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1 Introduction

Starting from the ancient age people tried to hedge their trading risks. We can find
the predecessors of trading options looking at the history of ancient Rome, Phoenicia,
Greece. With time passing options became more and more popular, drawing not only
the hedgers, but the speculators also. In 1848, the new page of options’ history was
written as the Chicago Board of Trade (CBOT) was set up and the options started being
traded officially. Developing rather slowly the optionmarket then got into the boom in
the end of 1960’s – middle 1970’s caused by the opening of the Chicago Board Options
Exchange (CBOE) and the appearing of the well-known Black-Scholes model. This
was the time when the modern history of the options started. Since that moment the
interest in options was growing: the volumes of trading have increased, variety of
new options types has appeared.

What are options today? Basically, options represent the right to buy (sell) the asset
by a predetermined price at a certain date. The predetermined price in the option
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contract is known as the exercise price or strike price, the date of contract expiring is
called the exercise date or maturity. At the exercise date the option holder has the right
to acquire (sell) an underlying asset by the strike price or spot price regardless what is
more favorable to him. The holder has to pay for this right, that is why the option has
a certain price, the so-called option premium. Options where the holder buys the asset is
known as call option. If the holder sells the asset the option is called put option. Talking
about the time of exercising, options might be of European or American type. While
European options can be exercised only at maturity, American options can be exercised at
any moment up to the maturity.

This work is devoted to one of the quite recently emerged options, the so-called
installment option. Installment option is a financial derivative where the small initial
premium is paid up-front and the other part of the premium is divided into the install-
ments to be paid during the lifetime of the contract up to maturity. At each installment
date the investor has the right to decide if he continues to pay for the contract or he
terminates paying, allowing the option to lapse.

Nowadays, installment options are rather widely traded in the financial markets.
They possess significant advantage over other options. It is the possibility to stop pay-
ing the premiums before the option is expired. Thanks to this property the companies
carrying out the policy of investments can reduce their losses. Moreover, taking in
mind the nature of the installment options we can find a number of other contracts
similar to them: some life insurance contracts and capital investment projects might
be considered as installment options (see Dixit and Pindyck [13]). Thomassen and Van
Wouwe [30] applied the installment option in pharmacy comparing the development
of a new drug, evolving 6 stages, with a 6-variate installment option; MacRae [24]
modeled the employee stock option as an installment option, etc.

As for the way of payments there exist 2 types of installment options: discrete and
continuous. The discrete installment options are investigated concisely in the works of
Karsenty and Sikorav [20], Davis et al. [11, 12], Ben-Ameur et al. [5] and Griebsch et
al. [18].

The treatment of the continuous installment options is more complicated. There only
exists a few related works. Ciurlia and Roko [7] studied the American case applying
the multipiece exponential function (MEF) method to derive an integral form of the op-
tion’s value. Their applied technique suffers from a serious drawback, since the MEF
method generates a discontinuity in the optimal stopping and early exercise bound-
aries. Alobaidi [2] analyzed the European case using the Laplace transformation to
solve the free boundary problem. However, the method used is rather specific and
not suitable for a numerical computation.

In the current paper we focus on the valuation of the continuous installment op-
tions starting from the paper of Kimura [21], who successfully applied the Laplace
transformation method to valuate these options numerically. Our goal is to revisit and
correct Kimura’s results and introduce the new Kryzhnyi method of inverse Laplace
transformation to the field of option pricing in order to valuate the continuous install-
ment options and their Greeks.
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The outline of this work is as follows. In Section 2 we briefly introduce the in-
stallment options, consider their essentials and features. In Section 3 we describe the
model and formulate the valuation problem of both call and put continuous install-
ment options. In Section 4 we describe the Laplace-Carson transformation method,
the Gaver-Stehfest and the Kryzhnyi methods of the inverse Laplace transformation,
used for the numerical valuation of the installment options. The theoretical results
of the valuation of the stopping boundary, the values of the options and their Greeks
are included in Section 5, the numerical results are presented in Section 6. Finally, we
draw our conclusions in Section 7.

