
A +
√
C
,
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we obtain from equation (3.23)

1

z + 1
+
√
Az2 − 2Bz + C =

1
+
√
A

Az2 − 2Bz + C

z(z + 1)
F (λz, µ)

=
1

+
√
A

{
A +

C

z
− E

z + 1

}
F (λz, µ)

=
+
√
C

{
λ+ λ−1 1

z
− E

+
√
A +
√
C

1

z + 1

}
F (λz, µ),

(3.25)

with E = A+ 2B + C. The inversion rules now yield

Z−1

{
+
√
Az2 − 2Bz + C

z + 1

}
=

+
√
C

{
λδ0

n + λ−1δ1
n +

E
+
√
A +
√
C

[
(−1)n − δ0

n

]}
∗ P̃n(µ)

=
+
√
C

{
λP̃n(µ) + λ−1P̃n−1(µ) +

E
+
√
A +
√
C

n−1∑

k=0

(−1)n−kP̃k(µ)

}
,

where ∗ denotes the discrete convolution. Finally, we obtain

Z−1 {ν1,2(z)} =
[
1 + i

R

2
+
Rκ

2

]
δ0

n − iR(−1)n

∓ iR +
√
C

2
λ−n

{
λPn(µ) + Pn−1(µ) +

E
+
√
A +
√
C

n−1∑

k=0

(−λ)n−kPk(µ)

}
.

(3.26)

Since C = Ā we have |λ| = 1 with

(3.27) λ =
A

+
√
A +
√
C

=
R− 4κ− Rκ2 + 2i(Rκ+ 2)√

(1 + κ2)
[
R2 + (Rκ+ 4)2

] .

Therefore we write

(3.28) λ = eiϕ, with ϕ = arg
2(Rκ+ 2)

R− 4κ− Rκ2
.

We obtain for the parameter µ:

(3.29) µ =
R(1 + κ2) + 4κ√

(1 + κ2)
[
R2 + (Rκ + 4)2

] ∈ IR,

and it can easily be seen that −1 < µ < 1 is valid. The constant E simply equals 4 and
we get

(3.30) τ =
E

+
√
A +
√
C

=
4R√

(1 + κ2)
[
R2 + (Rκ + 4)2

] ∈ IR.

The choice of the sign in (3.26) can be justified analytically or simply by testing it
numerically. We finally obtain the convolution coefficients ℓ(n) = Z−1 {ν2(z)} as

ℓ(n) =
[
1 + i

R

2
+
σ

2

]
δ0

n − iR(−1)n − i

2
4

√
(R2 + σ2)

[
R2 + (σ + 4)2

]
e−iϕ/2·

· e−inϕ

{
λPn(µ) + Pn−1(µ) + τ

n−1∑

k=0

(−λ)n−kPk(µ)

}
,

(3.31)
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with σ = Rκ and Pn denotes the Legendre polynomials. The resulting discrete TBCs at
the grid points xj , j = 0, J read

ψn
1 − ℓ

(0)
0 ψn

0 =
n−1∑

k=1

ℓ
(n−k)
0 ψk

0 , n ≥ 1,(3.32a)

ψn
J−1 − ℓ

(0)
J ψn

J =
n−1∑

k=1

ℓ
(n−k)
J ψk

J , n ≥ 1.(3.32b)

The subscript j of the coefficients ℓ(n) indicates at which boundary the values are to be
taken. In the sequel many parameters will be supplied with this subscript.

3.3. The Asymptotic Behaviour of the Convolution Coefficients. We study

the asymptotic behaviour of the ℓ
(n)
0 , ℓ

(n)
J in (3.32). It will turn out that it is advantageous

to reformulate the DTBC using new coefficients. Afterwards we shall derive a recursion
formula for these new coefficients and compare their decay rate with the decay rate of the
continuous integral kernel in (2.8), (2.9).

The summed convolution coeffcients. First we want to study the asymptotic

behaviour of the convolution coefficients ℓ
(n)
j , j = 0, J . With the notation µj = cos θj ,

0 < θj < π, we use the following classical result on the asymptotic property of the Legendre
polynomials :

Lemma 3.6 (Theorem 8.21.2 (Formula of Laplace), [41]).

(3.33) Pn(cos θj) =

√
2√

π
√

sin θj

cos
[
(n+ 1

2
)θj − π

4

]
√
n

+ O(n−3/2), 0 < θj < π.

The bound for the error term holds uniformly in the interval ε ≤ θj ≤ π − ε.

From this lemma we conclude that limn→∞ Pn(µj) = 0 holds. Consequently, the coeffi-
cients have the following asymptotic behaviour for n→ ∞:
(3.34)

ℓ
(n)
j − iR(−1)n ∼ iτj

2
4

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
e−iϕj/2(−1)n

n−1∑

k=0

(−e−iϕj )kPk(µj).

Using

lim
n→∞

n−1∑

k=0

(−e−iϕj )kPk(µj) =
1√

1 + 2µjλ̄j + λ̄j
2

=
1√
2λ̄j

1√
Re λj + µj

=
1

2R
4

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
eiϕj/2,

(3.35)

we finally obtain

(3.36) ℓ
(n)
j ∼ iR(−1)n +

iτj
4R

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
(−1)n = 2iR(−1)n.

The sequence ℓ
(n)
j is asymptotically an alternating, purely imaginary sequence, which

may lead (on the numerical level) to subtractive cancellation in (3.32). To circumvent
this problem we consider the summed coefficients

(3.37) s
(n)
j := ℓ

(n)
j + ℓ

(n−1)
j , n ≥ 1, s

(0)
j := ℓ

(0)
j , j = 0, J,
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and compute:

ℓ
(0)
j = 1 − i

R

2
+
σj

2
− i

2
4

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
eiϕj/2

= 1 − i
R

2
+
σj

2
− i

2
+

√
R2 − 4σj − σ2

j + 2iR(σj + 2),

(3.38)

(3.39) ℓ
(1)
j = iR− i

2
4

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
e−iϕj/2

{
µj + e−iϕj − τj

}
,

and for n ≥ 2 we compute using the definition of E:

s
(n)
j = − i

2
4

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
eiϕj/2 e−inϕj

{
Pn(µj) +

(
λj + λ−1

j − τj
)

︸ ︷︷ ︸
=−2µj

Pn−1(µj) + Pn−2(µj)
}
.

(3.40)

With the recurrence relation of the Legendre polynomials

µjPn−1(µj) =
n

2n− 1
Pn(µj) +

n− 1

2n− 1
Pn−2(µj), n ≥ 1,

we finally get

s
(n)
j =

i

2
4

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
eiϕj/2 e−inϕj

Pn(µj) − Pn−2(µj)

2n− 1
, n ≥ 2.(3.41)

Remark 3.7. The coefficient ℓ
(0)
j can also be calculated with [11, Theorem 39.1] by

(3.42) ℓ
(0)
j = lim

z→∞
ν2(z) = 1 − i

R

2
+
σj

2
− i

2
+

√
(R+ iσj)(R+ i(σj + 4)).

