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Abstract

Transparent boundary conditions (TBCs) are an important tool for the truncation
of the computational domain in order to compute solutions on an unbounded do-
main. In this work we want to show how the standard assumption of ‘compactly
supported data’ could be relaxed and derive TBCs for a generalized Schrödinger
equation directly for the numerical scheme on the discrete level. With this inho-
mogeneous TBCs it is not necessary that the initial data lies completely inside the
computational region. However, an increased computational effort must be accepted.
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1 Introduction

Transparent boundary conditions (TBCs) are an important tool for the trun-
cation of the computational domain in order to compute solutions on an un-
bounded domain (see the reviews in [10], [11], [25]). In this work we want
to show how the standard assumption of ‘compactly supported initial data’
could be relaxed and derive inhomogeneous TBCs for a finite difference dis-
cretization of so–called standard and wide angle “parabolic” equations [14].
These models appear as one–way approximations to the Helmholtz equation
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in cylindrical coordinates with azimuthal symmetry and include as a special
case the Schrödinger equation. With this TBCs it is not necessary that the
starting field is completely inside the computational region. This is the case in
underwater acoustics if the source is close to the bottom or in radiowave prop-
agation problems when computing coverage diagrams of airborne antennas
[15].

In the past two decades “parabolic” equation (PE) models have been widely
used for wave propagation problems in various application areas, e.g. seismol-
ogy [6], optics and plasma physics (cf. the references in [5]). Further applica-
tions to wave propagation problems can be found in radio frequency technol-
ogy [22]. Here we will be mainly interested in their application to underwater
acoustics, where PEs have been introduced by Tappert [23]. An account on
the vast recent literature is given in the survey article [13] and in the book
[12]. Thus in the sequel we will use a notation common to the application in
underwater acoustics. Nevertheless our approach is generally applicable to all
one–way wave propagation problems in 2D.

In oceanography one wants to calculate the underwater acoustic pressure
p(z, r) emerging from a time–harmonic point source located in the water at
(zs, 0). Here, r > 0 denotes the radial range variable and 0 < z < zb the depth
variable. The water surface is at z = 0, and the (horizontal) sea bottom at
z = zb. We denote the local sound speed by c(z, r), the density by ρ(z, r),
and the attenuation by α(z, r) ≥ 0. n(z, r) = c0/c(z, r) is the refractive index,
with a reference sound speed c0. The reference wave number is k0 = 2πf/c0,
where f denotes the (usually low) frequency of the emitted sound.

In the far field approximation (k0r≫1) the outgoing acoustic field

ψ(z, r) =
√
k0r p(z, r) e

−ik0r (1)

satisfies the one–way Helmholtz equation:

ψr = ik0

(√
1 − L− 1

)
ψ, r > 0. (2)

Here,
√

1 − L is a pseudo–differential operator, and L the Schrödinger operator

L = −k−2
0 ρ ∂z(ρ

−1∂z) + 1 −N2(z, r), (3)

where N(z, r) = n(z, r) + iα(z, r)/k0 denotes the complex refractive index.

“Parabolic” approximations of (2) consist in formally approximating the pseudo–
differential operator

√
1 − L by rational functions of L. The linear approxi-

mation of
√

1 − λ by 1 − λ/2 gives the narrow angle or standard “parabolic”
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equation (SPE) of Tappert:

ψr = − ik0

2
Lψ, r > 0. (4)

This Schrödinger equation is a reasonable description of waves with a propa-
gation direction within about 15◦ of the horizontal. Rational approximations
of the form

√
1 − λ ≈ f(λ) = (p0 − p1λ)/(1− q1λ) with real p0, p1, q1 yield the

wide angle “parabolic” equations (WAPE)

ψr = ik0

(
p0 − p1L

1 − q1L
− 1

)
ψ, r > 0. (5)

In the sequel we will repeatedly require f ′(0) = p0q1 − p1 < 0. With the choice

p0 = 1, p1 = 3/4, q1 = 1/4
(
(1,1)–Padé approximant of

√
1 − λ

)
one obtains

the WAPE of Claerbout. If we assume ρ = ρ(z) one can apply the operator
1 − q1L to (5):

[
1 − q1V + q1k

−2
0
ρ∂z(ρ

−1∂z)
]
ψr

= ik0

[
p0 − 1 − (p1 − q1)V + (p1 − q1)k

−2
0 ρ ∂z(ρ

−1∂z)
]
ψ. (6)

In this paper we shall focus on boundary conditions (BCs) for the SPE (4) and
the WAPE (5). At the water surface one usually employs a Dirichlet (“pressure
release”) BC: ψ(z = 0, r) = 0. In the z–direction one wishes to restrict the
computational domain by introducing an artificial boundary at or below the
sea bottom. Papadakis [20] derived impedance BCs (or TBCs) for the SPE
and the WAPE: complementing the WAPE (5) with a TBC at zb allows to
recover — on the finite computational domain (0, zb) — the exact half–space
solution on 0 < z < ∞. For an overview paper we refer the reader to [21].
As the SPE is a Schrödinger equation, similar strategies have been developed
independently for quantum mechanical applications.