2 Introduction to Installment Options

The definition of installment options can be formulated in the following way: the op-
tion where the premium is divided into different parts and is paid during the option
lifetime. Every installment date presents the moment when the holder takes the deci-
sion either to continue to pay the premiums or allow the contract to lapse. The total
premium of the installment option is always higher than the vanilla options premium.
This property can be explained by the additional opportunities to terminate the con-
tract without paying the whole sum of the premium.

The installment option is interesting for the investors who are ready to overpay
for the advantage to terminate the payments and reduce the losses if their investment
position goes wrong.

Dealing with installment options we can separate two cases of the installment pay-
ments: discrete and continuous.

• Discrete case means that the installment option has a finite number of exercise
dates, e.g. 3, 6, 8. At each of these dates the investor can terminate paying,
allowing the option to lapse.

• Continuous case means that the holder pays a stream of installments at a given
rate per unit time. In real life it looks like accumulating the premium sum by
a certain continuous rate, afterwards paid by the holder in the case of exercis-
ing. The holder has the choice to stop the contract at any time before the matu-
rity. This opportunity turns the valuation of the installment options into a free
boundary problem. For the continuous case there exist two types of installment
options: European and American.

We present the scheme (Figure 1) distinguishing types of installment options. Note
that the multi-fold compound options can also be modeled as continuous installment
options.

In the current paper we consider the case of the European continuous installment
options only, so referring to them further as ”continuous installment options”.
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Figure 1: The classification of installment options.

3 Analytical Valuation of the Continuous Installment Options

3.1 The Model

Pursuing the aim of the work – to valuate the continuous installment options – we
decide to base our considerations on the classical Black-Scholes model.

Assume that the price of the underlying asset St obeys the geometric Brownian
motion described by the stochastic differential equation

dSt
St

= µdt+ σdWt, (3.1)

where µ = (r− δ), r and δ denote the interest rate and the continuous dividend yield
respectively. σ is volatility and dWt is a standard Brownian motion on a risk-neutral
probability space. The value Vt = V(t, St; q) of the continuous installment option de-
pends on the time t, the spot price of the underlying St and the continuous installment
rate q. In time dt the holder pays the premium qdt to continue the contract.

Using Itô’s Lemma to derive the dynamics for the value of a continuous install-
ment option, we obtain

dVt =

(

∂Vt

∂t
+ (r− δ)St

∂Vt

∂S
+

1

2
σ2S2t

∂2Vt

∂S2
− q

)

dt+ σSt
∂Vt

∂S
dWt. (3.2)

We take a portfolio that includes the continuous installment option and −∆ amount
of the underlying asset

Πt = Vt − ∆St,
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with dynamics
dΠt = dVt − ∆dSt − ∆(Stδdt). (3.3)

Plugging (3.1) and (3.2) into (3.3), we obtain

dΠt =

(

(r− δ)St

(

∂Vt

∂S
− ∆

)

+
∂Vt

∂t
+

1

2
σ2S2t

∂2Vt

∂S2
− q− ∆Stδ

)

dt

+ σSt

(

∂Vt

∂S
− ∆

)

dWt.

To remove the risk of uncertainty we select ∆ = ∂Vt
∂S . This choice turns the portfolio

riskless now and it has to yield the return r to avoid any arbitrage opportunities

r

(

Vt − St
∂Vt

∂S

)

=

(

∂Vt

∂t
+

1

2
σ2S2t

∂2Vt

∂S2
− q− ∂Vt

∂S
Stδ

)

.

Finally, we get an inhomogeneous Black-Scholes partial differential equation (PDE)
for the valuation of the continuous installment options

∂Vt

∂t
+ (r− δ)St

∂Vt

∂S
+

1

2
σ2S2t

∂2Vt

∂S2
− rVt = q. (3.4)

Here, q should be strictly positive; if it is equal to zero the Black-Scholes PDE turns
into the homogeneous type.