We summarize our results in the following theorem:

Theorem 3.8 ( [3]). The left (at j = 0) and right (at j = J) discrete TBCs for the
Crank–Nicolson discretization (3.1) of the 1D Schrödinger equation are respectively

ψn
1 − s

(0)
0 ψn

0 =
n−1∑

k=1

s
(n−k)
0 ψk

0 − ψn−1
1 , n ≥ 1,(3.43a)

ψn
J−1 − s

(0)
J ψn

J =
n−1∑

k=1

s
(n−k)
J ψk

J − ψn−1
J−1, n ≥ 1,(3.43b)

with

(3.44) s
(n)
j =

[
1 − i

R

2
+
σj

2

]
δ0

n +
[
1 + i

R

2
+
σj

2

]
δ1

n + αj e
−inϕj

Pn(µj) − Pn−2(µj)

2n− 1
,

ϕj = arctan
2R(σj + 2)

R2 − 4σj − σ2
j

, µj =
R2 + 4σj + σ2

j√
(R2 + σ2

j )
[
R2 + (σj + 4)2

] ,

σj =
2∆x2

~2
Vj, αj =

i

2
4

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
eiϕj/2, j = 0, J.

Pn denotes the Legendre polynomials (P−1 ≡ P−2 ≡ 0) and δj
n the Kronecker symbol.

The Pn only have to be evaluated at the two values µ0, µJ ∈ (−1, 1), and hence the
numerically stable recursion formula for the Legendre polynomials can be used [16].
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The recurrence formula for the summed coefficients. In this subsection we shall
give two different derivations for the recursion formula of the convolution coefficients s

(n)
j .

The first one is based on the explicit representation (3.41) of s
(n)
j by first calculating

a recursion formula for Pn+1(µj) − Pn−1(µj). The second derivation does not require

the explicit form of the coefficients s
(n)
j but only the growth functions ν1,2(z) from the

Z–transformed DTBCs (3.18) and (3.19).

First Derivation: Here we start with the standard recursion formula [1] for the
Legendre polynomials Pn+1(µj), Pn−1(µj):

(n+ 1)Pn+1(µj) = (2n+ 1)µjPn(µj) − nPn−1(µj), n ≥ 0,

(n− 1)Pn−1(µj) = (2n− 3)µjPn−2(µj) − (n− 2)Pn−3(µj), n ≥ 2,
(3.45)

and

(3.46) Pn−1(µj) − 2µjPn−2(µj) + Pn−3(µj) =
Pn−3(µj) − Pn−1(µj)

2n− 3
, n ≥ 2.

The expression Pn+1(µj) − Pn−1(µj) is converted in the following way:

(n+ 1)
[
Pn+1(µj) − Pn−1(µj)

]

= (2n+ 1)µjPn(µj) − (2n+ 1)
2n− 3

n− 1
µjPn−2(µj) + (2n+ 1)

n− 2

n− 1
Pn−3(µj)

= (2n+ 1)µj

[
Pn(µj) − Pn−2(µj)

]
− (n− 2)(2n+ 1)

2n− 3

[
Pn−1(µj) − Pn−3(µj)

]
,

where we have used the relation

Pn−3(µj) − µjPn−2(µj) =
1

2

[
Pn−3(µj) − Pn−1(µj)

2n− 3
− Pn−1(µj) + Pn−3(µj)

]

= − n− 1

2n− 3

[
Pn−1(µj) − Pn−3(µj)

]
.

Finally, we obtain for n ≥ 2 the following recursion formula for Pn+1(µj) − Pn−1(µj):

(3.47) Pn+1(µj) − Pn−1(µj) =

2n+ 1

n + 1
µj

[
Pn(µj) − Pn−2(µj)

]
− (n− 2)(2n+ 1)

(n+ 1)(2n− 3)

[
Pn−1(µj) − Pn−3(µj)

]
.

Since the s
(n)
j are determined by

(3.48) s
(n)
j = αj

λ−n
j

2n− 1

[
Pn(µj) − Pn−2(µj)

]
, n ≥ 2,

we get from (3.47) the recurrence relation for the summed convolution coefficients:

(3.49) s
(n+1)
j =

2n− 1

n + 1
µjλ

−1
j s

(n)
j − n− 2

n+ 1
λ−2

j s
(n−1)
j , n ≥ 2,

which can be used after calculating the first values s
(n)
j for n = 0, 1, 2 by the formula

(3.44).

Second Derivation: Next we shall present an alternative derivation of the first

convolution coefficients s
(n)
j , n = 0, 1, 2 and the recurrence relation (3.49). The advantage

of this alternative approach is that we shall only need the growth functions ν1,2(z) from
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the Z–transformed DTBCs (3.18) and (3.19). Hence this approach might also apply to
a bigger class of linear evolution equations, where it is not possible (or too tedious) to
derive an explicit representation of the convolution coefficients.

We remark that an even more advantageous approach might be based on the polyno-
mial equation (3.17) for the growth function ν(z), rather than on its explicit solution. The
benefit of such a strategy would lie in the possibility to obtain the convolution coefficients
also for higher order difference schemes, that would lead to quartic (or even higher order)
equations for ν(z). To our knowledge this has, however, not been accomplished yet.

In this second approach we shall first derive a first order ODE for the growth function
ν(z), which is explicitly given by (3.21). In fact, it is more convenient to consider

(3.50) ν̃(z) := (z + 1)ν(z) =
∞∑

n=−1

s
(n+1)
j z−n.

Using the constants (3.22) and (3.24) it has the explicit form

(3.51) ν̃1,2(z) = z
(
1− iR

2
+
σj

2

)
+

(
1+

iR

2
+
σj

2

)
± i

2
+

√
R2 + 4σj + σ2

j
+

√
z2
λ

µ
− 2z +

1

λµ
.

The index j = 0, J again denotes the grid point where the DTBC is to be constructed.

Multiplying ν̃ ′ =
dν̃

dz
by

(
z2λ

µ
− 2z+

1

λµ

)
then yields an inhomogeneous first order ODE

for ν̃(z):

(3.52)
(
z2λ

µ
− 2z +

1

λµ

)
ν̃(z)′ −

(
z
λ

µ
− 1

)
ν̃(z) = β(z) := β−1z + β0,

with

β−1 = −λ
µ

(
1 +

iR

2
+
σj

2

)
+

(
−1 +

iR

2
− σj

2

)
,

β0 =
1

λµ

(
1 − iR

2
+
σj

2

)
+

(
1 +

iR

2
+
σj

2

)
.

(3.53)

Its general solution includes ν̃1,2(z) as defined in (3.51). Using the Laurent series (3.50)

of ν̃ and ν̃ ′ in (3.52) immediately yields the desired recursion for the coefficients s
(n)
j :

−λ
µ
s
(1)
j − s

(0)
j = β−1,

−2
λ

µ
s
(2)
j + s

(1)
j +

1

λµ
s
(0)
j = β0,

−(n + 1)s
(n+1)
j + (2n− 1)

µ

λ
s
(n)
j − (n− 2)

1

λ2
s
(n−1)
j = 0, n ≥ 2,

(3.54)

which coincides with (3.49).
The starting coefficient of the recursion can be determined as in (3.42):

s
(0)
j = lim

z→∞

ν̃(z)

z
= 1 − i

R

2
+
σj

2
± i

2

√
R2 + 4σj + σ2

j
+

√
λ

µ
.

Here, the sign has to be fixed such that |ν1(z)| < 1 for the right DTBC and |ν2(z)| > 1
for the left DTBC. This can be done for z = ∞, e.g.
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Stability of the Recurrence Relation: For proving that the recurrence re-
lation (3.49) is well–conditioned we follow the notation in [16] and write (3.49) as the
second order difference equation

(3.55) s
(n+1)
j + a

(n)
j s

(n)
j + b

(n)
j s

(n−1)
j = 0, n ≥ 2,

with

(3.56) a
(n)
j = −2n− 1

n+ 1
µjλ

−1
j , b

(n)
j =

n− 2

n + 1
λ−2

j 6= 0.