While TBCs fully solve the problem of cutting off the z–domain for the an-
alytical equation, all available numerical discretizations suffer from reduced
accuracy (in comparison to the discretized half–space problem) and render the
overall numerical scheme only conditionally stable [24]. In [3] discrete trans-
parent boundary conditions (DTBCs) for a Crank–Nicolson finite difference
discretization of the WAPE were constructed such that the overall scheme is
unconditionally stable and as accurate as the discretized half–space problem.

In this work we show how to remove one essential restriction of the (discrete)
TBCs: we derive (discrete) TBCs for the case that the initial data which
models a point source located at (zs, 0), is not completely contained in the
computational domain. However, an increased computational effort must be
accepted. While most authors [16], [18] (cf. also Section 8.6 in [14]) use an
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exterior solution to ‘homogenize’ the problem, we directly solve the inhomo-
geneous problem. The usage of this DTBC is especially beneficial when one
needs several computations with the same initial data. Then the calculation
of the additional term has only to be done once. The same applies when the
initial field is concentrated far outside the computational domain. This is the
case e.g. in radiowave propagation when computing coverage diagrams of air-
borne antennas; the (high) source need not be included in the domain and the
computation needs far less time.

The paper is organized as follows: In §2 we review the derivation of the contin-
uous TBC and in §3 we derive the discrete TBCs for the SPE and the WAPE.
Finally, in §4 we conclude with a numerical example.

2 Transparent Boundary Conditions

In this section we first will derive the continuous transparent boundary con-
dition at the sea–bottom interface. For simplicity of the presentation we will
restrict ourselves to the TBC for the SPE. The basic idea of the derivation
is to explicitly solve the equation in the bottom region, which is the exterior
of the computational domain (0, zb). Therefore we assume that the bottom
region is homogeneous, i.e. all physical parameters are constant for z > zb
(denoted with a subscript ‘b‘).

As the density is typically discontinuous at the water–bottom interface (z =
zb), one requires continuity of the pressure and the normal particle velocity
(matching conditions):

ψ(zb−, r) = ψ(zb+, r),
ψz(zb−, r)

ρw
=
ψz(zb+, r)

ρb
, (7)

where ρw = ρ(zb−, r) and ρb denotes the constant density of the bottom.

In order to derive the TBC we assume that the starting field ψI(z) is contin-
uous and consider the SPE (4) in the bottom region:

ψzz + 2ik0ψr − k2
0

(
1 −N2

b

)
ψ = 0, z > zb. (8)

The Laplace transformation in range of ψ is given by

ψ̂(z, s) =
∫ ∞

0
ψ(z, r) e−sr dr, (9)

where we set s = η + iξ, ξ ∈ R, and η > 0 is fixed, with the idea to later
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perform the limit η → 0. Now the exterior problem (8) is transformed to

ψ̂zz + c2
(
s+ i

k0

2

(
1 −N2

b

))
ψ̂ = c2ψI(z), z > zb, (10)

where we set c = (1 + i)
√
k0.

The basic idea is to solve this inhomogeneous second order differential equation
(10) explicitly. The homogeneous solution is

ψ̂hom(z, s) = C1(s) e
icq(s)(z−zb) + C2(s) e

−icq(s)(z−zb), z > zb, (11)

with the abbreviation q(s) = +

√
s+ ik0(1 −N2

b )/2. A particular solution of
(10) is given by

ψ̂par(z, s) =
c

2iq(s)

[∫ z

zb

eicq(s)(z−ζ)ψI(ζ) dζ −
∫ z

zb

eicq(s)(ζ−z)ψI(ζ) dζ
]
, (12)

for z > zb, i.e. the general solution in the bottom region is

ψ̂(z, s) = ψ̂hom(z, s) + ψ̂par(z, s)

=

[
C1(s) e

−icq(s)zb +
c

2iq(s)

∫ z

zb

e−icq(s)ζψI(ζ) dζ

]
eicq(s)z

+

[
C2(s) e

icq(s)zb − c

2iq(s)

∫ ∞

zb

eicq(s)ζψI(ζ) dζ

+
c

2iq(s)

∫ ∞

z
eicq(s)ζψI(ζ) dζ

]
e−icq(s)z.

