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A fast method to implement non-local discrete transparent boundary condi-
tions for the Schrödinger equation

Discrete transparent boundary conditions (DTBCs) for the time-dependent Schrödinger equation were introduced in
the numerical simulations of whole space problems in order to reduce the computational domain to a finite region.
They include a convolution w.r.t. time with a weakly decaying kernel that leads to very costly numerical evaluation
for large-time simulations. As a remedy we construct approximate DTBCs with a kernel having the form of a finite
sum-of-exponentials, which can be evaluated in an efficient recursion.

1. Introduction

Discrete transparent boundary conditions for the discrete 1D–Schrödinger equation

−iR(ψj,n+1−ψj,n) = ψj+1,n+1−2ψj,n+1+ψj−1,n+1+ψj+1,n−2ψj,n+ψj−1,n−wVj,n+ 1

2

(ψj,n+1 + ψj,n) , (1)

where R = 4∆x2/∆t, w = 2∆x2, Vj,n+ 1

2

:= V (xj , tn+ 1

2

), xj = j∆x, j ∈ ZZ; and V (x, t) = V− = const for x ≤ 0;

V (x, t) = V+ = const for x ≥ X, t ≥ 0, ψ(x, 0) = ψI(x), with supp ψI ⊂ [0, X], were introduced in [1]. The
DTBC at e.g. the left boundary point j = 0 reads, cf. Th. 3.8 in [2]:

ψ1,n − s0ψ0,n =
∑n−1
k=1 sn−kψ0,k − ψ1,n−1, n ≥ 1. (2)

The convolution kernel {sn} can be obtained by explicitly calculating the inverse Z–transform of the function

ŝ(z) := z+1
z
ℓ̂(z), where ℓ̂(z) = 1 − iζ ±

√

−ζ(ζ + 2i), ζ = R
2
z−1
z+1 + i∆x2V− (choose sign such that |ℓ̂(z)| > 1).

The use of (2) for calculations permits us to avoid any boundary reflections and it renders the fully discrete scheme
unconditionally stable, like the Crank-Nicolson scheme (1). However, the linearly in t increasing numerical effort to
evaluate the DTBCs can sharply raise the total computational costs. A strategy to overcome this drawback will be
the key issue of this paper.

2. Approximation of Convolution Coefficients by Sums of Exponentials

We evaluate numerically the several first convolution coefficients sn appearing in the DTBC (2): sn ≈ s
(N)
n =

ρnN−1
∑N−1
k=0 ŝ(ρeiϕk) einϕk , n = 0, 1, . . . , N − 1. Here ϕk = 2πk/N , and ρ > 1 is a regularization parameter.

Our fast method to calculate the discrete convolution in (2) is based on the approximation of the coefficients sn by
the following ansatz (sum of exponentials):

sn ≈ s̃n :=

{

sn, n = 0, . . . , ν − 1,
∑L

l=1 blq
−n
l , n = ν, ν + 1, . . . ,

(3)

where L, ν ∈ IN are fixed numbers. In order to find the required {bl, ql}, we fix L and ν in (3) (e.g. ν = 1), and

consider the Padé approximation PL−1(x)
QL(x) for the formal power series: f(x) := sν + sν+1x+ sν+2x

2 + . . . , |x| ≤ 1.

T h e o r e m 1. Let the polynomial QL(x) have L simple roots ql with |ql| > 1, l = 1, . . . , L. Then

s̃n =

L
∑

l=1

blq
−n
l , n = ν, ν + 1, . . . , where bl := −

PL−1(ql)

Q′
L(ql)

qν−1
l 6= 0, l = 1, . . . , L.

R e m a r k 1. According to the definition of the Padé algorithm, we have s̃n = sn for n = ν, ν+1, . . . , 2L+ν−1.
For the remaining s̃n with n > 2L+ ν − 1, the following estimate is proved: |s̃n − sn| = O(n− 3

2 ).

R e m a r k 2. All our practical calculations confirm that the condition of Theorem 1 holds for any desired L,
although we cannot prove this.
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3. Fast Evaluation of the Discrete Convolution with an “Exponential” Kernel

Given the approximation (3) of the discrete convolution kernel appearing in the DTBC (2), the convolution

C(n)(u) :=

n−ν
∑

k=1

uks̃n−k (4)

of a discrete function uk, k = 1, 2, . . ., can be calculated efficiently by recurrence formulas, cf. [3]:

T h e o r e m 2. The function C(n)(u) from (4) for n ≥ ν + 1 is represented by

C(n)(u) =
L

∑

l=1

C
(n)
l (u), where C

(n)
l (u) = q−1

l C
(n−1)
l (u) + blq

−ν
l un−ν for n ≥ ν + 1, C

(ν)
l (u) ≡ 0.

The recursion permits us to drastically reduce the computational effort of evaluating DTBCs for long–time compu-
tations (n≫ 1): O(L ∗ n) instead of O(n2) arithmetic operations.

4. Numerical Example

As an example, we consider (1) on 0 ≤ x ≤ 1 with V− = V+ = 0, and non–zero initial data ψI . The reference
solution ψref with ∆x = 1/160, ∆t = 2 · 10−5 is obtained by using exact DTBCs (2) at the ends x = 0 and x = 1.
We vary the parameter L = 20, 30, 40, 50 in (3), find the corresponding approximate DTBCs, and show the error of

the approximate solution ψa measured in
||ψa−ψref ||L2

(t)

||ψI ||L2

. The result up to n = 15000 is shown in the figure.
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