There are two linearly independent solutions s
(n)
j,1 , s

(n)
j,2 to (3.55). If they have the property

(3.57) lim
n→∞

s
(n)
j,2

s
(n)
j,1

= 0

then s
(n)
j,2 is called a minimal solution and serious numerical problems arise if one tries to

compute the solution s
(n)
j,2 in a straightforward way by using the recursion (3.49): A (small)

initial error would induce arbitrarily large relative errors in s
(n)
j,2 , even when evaluating the

recursion (3.49) with infinite precision. Methods of calculating minimal solutions of three–
term recurrence relations can be found in [16]. To prove that (3.49) is well–conditioned
we have to show that the seeked solution is not a minimal solution to (3.55). This type
of solution is called dominant.

Since the coefficients a
(n)
j , b

(n)
j in (3.55) have the finite limits

(3.58) aj = lim
n→∞

a
(n)
j = −2µjλ

−1
j = −2

Bj

Aj

, bj = lim
n→∞

b
(n)
j = λ−2

j =
Cj

Aj

, j = 0, J,

one calls (3.55) a Poincaré difference equation and

(3.59) Φj(t) = t2 + ajt+ bj

the characteristic polynomial of (3.55). The characteristic polynomial has the complex

conjugate zeros t
(1,2)
j = (Bj ± i 4/R)/Aj. The zeros have the same moduli: |t(1,2)

j | = 1,
and therefore the classical Theorem of Poincaré (formulated below for the special case of
a second–order difference equation) cannot be applied to distinguish two solutions with
distinct asymptotic properties.

Theorem 3.9 (Poincaré Theorem, [14]). Suppose that the zeros t
(1)
j , t

(2)
j of the char-

acteristic polynomial (3.59) have distinct moduli. Then for any nontrivial solution s
(n)
j of

(3.55)

lim
n→∞

s
(n+1)
j

s
(n)
j

= t
(k)
j

for k = 1 or k = 2.

Remark 3.10. If equation (3.55) has characteristic roots with equal moduli then
Poincaré’s Theorem may fail (cf. example of Perron [14]).

It is well–known that the Legendre polynomials Pn(µj) and the Legendre functions of
the second kind (of order zero) Qn(µj) satisfy the same three–term recurrence relation
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(3.45). Therefore, the two linearly independent solutions to (3.55) are the convolution

coefficients s
(n)
j,1 = s

(n)
j (3.48) and s

(n)
j,2 given by

(3.60) s
(n)
j,2 = βj

λ−n
j

2n− 1

[
Qn(µj) −Qn−2(µj)

]
, n ≥ 2,

with some constant βj.
Now we want to study the asymptotic behaviour of these two solutions. With the

notation µj = cos θj, 0 < θj < π, we use Lemma 3.6 which gives

(3.61) Pn(cos θj) − Pn−2(cos θj) = −2
√

2
√

sin θj√
π

sin
[
(n− 1

2
)θj − π

4

]
√
n

+ O(n−3/2),

and from (3.48) we see that

(3.62) s
(n)
j ∼ −αj

√
2
√

sin θj√
π

λ−n
j

sin
[
(n− 1

2
)θj − π

4

]

(n− 1
2
)
√
n

, n→ ∞.

An analogous formula to (3.33) for the Legendre functions of the second kind Qn(µj) is
given by the following Lemma:

Lemma 3.11 (Theorem 8.21.14, [41]). For 0 < θj < π

(3.63) Qn(cos θj) =

√
π√

2
√

sin θj

cos
[
(n+ 1

2
)θj + π

4

]
√
n

+ O(n−3/2).

This holds uniformly in the interval [ε, π − ε].

As before we can deduce from (3.60) that

(3.64) s
(n)
j,2 ∼ −βj

√
π
√

sin θj√
2

λ−n
j

sin
[
(n− 1

2
)θj + π

4

]

(n− 1
2
)
√
n

, n→ ∞

holds. Therefore the ratio of the two solutions behaves asymptotically as

s
(n)
j,2

s
(n)
j

∼ βj

αj

π

2

sin
[
(n− 1

2
)θj + π

4

]

sin
[
(n− 1

2
)θj − π

4

] =
βj

αj

π

2
tan

[
(n− 1

2
)θj +

π

4

]
, n→ ∞,

i.e. neither s
(n)
j nor s

(n)
j,2 can be a minimal solution. Consequently, the problem of deter-

mining the required values of the convolution coefficients is well–conditioned [16]: they
can be computed numerically from the recurrence relation (3.49) in a stable fashion.

Remark 3.12. In the special case θj = π/2 we observe the asymptotic behaviour

s
(n)
j,2

s
(n+1)
j

∼ βj

αj

π

2
, n→ ∞.
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Decay rate of the convolution kernel. Since |λj| = 1 the relation (3.62) shows

that s
(n)
0 , s

(n)
J = O(n−3/2), which agrees with the decay of the convolution kernel in the

differential TBCs (2.8), (2.9). To show this property we consider the left TBC (2.9) and
obtain after an integration by parts

ψx(0, t) = c
d

dt

∫ t

0

ψ(0, τ)√
t− τ

dτ

= c

[
d

dt

∫ t

t−ε

ψ(0, τ)√
t− τ

dτ − 1

2

∫ t−ε

0

ψ(0, τ)

(t− τ)3/2
dτ +

ψ(0, t− ε)√
ε

](3.65)

with

(3.66) c =

√
2

~π
e−i π

4 =
1 − i√

~π
.

To compare the discrete convolution in the DTBCs with the continuous convolution in
the differential TBCs we consider the following discretization (with ε = ∆t)

(3.67) −c
2

∫ t−ε

0

ψ(0, τ)

(t− τ)3/2
dτ ≈ −c

2

n−1∑

k=1

ψk
0

[
(n− k)∆t

]−3/2
∆t.

If we compare this with (3.43a) written in the form

(3.68)
ψn

1 − ψn
0

∆x
=

1

∆x

[
n−1∑

k=1

s
(n−k)
0 ψk

0 − ψn−1
1 + s

(0)
0 ψn

0 − ψn
0

]
, n ≥ 1,

we would roughly expect

(3.69) s
(n)
0 ∼ − c∆x

2
√

∆t
n−3/2 =

i− 1

2
√

~π

∆x√
∆t

n−3/2, n→ ∞.

In Figure 4 we compare the s
(n)
0 for increasing time levels n with the r.h.s. of (3.62). The

used parameters are ~ = 1, ∆t = 10−6, ∆x = 1/160 and the potential is set to zero.

Figure 4 displays a quite good agreement of the asymptotic behaviour of the s
(n)
0 with the

predicted one in (3.62). The values of s
(n)
0 oscillate around the rate (3.69).
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Figure 4. New discrete TBC: convolution coefficients s
(n)
0 compared to

the r.h.s. of (3.62) and the decaying rate (3.69).

3.4. Stability of the resulting Scheme. We shall now discuss the stability of the
Crank–Nicolson finite difference scheme in connection with the DTBCs (3.43).

Since the discrete whole–space solution satisfies the discrete TBCs (3.43), it is trivial
that the implicit scheme (3.1), (3.43) for the IBVP can be solved at each time level n.
To prove unique solvability and stability of the scheme, a discrete analogue of (2.19) can
be derived. We sum up (3.2) for the finite interior range j = 1, 2, . . . , J − 1, use the
summation by parts rule:

(3.70) ∆x
J−1∑

j=1

gjD
−

x fj = −∆x
J−1∑

j=0

fjD
+

x gj + fJ−1gJ − f0 g0

and obtain (note that D2
x = D−

xD
+
x )

∆x
J−1∑

j=1

ψ̄
n+ 1

2
j D+

t ψ
n
j = −i~∆x

2

J−1∑

j=0

∣∣∣D+

xψ
n+ 1

2
j

∣∣∣
2

− i∆x

~

J−1∑

j=1

V
n+ 1

2
j

∣∣∣ψn+ 1
2

j

∣∣∣
2

+
i~

2

[
ψ̄

n+ 1
2

J D+

xψ
n+ 1

2
J−1 − ψ̄

n+ 1
2

0 D+

xψ
n+ 1

2
0

]
.