(13)

Here, +
√

denotes the branch of the square root with nonnegative real part.
We note that the last term in (13) is bounded for fixed s and z → ∞. Since
the solutions have to decrease as z → ∞, the idea is to eliminate the growing
factor e−icq(s)z = e(1−i)

√
k0q(s)z by simply choosing

C2(s) =
c

2iq(s)

∫ ∞

zb

eicq(s)(ζ−zb)ψI(ζ) dζ. (14)

Consequently, we obtain C1(s) as:

C1(s) = ψ̂(zb+, s) −
c

2iq(s)

∫ ∞

zb

eicq(s)(ζ−zb)ψI(ζ) dζ. (15)

From this we get with the matching conditions (7) the following representation
of the transformed TBC :

ψ̂z(zb−, s) = ic
ρw
ρb
q(s)C1(s) −

c2

2

ρw
ρb

∫ ∞

zb

eicq(s)(ζ−zb)ψI(ζ) dζ

= ic
ρw
ρb
q(s) ψ̂(zb−, s) − c2

ρw
ρb

∫ ∞

zb

eicq(s)(ζ−zb)ψI(ζ) dζ.
(16)
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It remains to inverse transform (16). If we further assume that ψI is continu-
ously differentiable, then integration by parts yields:

ψ̂z(zb, s) =
ic

q(s)

ρw
ρb

[
q2(s)ψ̂(zb, s) − ψI(zb)

]
− ic

q(s)

ρw
ρb

∫ ∞

zb

eicq(s)(ζ−zb)ψI

z(ζ) dζ.

The inverse Laplace transformation using the convolution theorem gives

ψz(zb, r) =
ic√
π

ρw
ρb

∫ r

0

ψr(zb, τ)√
r − τ

dτ

− ic
ρw
ρb

L−1

{
1

q(s)

∫ ∞

zb

eicq(s)(ζ−zb)ψI

z(ζ) dζ

}
.

(17)

Finally, if ψI

z is integrable for z > zb, Levy proved [17] that the integration
and the inverse Laplace transform can be interchanged in (17) to obtain the
TBC

ψz(zb, r) =
ice−ibr√

π

ρw
ρb

∫ r

0

ψr(zb, τ)√
r − τ

dτ− ice−ibr√
πr

ρw
ρb

∫ ∞

zb

ψI

z(z) e
ik0(z−zb)2

2r dz, (18)

with b = k0(N
2
b −1)/2. This TBC was derived by Levy [17] for the case Nb = 1.

Remark 1 Clearly, if ψI(z) = 0 for z > zb then (18) reduces to the well–
known TBC derived by Papadakis [19], [20]:

ψz(zb, r) = −
√

2k0

π
e−

iπ
4 eibr

ρw
ρb

d

dr

∫ r

0

ψ(zb, τ) e
−ibτ

√
r − τ

dτ. (19)

Equivalently, it can be written as

ψ(zb, r) = − e
π
4
i

√
2πk0

ρb
ρw

∫ r

0
ψz(zb, r − τ)

eibτ√
τ
dτ. (20)

Remark 2 The results of this section can be extended to the case that the
refractive index in the bottom Nb depends on the range r. Using the dephasing
function approach [2] (also known as gauge change in quantum mechanics) we
introduce in (8) the new variable

ϕ(z, r) = ψ(z, r) exp

{
i
k0

2

∫ r

0

(
1 −N2

b (τ)
)
dτ

}
, z > zb, (21)

to get the simple equation

ϕzz + 2ik0ϕr = 0, z > zb. (22)

All these BCs (19), (20) are nonlocal in the range variable r; in range marching
algorithms they thus require storing the bottom boundary data of all previ-
ous range levels. Also they involve a mildly singular convolution kernel. As
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motivated in the introduction we will not discretize the continuous TBCs. In-
stead we will show now how to derive the TBCs on a fully discrete level by
mimicking the derivation of the continuous TBC. This approach avoids any
unphysical reflections and conserves the stability properties of the underlying
finite difference scheme.