3.1.1 The Call Case

We consider the European installment call option c(t, St; q) with the maturity T and the
exercise price K. The payoff at the maturity is max(ST − K, 0). The opportunity to
terminate the contract at any time t ∈ [0, T] makes the valuation of a continuous in-
stallment option an optimal stopping problem. In other words, we need to find such
points (t, St) that the termination of the option is optimal.

We consider the domain D = [0, T]× [0,+∞) and denote the stopping region and
the continuation region by S and C, respectively. Then, the stopping region is given by

S = {(t, St) ∈ D|c(t, st; q) = 0} ,

the optimal stopping time τ∗
c is defined by

τ∗
c = inf {u ∈ [t, T]|(u, Su) ∈ S} .

Being the complement of S in D, the continuation region C has the representation

C = {(t, St) ∈ D|c(t, St; q) > 0} .

The boundary separating the two regions S and C is called stopping boundary, and is
defined by

St = inf {St ∈ [0,+∞)|c(t, St; q) > 0} .
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The stopping boundary (St)t∈[0,T] is essentially the lower critical asset price below
which it is necessary to terminate the contract.

In the continuation region C, where S > St, the call value c(t, S; q) can be deter-
mined from the inhomogeneous Black-Scholes PDE

∂c

∂t
+ (r− δ)S

∂c

∂S
+

1

2
σ2S2

∂2c

∂S2
− rc = q,

supplied with the boundary conditions

lim
S→St+0

c(t, S; q) = 0, lim
S→St+0

∂c

∂S
= 0, lim

S→∞

∂c

∂S
< ∞,

and the terminal condition

c(T, S; q) = max(S− K, 0).

The following integral representation is the value function of the continuous install-
ment call option, cf. [21]:

c(t, St; q) = c(t, St)− q
∫ T

t
e−r(u−t)Φ(d−(St, Su, u− t))du, (3.5)

where

d±(a, b, τ) =
log (a/b) + (r− δ ± 1

2σ2)τ

σ
√

τ

and Φ(·) denotes the standard normal cumulative distribution function. In (3.5) c(t, St) =
c(t, St; 0) is the value of the European vanilla call option given by

c(t, St) = Ste
−δ(T−t)Φ(d+(St,K, T − t))− Ke−r(T−t)Φ(d−(St,K, T − t)).

From expression (3.5) we can easily see that the price of the continuous installment
option can be represented as the difference between the European vanilla call option
and the expected discounted value of the installment premiums along the optimal
stopping boundary. Actually, due to the boundary conditions, the optimal stopping
boundary (St)t∈[0,T] obeys the integral equation

c(t, St)− q
∫ T

t
e−r(u−t)Φ(d−(St, Su, u− t))du = 0.

3.1.2 The Put case

We proceed in this case analogously to the approach for the call case. Let us con-
sider the European installment put option p(t, St; q) with the maturity date T and
the exercise price K. Now St denotes the upper asset price above which the holder
has to terminate the contract. The stopping boundary (St)t∈[0,T] also divides D into
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2 regions: a continuation region C =
{

(t, St) ∈ [0, T]× [0, St)
}

and a stopping region

S =
{

(t, St) ∈ [0, T]× [St,∞)
}

.

In the continuation region C, where S < St, the value of the continuous installment
put option p(t, S; q) can be determined from the inhomogeneous Black-Scholes PDE

∂p

∂t
+ (r− δ)S

∂p

∂S
+

1

2
σ2S2

∂2p

∂S2
− rp = q,

supplied with the boundary conditions

lim
S→St−0

p(t, S; q) = 0, lim
S→St−0

∂p

∂S
= 0, lim

S→+0

∂p

∂S
< ∞,

and the terminal condition

p(T, S; q) = max(K− S, 0).