(3.71)

Finally, taking the real part using (3.5) yields

(3.72) D+

t ‖ψn‖2
2 = ~

[
Re

{
i ψ̄

n+ 1
2

J D−

xψ
n+ 1

2
J

}
− Re

{
i ψ̄

n+ 1
2

0 D+

xψ
n+ 1

2
0

}]
,



3. DISCRETE TRANSPARENT BOUNDARY CONDITIONS 22

with the discrete L2–norm defined by ‖ψn‖2
2 := ∆x

∑J−1
j=1 |ψn

j |2. After summation with

respect to the time index we get from (3.72):

‖ψN+1‖2
2 = ‖ψ0‖2

2 + ~∆t
[
Re

{
i

N∑

n=0

ψ̄
n+ 1

2
J D−

xψ
n+ 1

2
J

}
− Re

{
i

N∑

n=0

ψ̄
n+ 1

2
0 D+

xψ
n+ 1

2
0

}]

= ‖ψ0‖2
2 −

~∆t

∆x
Re

{
i

N∑

n=0

ψ̄
n+ 1

2
J (ψ

n+ 1
2

J ∗ ℓ̃(n)
J )

}
− ~∆t

∆x
Re

{
i

N∑

n=0

ψ̄
n+ 1

2
0 (ψ

n+ 1
2

0 ∗ ℓ̃(n)
0 )

}
,

(3.73)

where ℓ̃
(n)
j := ℓ

(n)
j − δ0

n, j = 0, J . Again, as in the continuous case, it remains to show
that the boundary–memory–terms in (3.73) are of positive type. We concentrate on the
boundary term at j = J and define the finite sequences

(3.74) fn = ψ
n+ 1

2
J ∗ ℓ̃(n)

J , gn = ψ
n+ 1

2
J , n = 0, 1, . . . , N,

with fn = gn = 0 for n > N , i.e. Re {i
∑N

n=0 fn ḡn} ≥ 0 is to show. A Z–transformation
using the transformed DTBC (3.18) yields

Z{fn} = f̂(z) =
z + 1

2
ψ̂N

J (z)
[
ν2(z) − 1

]

=
iR

4
ψ̂N

J (z)
{[
z − 1 + iκ(z + 1)

]
∓ +

√
Az2 − 2Bz + C

}
,

(3.75)

where ψ̂N
J (z) =

∑N
n=0 ψ

n
Jz

−n is analytic on |z| > 0. The expression above in the curly
brackets is analytic for |z| > 1 and continuous for |z| ≥ 1, since the zeros z1,2 of the

square root are given by z1,2 = (B ± i 4/R)/A with |z1,2| = 1. Therefore f̂(z) is analytic
on 1 < |z| <∞. Note that we have to choose the sign in (3.75) such that it matches with
ν2(z) for |z| sufficiently large. For the second sequence gn we obtain

(3.76) Z{gn} = ĝ(z) =
z + 1

2
ψ̂N

J (z),

i.e. ĝ(z) is analytic on 0 < |z| <∞.
Now the basic idea is to use Plancherel’s theorem in the form

∞∑

n=0

fn ḡn =
1

2π

∫ 2π

0

f̂(eiϕ) ĝ(eiϕ) dϕ,

which gives

Re
{
i

N∑

n=0

fn ḡn

}
=

1

8π
Re

{
i

∫ 2π

0

|z + 1|2
∣∣ψ̂N

J (z)
∣∣2[ν2(z) − 1

]∣∣∣
z=eiϕ

dϕ
}

= − 1

8π
Im

{∫ 2π

0

ν2(e
iϕ) dϕ

}
.

(3.77)

We remark that the pole of ν2(z) at z = −1 is “cancelled” by |z + 1|2. From (3.77) we
conclude that the discrete L2–norm (3.73) is non–increasing in time if

(3.78) Im ν2(e
iϕ) ≤ 0, ∀ϕ ∈ [0, 2π],
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holds. This property of ν2 can be shown in the following way. If we define

(3.79) y = −iR
2

(z − 1

z + 1
+ iκ

)

then (3.21) simply reads

(3.80) ν2(y) = 1 + y − +
√
y(2 + y).

On the unit circle z = eiϕ, 0 ≤ ϕ ≤ 2π, we have (z−1)/(z+1) = i tan(ϕ/2) and therefore

(3.81) y =
R

2
tan

ϕ

2
+
Rκ

2
=

(∆x)2

~

[
2

∆t
tan

ϕ

2
+
VL

~

]
, 0 ≤ ϕ ≤ 2π

is real. Consequently, ν2(e
iϕ) becomes complex only in the interval ϕa < ϕ < ϕb, where

ϕa, ϕb ∈ [0, 2π] solve

(3.82) tan
ϕa

2
= −∆t

(
VL

2~
+

~

(∆x)2

)
, tan

ϕb

2
= −∆t

2~
VL,

and we have the requested result

(3.83) Im ν2(e
iϕ) = − Im +

√
y(2 + y) ≤ 0, 0 ≤ ϕ ≤ 2π.

  0  π/2   π 3/2π  2π 
−1.5

−1

−0.5

0

0.5

φ

Imag ν
2
(φ)

Figure 5. Imaginary part of ν2(z) on the unit circle z = eiϕ, 0 ≤ ϕ ≤ 2π.

The situation is illustrated in Figure 5, where we have set ~ = 1, VL = 2 · 104 and
used the parameters ∆x = 1/500, ∆t = 2 · 10−5. This gives the following values for ϕa,
ϕb: ϕa = 2π + 2 atan(−5.2) ≈ 3.5216, ϕb = 2π + 2 atan(−0.2) ≈ 5.8884.

We then have the main result of this Section:
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Theorem 3.13 ( [3]). The solution of the discretized Schrödinger equation (3.1) with
the discrete TBCs (3.43) is uniformly bounded

(3.84) ‖ψn‖2
2 := ∆x

J−1∑

j=1

∣∣ψn
j

∣∣2 ≤ ‖ψ0‖2
2, n ≥ 1,

and the scheme is thus unconditionally stable.

Remark 3.14. It can also be shown that (3.43) is a consistent discretization of the
differential BCs (2.8), (2.9).

Simplified DTBC. The decay of the s
(n)
j shown in (3.62) motivates to consider a

simplified version of the DTBC (3.43) with the convolution coefficients cut off at an index
M . This means that only the “recent past” (i.e. M time levels) is taken into account in
the convolution in (3.43):

ψn
1 − s

(0)
0 ψn

0 =

n−1∑

k=n−M

s
(n−k)
0 ψk

0 − ψn−1
1 , n ≥ 1,(3.85a)

ψn
J−1 − s

(0)
J ψn

J =

n−1∑

k=n−M

s
(n−k)
J ψk

J − ψn−1
J−1, n ≥ 1.(3.85b)

This, of course, reduces the perfect accuracy of the DTBC (3.43), but it is numerically
cheaper while still yielding reasonable results for moderate values of M . We remark that
the numerical stability of the scheme with simplified DTBC depending on the value of M
is not anymore obtained automatically. This issue is currently under investigation [2].