3 Discrete Transparent Boundary Conditions

In this section we will present how to derive the discrete TBC for a Crank–
Nicolson finite difference scheme for the SPE and the WAPE. Here we shall
only consider uniform grids in z and r. While a uniform range discretization is
crucial for our construction of discrete TBCs, this construction is independent
of the (possibly nonuniform) z–discretization on the interior domain.

For simplicity we consider the uniform grid zj = jh, rn = nk (h = ∆z,

k = ∆r) and the approximation ψ
(n)
j ∼ ψ(zj, rn). The discretized WAPE (6)

then reads:

[
1 − q1V

(n+ 1
2
)

j + q1k
−2
0 ρjD

0
h
2
(ρ−1
j D0

h
2
)
]
D+

kψ
(n)
j

= ik0

[
p0 − 1 − (p1 − q1)V

(n+ 1
2
)

j + (p1 − q1)k
−2
0 ρjD

0
h
2
(ρ−1
j D0

h
2
)
] ψ(n)

j + ψ
(n+1)
j

2
,

(23)

with V
(n+ 1

2
)

j := V (zj, rn+ 1
2
) and the usual difference operators

D+

kψ
(n)
j =

ψ
(n+1)
j − ψ

(n)
j

k
, D0

h
2
ψ

(n)
j =

ψ
(n)

j+ 1
2

− ψ
(n)

j− 1
2

h
.

It is well known [1] that this scheme is second order in h and k and uncondi-
tionally stable.

To derive the DTBC we will now mimic the derivation of the analytic TBCs
from the previous section on a discrete level. We solve the discrete exterior
problem in the bottom region, i.e. the Crank–Nicolson finite difference scheme
(23) for j ≥ J − 1 :

[
Rδb + q∆2

h

]
(ψ

(n+1)
j − ψ

(n)
j ) = i

[
Rκb + ∆2

h

]
(ψ

(n+1)
j + ψ

(n)
j ), (24)

with

δb = 1 − q1(1 −N2
b ), R =

2k0

p1 − q1

h2

k
, q =

2

k

q1

p1 − q1

k−1
0
,

κb =
k

2
k0

[
p0 − 1 − (p1−q1)(1−N2

b )
]
,

7



where ∆2
hψ

(n)
j = ψ

(n)
j+1 − 2ψ

(n)
j + ψ

(n)
j−1 denotes the second order difference

operator, and R is proportional to the parabolic mesh ratio. To solve this
difference scheme (24) we use the Z–transform:

Z{ψ(n)
j } = ψ̂j(ζ) :=

∞∑

n=0

ψ
(n)
j ζ−n, ζ ∈ C, |ζ| > Rψ, (25)

where Rψ denotes the convergence radius of this Laurent series. Note that we
denoted in (25) the transformation variable with ζ in order to assign z for the
depth variable. Thus, the difference equation (24) is transformed to

∆2

hψ̂j(ζ) + iR
δb(ζ − 1) − iκb(ζ + 1)

ζ + 1 + iq(ζ − 1)
ψ̂j(ζ) = γj (ζ), j ≥ J − 1, (26)

with the inhomogeneity

γj (ζ) =
ζ

ζ + 1
∆2

hψ
(0)
j +

iRζ
[
δb − iκb

]

ζ + 1 + iq(ζ − 1)
ψ

(0)
j . (27)

Equation (26) is an inhomogeneous second order difference equation of the
form

Uj+1 + aUj + b Uj−1 = γj , j ≥ J − 1. (28)

The two linearly independent homogeneous solutions take the form αj, βj,
j ≥ J with αβ = b and a particular solution (28) can be found with the
ansatz of “variation of constants”. According to Ehrhardt and Arnold [8] the
general solution to the inhomogeneous equation (28) is given by

Uj = c αj + d βj +
1

α− β




j∑

m=J

αj−mγm −
j∑

m=J

βj−mγm


 , j ≥ J − 1, (29)

which is the discrete analogue to the solution formula (12) in the continuous
case.