The value function of the continuous installment put option has the following integral
expression [21]:

p(t, St; q) = p(t, St)− q
∫ T

t
e−r(u−t)Φ(−d−(St, Su, u− t))du, (3.6)

where p(t, St) = p(t, St; 0) denotes the value of the European vanilla put option

p(t, St) = Ke−r(T−t)Φ(−d−(St,K, T − t))− Ste
−δ(T−t)Φ(−d+(St,K, T − t)).

In order to compute the values of these options and, hence for this purpose, the opti-
mal stopping boundaries, we need to apply a numerical approach in the sequel.

3.2 A Decomposition of the Total Premium

Griebsch et al. [18] proved that the premium sum of the continuous installment option
is equal to the respective European vanilla option plus the right to leave at any time
at a pre-determined rate. In other words, they observed that the total premium of
the continuous installment call option equals the European vanilla call option plus an
American put option on this European call with floating strike price

c(t, St; q) + Kt = c(t, St) + Pc(t, St; q), (3.7)

where Kt =
q
r (1− e−r(T−t)) is the discounted sum of the premiums not to be paid if

the contract is terminated at the moment t, and for the set St,T of stopping times with
values in [t, T] (a.s.)

Pc(t, St; q) = ess sups∈St,T E[e−r(s−t)max(Ks − c(s, Ss), 0)|Ft]

is the value of the American compound put option with the maturity at T written on
the European vanilla call option. Let us emphasize the fact that this decomposition is
needed to obtain the Greeks formulas for the continuous installment options.
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4 Methods

4.1 The Laplace Transform

Integral transforms are very actively used in various ways to solve problems of the
applied mathematics. Among other things Cohen [8] presents a couple of applica-
tions of the Laplace transform in a heat conduction in a rod, laser anemometry and,
particularly, exotic options valuing.

Definition 1 (Laplace transformation). If for a function f : R+ → C, f : t 7→ f (t) there
exists a σ ∈ R, such that the Laplace transform of the function f (t) defined by

L{ f }(λ) := F(λ) :=

∞
∫

0

f (t) e−λt dt, (4.1)

exists for all λ ∈ C with Reλ > σ, then F(λ) is the Laplace transformation of f .

Remark 1. If f : R+ → C, f : t 7→ f (t) is of exponential order, i.e. for some γ ∈ R

sup
t>0

| f (t)|
eγt

< ∞, (4.2)

then the Laplace transform (4.1) exists for all λ > γ and is infinitely differentiable with respect
to λ for λ > γ.

We will apply the Laplace transform (4.1) to the Black–Scholes PDE (with the two
variables time and asset price) thus reducing it to an ordinary differential equation
(ODE) with respect to the asset price. Note that in our work we will consider a slight
modification, the Laplace-Carson transformation.

Definition 2 (Laplace-Carson transformation). For the same assumptions as above the
Laplace-Carson transformation of the function f (t) is defined by

LC { f } (λ) := λ

∞
∫

0

f (t) e−λt dt. (4.3)

Let us note that the only reason for using (4.3) instead of (4.1) is that it generates
more simple formulas for the transformed values.

4.2 The Inverse Laplace Transform

For a function F(λ) = L{ f }(λ) in the transformed λ-space the inverse of the Laplace
transformation is given by the Bromwich integral

L−1 {F} (t) = f (t) =
1

2πi

∫ γ+i∞

γ−i∞
F(λ) eλt dλ, (4.4)
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where γ is a vertical contour in the complex plane chosen such that all singularities
of F(λ) are to the left of it. Note that according to Lerch’s theorem [8] the Laplace
transform is unique for every continuous function f (t).

Now if we have an ODE solution for the corresponding transformed PDE, and an
exact formula for determining L−1 {F} (t) we can easily produce a representation of
the solution for our PDE. However, it is well–known that the the numerical inverse
Laplace transform is an inherently ill-posed problem and thus requires special consid-
erations.