3.5. Numerical Results. In this Section we present an example to compare the nu-
merical results from using our new discrete TBC to the solution using other discretization
strategies of the TBC for the Schrödinger equation (2.1). We also show the numerical ef-
fect if the DTBC is simplified by (3.85). Due to its construction, our DTBC yields exactly
(up to round–off errors) the numerical whole–space solution restricted to the computa-
tional interval [0, L]. The calculation with discretized TBCs requires the same numerical
effort. However, the solution may (on coarse grids) strongly deviate from the numerical
whole–space solution.

Example. This example shows a simulation of a right travelling Gaussian beam
[ψI(x) = exp(i100x − 30(x − 0.5)2)] at four consecutive time steps evolving under the
free Schrödinger equation (~ = 1) with the rather coarse space discretization ∆x = 1/160
and the time step ∆t = 2 · 10−5. Discretizing the analytic TBCs via (3.7) (scheme of
Mayfield [30]) or as in Baskakov and Popov [6] induces strong numerical reflections. Our
discrete TBCs (3.43), however, yield the smooth numerical solution to the whole–space
problem, restricted to the computational interval [0, 1] (up to round–off errors).

We observe in Figure 6 the artificial reflections travelling to the left induced by dis-
cretizing the analytic TBC while the solution with the new discrete TBC leave the com-
putational domain without any numerical reflections. At time t = 0.01 the solution with
the DTBC has almost completely left the domain [0, 1] and the solutions with discretized
TBCs contain a reflected wave packet with the maximum modulus (which corresponds
to the maximum error) of around 0.17 for the approach of Mayfield and around 0.025 in
case of the discretized TBC of Baskakov and Popov.
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Figure 6. Solution |ψ(x, t)| at time t = 0.004, t = 0.006, t = 0.008,
t = 0.01: the solution with the new discrete TBCs (—) coincides with the
whole–space solution, while the solution with the discretized analytic TBCs
(3.7) from [30] (−−−) or from [6] (· · · ) introduces strong numerical reflec-
tions.

Now we present the results when using the simplified DTBC (3.85) and want to com-
pare the outcome with the discretized TBCs at time t = 0.01. All these boundary condi-
tions need a comparable computational effort. The cut–off value M is chosen appropri-
ately, such that the simplified DTBC yields similar results with respect to the numerical
reflections at the right boundary x = 1. As a reference we also plot the solution with the
discrete TBCs (· · · ).

We see in Figure 7 that the solution with the simplified discrete TBCs (3.85) with
M = 5 is already better than the solution with the discretized analytic TBCs (3.7)
from [30].

We observe in Figure 8 that the error of the solution with the discretized analytic
TBC from [6]. lies between the errors of the solutions with the simplified discrete TBCs
(3.85) using the cut–off value M = 30, M = 35.



4. DTBC FOR NON–COMPACTLY SUPPORTED INITIAL DATA 26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

x

|ψ
|

Schroedinger: t=0.01

discretized TBC (Mayfield)
discrete TBC
discrete TBC: M=5
discrete TBC: M=4

Figure 7. Solution |ψ(x, t)| at time t = 0.01: the solution with the
discretized TBCs of Mayfield [30] (—) in comparison to the solution using
the simplified DTBC (3.85) with M = 4 (−.−.) and M = 5 (−−−).
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Figure 8. Solution |ψ(x, t)| at time t = 0.01: the solution with the
discretized TBCs of Baskakov and Popov [6] (—) in comparison to the
solution using the simplified DTBC (3.85) with M = 30 (−.−.) and M = 35
(−−−).

4. DTBC for non–compactly supported Initial Data

In this Section we show how to drop assumption (A1), i.e. here the initial data ψI(x)
need not be compactly supported inside the computational domain. We only assume that
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the initial function ψI(x) is continuous. First we review the derivation of the TBC on the
continuous level and mimick this derivation strategy afterwards for the discrete scheme.

4.1. The Transparent Boundary Condition. Here we review the derivation of
the (continuous) TBC from [25]. In the case of the free Schrödinger equation with non–
compactly supported initial data ψI the Laplace transformed right exterior problem (2.5)
now reads

v̂xx + c2sv̂ = c2ψI(x), x > L,(4.1a)

v̂(L, s) = Φ̂(s),(4.1b)

where we set c = (1+ i)/
√

~. Again, the idea is to solve this inhomogeneous second order
differential equation (4.1) explicitly. The homogeneous solution is

(4.2) v̂hom(x, s) = C1(s) e
ic
√

s(x−L) + C2(s) e
−ic

√
s(x−L), x > L,

and according to [22, (14.31)] a particular solution of (4.1a) is given by

(4.3) v̂par(x, s) =
c

2i
√
s

[∫ x

L

eic
√

s(x−x′)ψI(x′) dx′ −
∫ x

L

eic
√

s(x′−x)ψI(x′) dx′
]
, x > L,

i.e. the general solution is

v̂(x, s) = v̂hom(x, s) + v̂par(x, s)

=

[
C1(s) e

−ic
√

sL +
c

2i
√
s

∫ x

L

e−ic
√

sx′

ψI(x′) dx′
]
eic

√
sx

+

[
C2(s) e

ic
√

sL − c

2i
√
s

∫ ∞

L

eic
√

sx′

ψI(x′) dx′ +
c

2i
√
s

∫ ∞

x

eic
√

sx′

ψI(x′) dx′
]
e−ic

√
sx.

(4.4)

We note that the last term in (4.4) is bounded for fixed s and x→ ∞. Since the solutions

have to decrease as x → ∞, the idea is to eliminate the growing factor e−ic
√

sx = e
1−i

~

√
sx

by simply choosing

(4.5) C2(s) =
c

2i
√
s

∫ ∞

L

eic
√

s(x′−L)ψI(x′) dx′.

Consequently, we obtain C1(s) from the boundary condition (4.1b) :

(4.6) C1(s) = Φ̂(s) − c

2i
√
s

∫ ∞

L

eic
√

s(x′−L)ψI(x′) dx′.

From this we get the following representation of the transformed right TBC :

v̂x(L, s) = ic
√
sC1(s) −

c2

2

∫ ∞

L

eic
√

s(x′−L)ψI(x′) dx′

= ic
√
s Φ̂(s) − c2

∫ ∞

L

eic
√

s(x′−L)ψI(x′) dx′.

(4.7)

It remains to inverse transform (4.7). If we further assume that ψI is continuously differ-
entiable, then integration by parts yields:

(4.8) v̂x(L, s) =
ic√
s

[
sΦ̂(s) − ψI(L)

]
− ic√

s

∫ ∞

L

eic
√

s(x′−L)ψI
x(x

′) dx′.
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The inverse Laplace transformation using the convolution theorem gives

(4.9) ψx(L, t) =
ic√
π

∫ t

0

ψt(L, τ)√
t− τ

dτ − icL−1

{
1√
s

∫ ∞

L

eic
√

s(x′−L)ψI
x(x

′) dx′
}
.

Finally, if ψI
x is integrable for x > L, Levy proved ( [25, Theorem 3.1]) that the integration

and the inverse Laplace transform can be interchanged in (4.9) to obtain the right TBC

(4.10) ψx(L, t) =
ic√
π

∫ t

0

ψt(L, τ)√
t− τ

dτ − ic√
πt

∫ ∞

L

ψI
x(x) e

i(x−L)2

2~t dx.

Remark 4.1. Clearly, if ψI(x) = 0 for x > L then (4.10) reduces to the previously
obtained right TBC (2.8) in the potential–free case (note that −

√
2 e−i π

4 = i− 1).

As motivated in the previous Section we will not discretize this TBC. Instead we will
show now how to derive the TBC on a fully discrete level by mimicking the derivation of
the continuous TBC.