Now we use (29) to design a boundary condition at j = J . For that purpose
we assume |α| < 1, |β| > 1 (recall that b = αβ = 1 for the Crank–Nicolson
scheme for solving the wide angle parabolic equation). Proceeding analogously
to the continuous case we have to eliminate the growing factor βj by choosing
d appropriately as

d =
1

α− β

∞∑

m=J

β−mγm. (30)

We obtain from (29)

Uj =


c+

1

α− β

j∑

m=J

α−mγm


αj +

1

α− β

∞∑

m=j+1

βj−mγm, j ≥ J − 1. (31)
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The value of c can be expressed with UJ−1:

c =
UJ−1

αJ−1
−
(
β

α

)J−1
1

α− β

∞∑

m=J

β−mγm,

and inserting this into (31) with j = J :

UJ = c αJ +
1

α− β

∞∑

m=J

βJ−mγm

yields

UJ = αUJ−1 −
(

1 − α

β

)
1

α− β

∞∑

m=J

βJ−mγm = αUJ−1 − β−1
∞∑

m=0

β−mγJ+m,

or equivalently

b UJ−1 = β UJ +
∞∑

m=0

b−mαmγJ+m. (32)

Finally, we want to apply these results to the discretized WAPE (24) and

derive the DTBC at j = J in the situation, when the initial data ψ
(0)
j does not

vanish for j ≥ J − 1. In this case the Z–transformed exterior Crank–Nicolson
scheme reads:

ψ̂j+1(ζ) −
[
2 − iR

δb(ζ − 1) − iκb(ζ + 1)

ζ + 1 + iq(ζ − 1)

]
ψ̂j(ζ) + ψ̂j−1(ζ) = γj (ζ), (33)

j ≥ J − 1, where the inhomogeneity γj is given by (27). An inverse Z-
transformation of γj(ζ) yields:

γ
(n)
j = Z−1

{
γj(ζ)

}
= (−1)n∆2

hψ
(0)
j +

iR
[
δb − iκb

]

1 + iq

(−1 + iq

1 + iq

)n
ψ

(0)
j . (34)

Thus, we can use the general solution formula (32) to obtain the transformed
discrete TBC :

ψ̂J−1(ζ) = ν2(ζ) ψ̂J (ζ) +
∞∑

m=0

νm1 (ζ) γJ+m(ζ), (35)

where ν1, ν2 = ν−1
1

are the two solutions of the quadratic equation

ν2 − 2

[
1 − iR

2

δb(ζ − 1) − iκb(ζ + 1)

ζ + 1 + iq(ζ − 1)

]
ν + 1 = 0. (36)

Remark 3 Setting γj ≡ 0 (35) reduces to the transformed discrete TBC de-
rived by Arnold and Ehrhardt [3].
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In order to formulate the discrete TBC we define (p(n)
m ) := (1+iq)Z−1 {νm1 (ζ)},

m ∈ N0, and set (ℓ(n)) := (1 + iq)Z−1 {ν2(ζ)}. We obtain by inverse trans-
forming (35)

(1+ iq)ψ
(n)
J−1−ℓ(0)ψ

(n)
J =

n−1∑

k=0

ℓ(n−k)ψ
(k)
J +(1+ iq) γ

(n)
J +

∞∑

m=1

n∑

k=0

p(k)
m γ

(n−k)
J+m , (37)

n ≥ 1, with the convolution coefficients ℓ(n) given by

ℓ(n) =
[
1 + iq +

i

2
(γ − iσ)e−iξ

]
δ0

n −
i

2
H(−1)neinξ

− ζ
{
P̃n(µ) + e−iξλ−2P̃n−1(µ) + ωe−iϕ

n−1∑

m=0

(−eiξ)n−mP̃m(µ)
}
,

(38)

γ = Rδb, σ = −Rκb, λ =
+

√
E

G
, µ =

F
+
√
EG

, ω =
H2

|E| ,

ξ = arg
1 − iq

1 + iq
, ϕ = argE, ε =

i

2
|E| 12 eiϕ

2 ,

E = (γ + iσ)
[
γ − 4q + i(σ + 4)

]
, F = γ(γ − 4q) + σ(σ + 4),

G = (γ − iσ)
[
γ − 4q − i(σ + 4)

]
, H = γ + iσ + (γ − iσ)e−iξ.

In (38) δ0
n denotes the Kronecker symbol and P̃n(µ) := λ−nPn(µ) the damped

Legendre polynomials (P̃0 ≡ 1, P̃−1 ≡ 0). In the non–dissipative case (αb = 0)
we have |λ| = 1, µ ∈ [−1, 1], and hence |Pn(µ)| ≤ 1. In the dissipative case
αb > 0 we have |λ| > 1, µ becomes complex and |Pn(µ)| typically grows
with n. In order to evaluate ℓ(n) in a numerically stable fashion it is therefore
necessary to use the damped polynomials P̃n(µ) in (38).