4.3 The Numerical Inverse Laplace Transform

4.3.1 The Post–Widder formula

Post and Widder [27, 33] presented the original function f (t) as a limit of some se-
quence, involving F(n), the n-th derivative of F(λ), on the real axis, which is more
convenient for the numerical computation of the inverse Laplace transform than try-
ing to compute the integral on the complex plane. The result is formulated in the
following theorem.

Theorem 1 (Post and Widder theorem [8])). If for a continuous function f (t) the integral

F(λ) =

∞
∫

0

e−λt f (t) dt,

converges for every λ > γ (sufficient for this is e.g. the growth condition (4.2)), then

f (t) = lim
n→∞

(−1)n

n!

(n

t

)n+1
F(n)

(n

t

)

, (4.5)

where F(n) denotes the n-th derivative of F(λ).

There are two major problems of using this formula (4.5) for the numerical in-
verse Laplace transform. The first problem is that differentiating F(λ) a large num-
ber of times can be a big obstacle if F(λ) is a complicated function, even if symbolic
Maple or Mathematica differentiating routines are used. Besides, it is well-known that
high order derivatives are sensible to the round-off errors causing thereby instabilities.
Hence, this approach seems impractical for most purposes. The second problem is that
the convergence to the limit is very slow. However, the convergence can be speeded
up using an appropriate extrapolation technics, cf. [1, 31]

We remark that this elementary inversion formula (4.5) yield, as a side effect, a
characterization of non-negative solutions that might be useful in option pricing:

Corollary 1 ( [6]). A function f satifying the growth condition (4.2) with Laplace transform
F(λ) is non-negative if and only if

(−1)nF(n)(λ) ≥ 0

for all n ≥ 0 and all λ > γ.
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4.3.2 The Gaver-Stehfest methods

Another inversion formula can also be obtained from the following arguments. Let

In(t) =

∞
∫

0

δn(t, u) f (u) du, (4.6)

where the functions δn(t, u) converge to the Dirac delta function δ(u− t) as n tends to
infinity, thus

lim
n→∞

In(t) = f (t).

The right-hand side of equation (4.6) can be presented as some function multiplied
by the n-th derivative of the Laplace transform of f (t). For example the Post-Widder
formula can be obtained from (4.6) letting

δn(t, u) =
(nu

t

)n e−nu/t

(n− 1)!
.

Using similar arguments Gaver [17] suggested to choose the functions

δn(t, u) =
(2n)!

n!(n− 1)!
a(1− e−au)ne−nau,

where a = ln(2/t), which leads to

f (t) = lim
n→∞

In(t) = lim
n→∞

(2n)!

n!(n− 1)!
a∆nF(na). (4.7)

It is similar to the Post-Widder formula, but instead of F(n)(λ) we have the n-th finite
difference ∆nF(λ). Still, the convergence of In to f(t) is too slow. But Gaver showed that
(In− f (t)) can be expanded asymptotically in powers of (1/n), and Stehfest improved
the Gaver’s method [29] and presented an algorithm based on approximating f (t) by
the following sum

a
N

∑
n=1

KnF(na),

where

Kn = (−1)n+N/2
min(n,N/2)

∑
k=[(n+1)/2]

kN/2(2k)!

(N/2− k)!k!(k− 1)!(n− k)!(2k− n)!
.

This resulting algorithm is called the Gaver-Stehfest algorithm.
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4.3.3 The Kryzhnyi method

In this work we also consider the method of inverse Laplace transform suggested by
Kryzhnyi [22]. It was never implemented before to valuate options. Kryzhnyi [22]
suggests that the algorithms, which are based on choosing different delta convergent
sequences can be compared by analyzing the ’focusing’ abilities of the numerical and
the exact inverse transforms of eλt. Kryzhnyi considered

FR(γ + λ) =

∞
∫

0

F(γ + λu) δR(u− 1) du, (4.8)

where λ, γ are complex parameters and contructed series approximating the delta
function δR(u− 1) → δ(u− 1) for R → ∞ and thus FR(γ + λ) → F(γ + λ) as R → ∞.
Note that the delta series can be selected such that the smoothing transformation (4.8)
converges [22]. Let us note that this transformation (4.8) is used to obtain, using the
Cauchy-Goursat Theorem, a formula for the analytic continuation by rotation allow-
ing us to invert a real-valued Laplace transform by computing the Bromwich integral
(4.4) in the complex plane.