4.2. The Discrete Transparent Boundary Condition. First we show how to
solve an inhomogeneous second order difference equation with constant coefficients of the
form

(4.11) Uj+1 + aUj + b Uj−1 = γj , j ≥ J − 1.

We already know from Section 3 that the two linearly independent homogeneous solutions
take the form αj, βj, j ≥ J with αβ = b. A particular solution Vj of (4.11) can be found
with the ansatz of “variation of constants” [31], [14] :

(4.12) Vj−1 = cjα
j−1 + djβ

j−1, j ≥ J.

It follows that

(4.13) Vj = cj+1α
j + dj+1β

j = cjα
j + djβ

j, j ≥ J − 1,

if we force the condition

(4.14) (∆+cj)α
j + (∆+dj) β

j = 0

to hold. Here ∆+ denotes the usual forward difference operator, i.e. ∆+cj = cj+1 − cj.
Analogously, again assuming (4.14), we obtain for Vj+1

Vj+1 = cjα
j+1 + djβ

j+1 + (∆+cj)α
j+1 + (∆+dj) β

j+1.(4.15)

Inserting (4.12), (4.13), (4.15) into the difference equation (4.11) gives

(4.16) (∆+cj)α
j+1 + (∆+dj) β

j+1 = γj ,

together with the condition (4.14). This can easily be solved to obtain

(4.17) ∆+cj =
1

α− β
α−jγj , ∆+dj = − 1

α− β
β−jγj ,

i.e. we get the coefficients

(4.18) cj = cJ +

j−1∑

m=J

∆+cm = cJ +
1

α− β

j−1∑

m=J

α−mγm, j ≥ J,
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(4.19) dj = dJ +

j−1∑

m=J

∆+dm = dJ −
1

α− β

j−1∑

m=J

β−mγm, j ≥ J.

Consequently, the particular solution reads

Vj = cj+1α
j + dj+1β

j

=

[
cJ +

1

α− β

j∑

m=J

α−mγm

]
αj +

[
dJ −

1

α− β

j∑

m=J

β−mγm

]
βj, j ≥ J − 1,

(4.20)

and the general solution of (4.11) is of the form

(4.21) Uj = c αj + d βj +
1

α− β

[
j∑

m=J

αj−mγm −
j∑

m=J

βj−mγm

]
, j ≥ J − 1,

which is the discrete analogue to the solution formula (4.3) in the continuous case.
Now we use (4.21) to design a boundary condition at j = J . For that purpose we

assume |α| < 1, |β| > 1 (recall that b = αβ = 1 for the Crank–Nicolson scheme for
solving the Schrödinger equation). Proceeding analogously to the continuous case we
have to eliminate the growing factor βj by choosing d appropriately as

(4.22) d =
1

α− β

∞∑

m=J

β−mγm.

We obtain from (4.21)

Uj =

[
c+

1

α− β

j∑

m=J

α−mγm

]
αj +

1

α− β

∞∑

m=j+1

βj−mγm, j ≥ J − 1.(4.23)

The value of c can be expressed with UJ−1:

(4.24) c =
UJ−1

αJ−1
−

(
β

α

)J−1
1

α− β

∞∑

m=J

β−mγm,

and inserting this into (4.23) with j = J :

(4.25) UJ = c αJ +
1

α− β

∞∑

m=J

βJ−mγm

yields

UJ = αUJ−1 −
(

1 − α

β

)
1

α− β

∞∑

m=J

βJ−mγm

= αUJ−1 − β−1
∞∑

m=0

β−mγJ+m,

(4.26)

or equivalently

(4.27) b UJ−1 = β UJ +
∞∑

m=0

b−mαmγJ+m.
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Finally, we want to apply these results to the discretized Schrödinger equation (3.13)
and derive the DTBC at j = J in the situation, when the initial data ψ0

j does not vanish
for j ≥ J−1. In this case the Z–transformed right exterior Crank–Nicolson scheme reads:

(4.28) ψ̂j+1(z) −
[
2 − iR

(z − 1

z + 1
+ iκ

)]
ψ̂j(z) + ψ̂j−1(z) =

z

z + 1
ϕj , j ≥ J − 1,

where the inhomogeneity ϕj is given by

(4.29) ϕj = ∆2

xψ
0

j + iRψ0

j − Rκψ0

j , j ≥ J − 1.

We can use (4.27) to obtain the transformed right DTBC :

(4.30) ψ̂J−1(z) = ν2(z) ψ̂J (z) +
z

z + 1

∞∑

m=0

νm
1

(z)ϕJ+m,

where ν1, ν2 are the two solutions of the quadratic equation (3.17).

Remark 4.2. Again, (4.30) reduces to the DTBC (3.18) for ϕj ≡ 0.

In order to formulate the DTBC we define (p
(n)
m ) := Z−1 {νm

1 (z)} and set (ℓ
(n)
J ) :=

Z−1 {ν2(z)}. Using standard rules of inverse Z–transforms (cf. [11], e.g.) we obtain by
inverse transforming (4.30)

(4.31) ψn
J−1 − ℓ

(0)
J ψn

J =

n−1∑

k=0

ℓ
(n−k)
J ψk

J + (−1)nϕJ +

∞∑

m=1

n∑

k=0

(−1)n−kp(k)
m ϕJ+m, n ≥ 1.

Since the coefficients ℓ
(n)
J asymptotically alternate in time, this formulation can be im-

proved and shortened by regarding once more s
(n)
J := ℓ

(n)
J + ℓ

(n−1)
J , which gives finally the

DTBC for non–compactly supported initial data :

(4.32) ψn
J−1 − s

(0)
J ψn

J =

n−1∑

k=0

s
(n−k)
J ψk

J − ψn−1
J +

∞∑

m=1

p(n)
m ϕJ+m, n ≥ 1.

Remark 4.3. Note that in contrast to the DTBC in Section 3 the r.h.s. (4.32) for
n = 1 is not zero but

(4.33) ψ1
J−1 − ℓ(0)ψ1

J = s(1)ψ0
J − ψ0

J +
∞∑

m=1

p(1)
m ϕJ+m.

In practical situations the sum (over m) in (4.32) of course has to be finite (e.g. up
to an index m = M). This means that the initial condition is still compactly supported,

but possibly outside of the computational interval. The coefficients p
(n)
m , m = 1, 2, . . . ,M ,

can be calculated recursively by “continued convolution”, i.e.

(4.34) p
(n)
1 = Z−1 {ν1(z)} , p

(n)
2 =

n∑

k=0

p
(n−k)
1 p

(k)
1 , p

(n)
3 =

n∑

k=0

p
(n−k)
2 p

(k)
1 , etc..