The convolution coefficients ℓ(n) behave asymptotically as

ℓ(n) ∼= const.(−1)neinξ, n→ ∞, ξ = arg
1 − iq

1 + iq
, (39)

which may lead to subtractive cancellation in (37) (note that ψ
(n)
J ≈ ψ

(n+1)
J in

a reasonable discretization). Therefore we introduce the summed coefficients

s(n) := ℓ(n) + eiξℓ(n−1), n ≥ 1, s(0) := ℓ(0), (40)

which are calculated as

s(n) =
[
(1 + iq)eiξ +

i

2
(γ − iσ)

]
δ1

n + ε
P̃n(µ) − λ−2P̃n−2(µ)

2n− 1
, n ≥ 1. (41)

Alternatively, they can be calculated directly with the recurrence formula

s(n) =
2n− 3

n
µλ−1s(n−1) − n− 3

n
λ−2s(n−2), n ≥ 3, (42)
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once s(1), s(2) are computed from (41).

Remark 4 Using asymptotic properties of the Legendre polynomials one finds
s(n) = O(n−3/2), n→ ∞ which agrees with the decay of the convolution kernel
in the differential TBCs like (20).

Finally, we obtain the DTBC for non–compactly supported initial data (n ≥ 1):

(1 + iq)ψ
(n)
J−1 − s(0)ψ

(n)
J =

n−1∑

k=0

s(n−k)ψ
(k)
J − (1 − iq)ψ

(n−1)
J−1 + 2iq(−1)n∆2

hψ
(0)
J

+
∞∑

m=1

p(0)
m γ

(n)
J+m +

∞∑

m=1

n−1∑

k=0

(p(k+1)
m + eiξp(k)

m )γ
(n−1−k)
J+m .

(43)

In practical situations the sum (over m) in (43) of course has to be finite
(e.g. up to an index m = M). This means that the initial condition is still
compactly supported, but possibly outside of the computational interval. The
coefficients p(n)

m , m = 1, 2, . . . ,M , can be calculated recursively by “continued
convolution”, i.e.

p
(n)
1 = (1+ iq)Z−1 {ν1(ζ)} , p

(n)
2 =

n∑

k=0

p
(n−k)
1 p

(k)
1 , p

(n)
3 =

n∑

k=0

p
(n−k)
2 p

(k)
1 , etc..

(44)

Since this computation is rather costly (even when using fast convolution al-
gorithms with FFTs we seek for another way to calculate

∑∞
m=1

∑n−1
k=0(p

(k+1)
m +

eiξp(k)
m )γ

(n−1−k)
J+m , n ≥ 1. The key idea is to use (36) for ν1(ζ) in order to con-

struct a recurrence relation for the p(n)
m (w.r.t. m). (36) for ν1(ζ) gives

νm+1
1 (ζ) =

[
2 − iR

δb(ζ − 1) − iκb(ζ + 1)

ζ + 1 + iq(ζ − 1)

]
νm1 (ζ) − νm−1

1 (ζ), m ≥ 1. (45)

An inverse Z–transformation of the term in the brackets in (45) is

Z−1 {[. . . ]} = 2δ0
n − iR

(1 + iq)[δb + iκb]δ
0
n − 2[δb + iκb]

(
−1+iq
1+iq

)n

−1 − q2
, (46)

and thus we obtain for m ≥ 1:

p
(n)
m+1 = c1p

(n)
m − c2

n∑

k=0

(−1)keikξp(n−k)
m − p

(n)
m−1, (47)

with

c1 = 2(1 + iq) + iRe−iξ[δb + iκb], c2 = 2iR[δb + iκb], (48)
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and the starting sequences p
(n)
0 = δ0

n and p
(n)
1 = (1 + iq)Z−1 {ν1(ζ)}, n ≥ 0.

To circumvent the convolution in (47) we consider q(n)
m := p(n)

m + eiξp(n−1)
m ,

p(−1)
m = 0 and obtain

q
(n)
m+1 = c1q

(n)
m − c2p

(n)
m − q

(n)
m−1, m ≥ 1, (49)

to use in the DTBC (43) of the form

(1 + iq)ψ
(n)
J−1 − s(0)ψ

(n)
J =

n−1∑

k=0

s(n−k)ψ
(k)
J − (1 − iq)ψ

(n−1)
J−1 + 2iq(−1)n∆2

hψ
(0)
J

+
M∑

m=1

p(0)
m γ

(n)
J+m + S

(n)
M , n ≥ 1,

(50)

where

S
(n)
M :=

M∑

m=1

n∑

k=1

q(k)
m γ

(n−k)
J+m , n ≥ 1. (51)