Focusing abilities means how does the peakness of a delta approximating function
is kept while increasing t. Of course this function flatterns with the time, it happens
because the kernel of the integral (4.6) satisfies a scaling property.

Focusing on this qualitative characteristics Kryzhnyi developed another algorithm
of approximating the original function from its Laplace transform. Firstly, he applied
the Mellin transform to equation (4.1) (see Appendix for definitions) and got a solu-
tion in terms of the Mellin transform. which can be inverted after multiplying it by a
suitable chosen regularization factor

δR(u− 1) =
sin(R ln u)

π(u− 1)
.

The result can be expressed by two equations

fR =

∞
∫

0

f (tu)

√
u

u+ 1

sin(R ln u)

u− 1
du,

fR =

∞
∫

0

F(u)Π(R, tu) du,

where γ is a regularization parameter and R(γ) → ∞, while γ → 0.
Here, instead of some number N, after which we terminate the computation we

have a value of some function R in point γ.
After some generalization we have

Π(R, u) =
1

πϕ(1)
L−1

[

sin(R ln u)

u− 1
ϕ(u)

]

,
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where ϕ(u) is an arbitrary continuous function ϕ(1) 6= 0. From this equation follows
that various kernels can be constructed in this way by choosing the function ϕ(u).
However, we can choose ϕ(u) in such a way that the kernel can be expressed analyti-
cally using known transforms from tables.

Actually this approach by Kryzhnyi will be more tunable for different types of
problems, because we can vary the regularization parameter γ and choose different
functions ϕ(u). There are some limitations on R as pointed out by Kryzhnyi [22]:

• limR→∞ Π(R, x) does not exist,

• for the fixed precision arithmetic the value of parameter R > 0 cannot be in-
creased infinitely without loss of accuracy, which is explained by the next limi-
tation,

• the optimal value of the parameter R is close to a linear function of number n of
correct digits in the input data: n/2 < Ropt < n.

Nevertheless, the technic of choosing these parameters R and γ is rather complicated.
Furthermore, the approach of Kryzhnyi allows the see all the methods for the

Laplace inversion in a unified seeting, e.g. the method of Gaver (4.7) can be obtained
by choosing the regularization

δn(u, 1) =
(2n)! ln 2

n!(n− 1)!
(2−u − 2−2u)n.

5 The analytical expressions in transformed variables

5.1 Transformed option values

Next we present Kimura’s results [21] in transformed variables from equation (3.4).
For convenience the direction of time is reverted by the change of the variable τ =
T − t and defining c̃(τ, S; q) = c(T − τ, S; q) = c(t, St; q) and S̃τ = ST−τ = St for
τ ≥ 0. The Laplace-Carson transform of this variables follows from Definition 2

c∗(λ, S; q) = LC {c̃(τ, S; q)} ≡ λ

∞
∫

0

e−λτ c̃(τ, S; q) dτ,

S∗(λ) = LC
{

S̃(τ; q)
}

≡ λ

∞
∫

0

e−λτ S̃τ dτ.

Again, the Laplace-Carson transform is preferred to the Laplace transform because the
constant values do not change the transformation and the Laplace-Carson approach
generates simpler formulas for our problem. Applying the Laplace-Carson transform
to the inhomogeneous PDE (3.4) we get an inhomogeneous ODE of the same order.
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For solving this type of ODE we need to solve the corresponding homogeneous ODE,
so it makes sense first to consider the transformation of the original Black-Scholes PDE
for the vanilla options, where the parameter q is absent.