Since this computation is rather costly (even when using fast convolution algorithms with
FFTs [32, Chapter 4]) we seek for another way to calculate

(4.35) S̃
(n)
M :=

M∑

m=1

p(n)
m ϕJ+m, n ≥ 1.
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The key idea is to use the quadratic equation (3.17) for ν1(z) in order to construct a

recurrence relation for the p
(n)
m (w.r.t. m). Equation (3.17) for ν1(z) gives

νm+1
1 (z) = 2

[
1 − iR

2

(z − 1

z + 1
+ iκ

)]
νm

1 (z) − νm−1
1 (z)

= c1ν
m
1 (z) − c2

z

z + 1
νm

1 (z) − νm−1
1 (z), m ≥ 1

(4.36)

with c1 = 2 + iR +Rκ and c2 = 2iR. An inverse Z–transformation gives

(4.37) p
(n)
m+1 = c1p

(n)
m − c2

n∑

k=0

(−1)kp(n−k)
m − p

(n)
m−1, m ≥ 1,

with the starting sequences p
(n)
0 = δ0

n and p
(n)
1 = Z−1 {ν1(z)}, n ≥ 0. To circumvent the

convolution in (4.37) we consider q
(n)
m := p

(n)
m + p

(n−1)
m , p

(−1)
m = 0 and obtain

(4.38) q
(n)
m+1 = c1q

(n)
m − c2 p

(n)
m − q

(n)
m−1, m ≥ 1

to use in the DTBC of the form

(4.39) ψn
J−1 − s

(0)
J ψn

J =

n−1∑

k=0

t
(n−k)
J ψk

J − ψn−1
J − ψn−1

J−1 − ψn−2
J +

M∑

m=1

q(n)
m ϕJ+m, n ≥ 1,

where t
(n)
J := s

(n)
J + s

(n−1)
J . The calculations are done by the following algorithm

1. q
(n)
0 = δ0

n + δ1

n n ≥ 0

2. q
(n)
1 = p

(n)
1 + p

(n−1)
1 = s̃

(n)
J n ≥ 0

3. S
(n)
1 = q

(n)
0 ϕJ + q

(n)
1 ϕJ+1 n ≥ 1

4. for m = 1, . . . ,M − 1 do

q
(n)
m+1 = c1q

(n)
m − c2 p

(n)
m − q

(n)
m−1 n ≥ 0

S
(n)
m+1 = S(n)

m + q
(n)
m+1ϕJ+m+1 n ≥ 1

p
(0)
m+1 = q

(0)
m+1

for n = 1, . . . , N do

p
(n)
m+1 = q

(n)
m+1 − p

(n−1)
m+1

end

end

Here N denotes the maximum time index. The computational effort of the above imple-
mentation of the DTBC is O(M · N), and comparable to the effort when enlarging the
computational domain sufficiently. The usage of the DTBC is especially beneficial when
one needs several computations with the same exterior initial data. Then the calcula-
tion of the additional term has only to be done once. The same applies when the initial
field is concentrated far outside the computational domain. This is the case in radiowave
propagation when computing coverage diagrams of airborn antennas.
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Alternatively, a second possible implementation is to consider the transformed DTBC
(4.30) and to calculate numerically the inverse Z–transform of the finite sum once:

(4.40) Fn = Z−1

{
z

z + 1

M∑

m=0

νm
1

(z)ϕJ+m

}
.

The DTBC then reads

(4.41) ψn
J−1 − ℓ

(0)
J ψn

J =
n−1∑

k=0

ℓ
(n−k)
J ψk

J + Fn, n ≥ 1.

The numerical inverse Z–transformation will be the topic of the next section.

Remark 4.4. While the DTBC (4.32) solves the problem of initial data that are
supported outside of the computational domain, the resulting numerical effort of this
approach is not completely settled yet and subject to further investigations. In particular

one has to compare an “optimal” computation algorithm for the coefficients p
(m)
n or q

(m)
n

with simulations on a sufficiently enlarged computational domain.

4.3. Numerical Results. Here we present the numerical results when using our new
discrete TBC (4.32) for the Schrödinger equation (2.1). We use the same initial data as
in Section 3.5, but shifted such that it is partially outside the computational domain
0 ≤ x ≤ L. Again, due to its construction, our DTBC yields exactly (up to round–off
errors) the numerical whole–space solution restricted to the computational interval [0, L].

Example. This example shows a simulation of a right travelling Gaussian beam
[ψI(x) = exp(i100x − 30(x − 0.8)2)] at three consecutive times evolving under the free
Schrödinger equation (~ = 1) with the rather coarse discretization of 161 grid points for
the interval 0 ≤ x ≤ 1 (i.e. ∆x = 1/160) and the time step ∆t = 2 · 10−5. For the right
exterior (computational) domain we choose the same space step ∆x and use 60 grid points
which results in the exterior interval 1 < x ≤ 1.38125.

In the following Figure 9 we plotted the absolute value of the initial data and the
solution obtained with the discrete TBCs (4.32) at the time steps t = 0.002, t = 0.004,
t = 0.006. One clearly sees in Figure 9 that the solution is solely propagated to the right
and no artificial reflections are caused.

In this example the computation using the inhomogeneous DTBCs (4.32) needs ap-
proximately the same CPU–time than just enlarging the domain to the interval 0 ≤ x ≤
1.8 using a simple Neumann boundary condition at x = 0 and x = 1.8. From Figure 9
one can guess that the solution at t = 0.004 has already reached the right boundary
at x = 1.8. Hence it is worthwhile in this example to use the inhomogeneous DTBCs
whenever the solution for t > 0.004 is needed.

5. Numerical Inverse Z–Transformations

The crucial point in the derivation of the DTBC in Section 3 was to find the exact
inverse Z–transformations. If it is not possible to calculate the convolution coefficients
analytically then the inverse Z–transformation can be performed numerically.
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Figure 9. Solution |ψ(x, t)| at time t = 0, t = 0.002, t = 0.004, t = 0.006:
the solution with the new discrete TBCs (4.32) coincides with the whole–
space solution and does not introduce any numerical reflections.

The numerical inversion of the Z–transformation is based on the simple observation
that the Z–transformation of the sequence {fn}, n = 0, 1, . . . .

(5.1) Z{fn} = f̂(z) :=

∞∑

n=0

fn z
−n, z ∈ IC, |z| > R−1,

is nothing else but a Taylor series in z̃ = 1/z, i.e. the problem of calculating the inverse

Z–transformation of f̂(z) is the numerical evaluation of the Taylor coefficients of the

function f̃(z̃) := f̂(1/z). For that purpose we used here the FORTRAN subroutine
ENTCAF (Evaluation of Normalized Taylor Coefficients of an Analytic Function) from
Lyness and Sande [29].

First we want to outline the method. The (normalized) Taylor coefficients rnfn can
be obtained by Cauchy’s integral representation:

(5.2) rnfn =
rn

2πi

∮

C
f̃(z̃) z̃−(n+1)dz̃, r < R,
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where C denotes a circle around the origin with radius r smaller than the radius of
convergence R of the Taylor series. The approximation to fn based on using an N–point

trapezoidal rule for the contour integral is f
(N)
n given by

(5.3) rnf (N)
n =

1

N

N−1∑

k=0

e−in 2πk
N f

(
rei 2πk

N

)
, n = 0, 1, . . . , N − 1.

The approximation rnf
(N)
n is obtained by an iterative process. First approximations f

(N)
0 ,

N = 1, 2, 4, 8, . . . are computed using (5.3). The convergence criterion is based on the

knowledge of the exact value of the limit of the sequence: limN→∞ f
(N)
0 = f0 = f̃(0). After

converging the second part consists in evaluating (5.3) for n = 0, 1, . . . , N − 1 using the
stored function values obtained in the first part. Since N is a power of 2 it is particularly
appropriate to use a fast Fourier transform technique for this part.

The user has to specify the required absolute accuracy εreq and the radius of computa-
tion r (the only restriction is that r must be less than R). ENTCAF returns an accuracy

estimate εest together with approximations rnf
(N)
n and a number N , which are supposed

to satisfy ∣∣rnf (N)
n − rnfn

∣∣ < εest, n = 0, 1, 2, . . . , N − 1,(5.4a)

|rnfn| < εest, n = N,N + 1, . . . .(5.4b)

We see from (5.4a) that this algorithm naturally delivers approximations rnf
(N)
n with

a uniform bound on the discretization error. An output status parameter indicates to
the user whether or not convergence or roundoff errors have occured. Exploiting the
information of this output parameter one could construct a driver program which finds
the appropriate value of r by itself.