The calculation of (51) with the aid of the recursion formula (49) is done by
the following algorithm

(1) q
(n)
0 = (1 + iq)δ0

n + (1 − iq)δ1
n

(2) q
(n)
1 = p

(n)
1 + eiξp

(n−1)
1 = s̃(n)

(3) S
(n)
1 =

n∑

k=1

q(k)
m γ

(n−k)
J+m

(4) for m = 1, . . . ,M − 1 do

q
(n)
m+1 = c1q

(n)
m − c2p

(n)
m − q

(n)
m−1

S
(n)
m+1 = S(n)

m +
n∑

k=1

q
(k)
m+1γ

(n−k)
J+m+1

p
(0)
m+1 = q

(0)
m+1

for n = 1, . . . , N do

p
(n)
m+1 = q

(n)
m+1 − eiξp

(n−1)
m+1

end

end

Here N denotes the maximum time index and s̃
(n)
J the summed coefficients

given by (41) but with the other sign in front of ’ε’. The computational effort
of the above implementation of the discrete TBC is O(M · N), i.e. the same
effort as when enlarging the computational domain sufficiently.
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Alternatively, a second possible implementation is to consider the transformed
discrete TBC (35) and to calculate numerically the inverse Z–transform of
the finite sum once:

F (n) = Z−1
{
F̂ (ζ)

}
= Z−1

{
(1 + iq)

M∑

m=0

νm
1

(ζ) γJ+m(ζ).

}
(52)

The discrete TBC then reads

(1 + iq)ψ
(n)
J−1 − ℓ(0)ψ

(n)
J =

n−1∑

k=0

ℓ(n−k)ψ
(k)
J + F (n), n ≥ 1, (53)

with the coefficient F (n) given by

F (n) =
τn

2π

2π∫

0

F̂ (τeiϕ)einϕ dϕ, n ∈ N0, τ > 0. (54)

Since this inverse Z–transformation cannot be done explicitly, we use a nu-
merical inversion technique based on FFT (details can be found in [8]);

So far we did not consider the (typical) density jump at the sea bottom in
the discrete TBC (50). In [3] we used an offset grid, i.e. z̃j = (j + 1

2
)h, ψ̃nj ∼

ψ(z̃j, rn), j = −1(1)J , where the water–bottom interface with the density
jump lies between the grid points j = J − 1 and J . For discretizing the
matching conditions in this case one wants to find suitable approximations for
ψ and ρ at the interface zb, Ψ ∼ ψ(zb) and ρeff = ρ(zb), such that both sides
of the discretized second matching condition (7)

1

ρw

ψ̃
(n)
J − Ψ

h/2
=

1

ρb

Ψ − ψ̃
(n)
J−1

h/2
are equal to

1

ρeff

ψ̃
(n)
J − ψ̃

(n)
J−1

h
. (55)

This approach results in an effective density ρeff = (ρw + ρb)/2 (based on a
different derivation this was also used by Collins [7]). At the surface we use

instead of ψ
(n)
0 = 0 the offset BC ψ̃

(n)
0 = −ψ̃(n)

−1 .

Finally it remains to reformulate the discrete TBC (50) such that the density
jump is taken into account. We rewrite the discretization of the second depth
derivative at j = J from (23):

h2
[
ρJ D0

h
2

(
ρ−1
J D0

h
2
ψ̃

(n)
J

)]
= ∆2

hψ̃
(n)
J +

(
1 − ρb

ρeff

)(
ψ̃

(n)
J − ψ̃

(n)
J−1

)
. (56)

Comparing the r.h.s. of (56) to (24) we observe that only one additional term

13



appears, and instead of (26) we get

ˆ̃ψJ+1(ζ) −
[
1 − iR

δb(ζ − 1) − iκb(ζ + 1)

ζ + 1 + iq(ζ − 1)

]
ˆ̃ψJ (ζ)

=
ρb
ρeff

( ˆ̃ψJ (ζ) − ˆ̃ψJ−1(ζ)
)

+ γ̃J (ζ). (57)

with the inhomogeneity

γ̃J (ζ) =
ζ

ζ + 1

[
ψ̃

(0)
J+1−ψ̃

(0)
J − ρb

ρeff

(
ψ̃

(0)
J −ψ̃(0)

J−1

)]
+

iRζ
[
δb − iκb

]

ζ + 1 + iq(ζ − 1)
ψ̃

(0)
J . (58)