Due to the asymptotic behaviour (3.36) it is not advisable to calculate the ℓ
(n)
j . Instead

we show how to compute the summed convolution coefficients s
(n)
j numerically. The s

(n)
j

were defined by:

(5.5) s
(n)
j := ℓ

(n)
j + ℓ

(n−1)
j , n ≥ 1, s

(0)
j = ℓ

(0)
j , j = 0, J.

We concentrate on the right BC at j = J . If we assume l
(−1)
j = 0 we have:

(5.6) Z{s(n)
J } = ν2(z) + z−1ν2(z) = (1 + z̃) ν̃2(z̃),

with ν̃2(z̃) = ν2(z) and ν2(z) given by formula (3.21).

5.1. Numerical Results. Here we present the numerical results when using the

subroutine ENTCAF to compute the convolution coefficients ℓ
(n)
J , s

(n)
J . In each example

we chose εreq = 10−6 and set the machine accuracy parameter εM to 10−15.

Example 1. The value for the potential VL was set to 2 · 104 and the discretization
parameter were taken from the example of Subsection 3.5, i.e. ∆x = 1/160, ∆t = 2 ·10−5.
We used the computational radius r = 0.92. For that parameter choice ENTCAF returned
a number of N = 256 nontrivial calculated coefficients and an estimated uniform absolute
accuracy εest = 9.8302 · 10−7 in case of the coefficients ℓ

(n)
J . For the summed coefficients

s
(n)
J we obtained N = 128 and εest = 4.7684 · 10−7. In the following Figure 10 we present

the real and imaginary part of the numerically obtained coefficients in comparison to the
exact values.
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Figure 10. Example 1: Values for Re ℓ
(n)
J , Im ℓ

(n)
J

One serious problem is the rescaling of the computed coefficients. Since the algorithm

yields approximations rnf
(N)
n with a uniform accuracy (5.4a) the computation is only

reliable to a limited number of n when calculating f
(N)
n from rnf

(N)
n for r < 1. Therefore

some visible numerical errors occur in the calculation of Re ℓ
(n)
J for n ≥ 130 and Im ℓ

(n)
J

for n ≥ 170.
On the left side of Figure 10 we observe the alternating behaviour shown in (3.36)

(5.7) ℓ
(n)
j ∼ 2iR(−1)n = i

8

~

(∆x)2

∆t
(−1)n = i

125

8
(−1)n.
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Figure 11. Example 1: Values for Re s
(n)
J , Im s

(n)
J .

Example 2. In this second example we set the potential to zero and changed the
computational radius to r = 0.95 and the step sizes ∆x = 1/1600, ∆t = 2 · 10−4. For the

coefficients ℓ
(n)
J ENTCAF returned a number of N = 256 nontrivial calculated coefficients

and an estimated uniform absolute accuracy εest = 2.9802 · 10−6. In case of the summed

coefficients s
(n)
J we obtained N = 128 and εest = 1.2288 · 10−7. As before we show the real

and imaginary part of the numerically obtained coefficients in comparison to the exact
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Figure 12. Example 1: Difference between the numerical and exact value

of the real and imaginary part of ℓ
(n)
J (—) and s

(n)
J (· · · ).

values. Again, on the left side of Figure 13 one can see the alternating behaviour of the
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Figure 13. Example 2: Inverse Z–transformation using ENTCAF:

Numerically obtained values for Re ℓ
(n)
J , Im ℓ

(n)
J compared to the exact ones.

coefficients ℓ
(n)
j and the numerical errors due to the rescaling of the computed coefficients

for approximately n ≥ 30.

Example 3. Finally we use the settings of the second example and intend to use a
computational radius r = 1 to circumvent the problem of the rescaling. For the coefficients

ℓ
(n)
J this cannot be done due to the singularity of ν2(z) at z = 1. On the other hand, this

singularity is removed in (5.6):

Z{s(n)
J } = (1 + z̃) ν̃2(z̃)

= 1 + z̃ − iR

2
y − iR

2
+

√(
4i

R
(1 + z̃) + y

)
y,

(5.8)
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Figure 14. Example 2: Inverse Z–transformation using ENTCAF:

Numerically obtained values for Re s
(n)
J , Im s

(n)
J compared to the exact ones.
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Figure 15. Example 2: Inverse Z–transformation using ENTCAF:
Difference between the numerical and exact value of the real and imaginary

part of ℓ
(n)
J (—) and s

(n)
J (· · · ).

with the abbreviation y = (1 − z̃ + iκ(z̃ + 1)).

For the summed coefficients s
(n)
J ENTCAF returned a number of N = 1024 nontrivial

calculated coefficients and an estimated uniform absolute accuracy εest = 2.2492 · 10−6.

The maximal absolute error for Re s
(n)
J is 2.8609 · 10−6 and 2.1455 · 10−6 for calculating

Im s
(n)
J .
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J compared to the exact ones.

In both plots only one curve is visible since the results from both approaches
match so closely.
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Stuttgart, 1989.
[23] P.K. Kythe, An introduction to boundary element methods, CRC Press, Boca Raton, FL.,1995.

39



BIBLIOGRAPHY 40

[24] D. Lee and S.T. McDaniel, Ocean acoustic propagation by finite difference methods, Comput. Math.
Appl. 14 (1987), 305–423.

[25] M.F. Levy, Non–local boundary conditions for radiowave propagation, in: Third International Con-
ference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, Juan-les-Pins,
France, 24-28 April 1995.

[26] G. Lill, Diskrete Randbedingungen an künstlichen Rändern, Dissertation, Technische Hochschule
Darmstadt, 1992.

[27] C. Lubich Convolution Quadrature and Discretized Operational Calculus I, Numer. Math. 52 (1988),
129–145.

[28] C. Lubich On the multistep time discretization of linear initial–boundary value problems and their

boundary integral equations, Numer. Math. 67 (1994), 365–389.
[29] J.N. Lyness and G. Sande, Algorithm 413: ENTCAF and ENTCRE: Evaluation of Normalized

Taylor Coefficients of an Analytic Function, Comm. ACM 14 (1971), 669–675.
[30] B. Mayfield, Non–local boundary conditions for the Schrödinger equation, Ph.D. thesis, University

of Rhode Island, Providence, RI, 1989.
[31] R.E. Mickens, Difference Equations: Theory and Applications, 2nd ed., Van Nostrand Reinhold, New

York, 1990.
[32] H.J. Nussbaumer, Fast Fourier transform and convolution algorithms, Springer Series in Information

Sciences Vol. 2. Springer–Verlag, 1981.
[33] J.S. Papadakis, Impedance formulation of the bottom boundary condition for the parabolic equation

model in underwater acoustics, NORDA Parabolic Equation Workshop, NORDA Tech. Note 143,
1982.

[34] J.S. Papadakis, M.I. Taroudakis, P.J. Papadakis and B. Mayfield, A new method for a realistic

treatment of the sea bottom in the parabolic approximation, J. Acoust. Soc. Am. 92 (1992), 2030–
2038.

[35] J.S. Papadakis, Impedance Bottom Boundary Conditions for the Parabolic–Type Approximations in

Underwater Acoustics, in: Advances in Computer Methods for Partial Differential Equations VII,
eds. R. Vichnevetsky, D. Knight, and G. Richter, IMACS, New Brunswick, NJ, 1992, pp. 585–590.

[36] C.W. Rowley and T. Colonius, Discretely Nonreflecting Boundary Conditions for Linear Hyperbolic

Systems, J. Comp. Phys. 157 (2000), 500–538.
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