Using ˆ̃ψJ+1(ζ) = ν1(ζ)
ˆ̃ψJ (ζ) −

∑∞
m=1 ν

m
1 γ̃J+m(ζ), where ν1(z) denotes the so-

lution of (36), and considering the fact that ν1(ζ) + ν−1
1

(ζ)− 1 is equal to the
term in the squared brackets in (57) we obtain the Z–transformed discrete
TBC:

ρb
ρeff

(
ˆ̃ψJ (ζ) − ˆ̃ψJ−1(ζ)

)
= ˆ̃ψJ (ζ) − ν2(ζ)

ˆ̃ψJ (ζ) −
∞∑

m=0

νm
1
γ̃J+m(ζ). (59)

Hence, the discrete TBC including the density jump reads

(1 + iq)
ρb
ρeff

ψ̃
(n)
J−1 +

[
(1 + iq)

(
1 − ρb

ρeff

)
− ℓ(0)

]
ψ̃

(n)
J

=
n−1∑

k=0

ℓ(n−k)ψ̃
(k)
J + (1 + iq) γ̃

(n)
J +

∞∑

m=1

n∑

k=0

p(k)
m γ̃

(n−k)
J+m , n ≥ 1,

(60)

and formulated for the summed coefficients:

(1 + iq)
ρb
ρeff

ψ̃
(n)
J−1 +

[
(1 + iq)

(
1 − ρb

ρeff

)
− s(0)

]
ψ̃

(n)
J

=
n−1∑

k=0

s(n−k)ψ̃
(k)
J − (1 − iq)

ρb
ρeff

ψ̃
(n−1)
J−1 − (1 − iq)

(
1 − ρb

ρeff

)
ψ̃

(n−1)
J

+ 2iq(−1)n∆2

hψ̃
(0)
J +

∞∑

m=1

p(0)
m γ̃

(n)
J+m +

∞∑

m=1

n∑

k=1

q(k)
m γ̃

(n−k)
J+m .

(61)

with the coefficients s(n) given by (41). Setting ρb = ρeff this discrete TBC
(61) reduces to (43).

4 Numerical Example

In this Section we present a simple model example to illustrate the numer-
ical results when using our new discrete TBC for the SPE (4). We use an

14



initial field, that is partially outside the computational domain. Due to its
construction, our DTBC yields exactly (up to round–off errors) the numerical
whole–space solution restricted to the computational interval [0, zb].

Example 1 This example shows a simulation of a right travelling Gaussian
beam [ψI(z) = exp(i100z − 30(z − 0.8)2)] at three consecutive times evolving
under the SPE with N2 ≡ 1 (k0 = 1) and with the rather coarse depth dis-
cretization of 161 grid points for the interval 0 ≤ z ≤ 1 (i.e. ∆z = 1/160)
and the range step ∆r = 2 · 10−5. For the exterior (computational) domain
we choose the same depth step ∆z and use 60 grid points which results in the
exterior interval 1 < z ≤ 1.38125.

In the following Fig. 1 we plotted the absolute value of the initial data and the
solution obtained with the discrete TBCs (43) at the range steps r = 0.002,
r = 0.004, r = 0.006. One clearly sees in Fig. 1 that the solution is solely
propagated to the right and no artificial reflections are caused.
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Fig. 1. Solution |ψ(z, r)| at range r = 0, r = 0.002, r = 0.004, r = 0.006: the solution
with the new discrete TBCs (43) coincides with the whole–space solution and does
not introduce any numerical reflections.

In this example the computation using the inhomogeneous DTBCs (50) needs
approximately the same CPU–time than just enlarging the domain to the in-
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terval 0 ≤ z ≤ 1.8 using a simple Neumann boundary condition at z = 1.8.
From Fig. 1 one can guess that the solution at r = 0.004 has already reached
the boundary at z = 1.8. Hence it is worthwhile in this example to use the
inhomogeneous DTBCs whenever the solution for r > 0.004 is needed.

5 Conclusion

We have derived discrete transparent boundary conditions for starting fields
that are (partially) supported outside of the computational domain. While
the discrete TBC solves the problem of cutting off the computational domain,
the resulting numerical effort of this approach is not completely settled yet
and subject to further investigations. In particular one has to compare an
“optimal” computation algorithm for the coefficients p(m)

n or q(m)
n with simula-

tions on a sufficiently enlarged computational domain. In a subsequent paper
we will introduce a suitable approximation to the the discrete convolutions
appearing in the inhomogeneous DTBC (61) in the spirit of the ideas in [4],
[9].
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