Lemma 1. Let c∗(λ, S) = LC {c̃(τ, S)} define a Laplace-Carson transform of a value of a
vanilla call option with the reversed time. Then

c∗(λ, S) =



















K

θ1 − θ2

λ

λ + δ

(

1− r− δ

λ + r
θ2

)(

S

K

)θ1

, if S < K,

K

θ1 − θ2

λ

λ + δ

(

1− r− δ

λ + r
θ2

)(

S

K

)θ1

+
λS

λ + δ
− λK

λ + r
, if S ≥ K,

(5.1)

where θ1 and θ2 depend on λ and are real roots of the quadratic equation

1

2
σ2θ2 +

(

r− δ − 1

2
σ2

)

θ − (λ + r) = 0. (5.2)

It can be seen that when putting θ = 1 and θ = 0 we get negative values on the left hand side
of equation (5.2). This means that both roots are outside the interval (0, 1), so we numerate it
in such a way that θ1 > 1 and θ2 < 0.

Proof: The original proof can be found in [21]. After changing variables the Black-
Scholes PDE reads

− ∂c̃

∂τ
+ (r− δ)Sτ

∂c̃

∂S
+

1

2
σ2S2τ

∂2c̃

∂S2
− rc̃ = 0, S > 0, (5.3)

supplied with the boundary conditions

lim
S→+0

c̃(t, S) = 0, lim
S→∞

dc̃

dS
< ∞,

and the initial condition
c̃(0, S) = (S− K)+.

After transforming equation (5.3) we obtain a corresponding ODE

σ2

2
S2

d2c∗

dS2
+ (r− δ)S

dc∗

dS
− (λ + r)c∗ + λ(S− K)+ = 0, S > 0, (5.4)

with the boundary conditions

lim
S→+0

c∗(λ, S) = 0, lim
S→∞

dc∗

dS
< ∞.

Equation (5.4) is a linear homogeneous ODE of Euler type and can be reduced to a
linear ODE with constant coefficients by substituting S = ey (Euler transformation)
and solved easily yielding (5.1).
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Theorem 2 ( [21]). If S > S∗, then

c∗(λ, S; q) = c∗(λ, S) +
q

λ + r

(

θ1
θ1 − θ2

)θ2 ( S

S∗

)

− q

λ + r
(5.5)

and c∗(λ, S; q) = 0 otherwise. The stopping boundary is given by

S∗(λ) =
[

2(λ + δ)q

λ(1− θ2)Kσ2

]θ−1
1

K.

It is straightforward that the solution for this equation is a sum of solutions for the
homogeneous equation and a particular solution of the inhomogeneous equation. It
can be easily seen that the second part of the formula for c∗(λ, S; q), without c∗(λ, S)
is a solution for the corresponding inhomogeneous ODE.

Additionally, the same approach can be used for proceeding the solution for the
put case. The result can be formulated by the following theorem.

Theorem 3 ( [21]). If S < S
∗
, then

p∗(λ, S; q) = p∗(λ, S) +
q

λ + r

θ2
θ1 − θ2

(

S

S
∗

)θ1

− q

λ + r
, (5.6)

and p∗(λ, S; q) = 0 otherwise. With

p∗(λ, S) =



















K

θ1 − θ2

λ

λ + δ

(

1− r− δ

λ + r
θ2

)(

S

K

)θ1

, if S ≥ K,

K

θ1 − θ2

λ

λ + δ

(

1− r− δ

λ + r
θ2

)(

S

K

)θ1

+
λS

λ + δ
− λK

λ + r
, if S < K.

(5.7)

The stopping boundary is given by

S
∗
(λ) =

[

2(λ + δ)q

λ(θ1 − 1)Kσ2

]−θ1

K.

5.2 Transformed Greeks

In Section 3.2 we mentioned the decomposition of the total premium of the install-
ment option. This decomposition of the option in a vanilla call option and an Ameri-
can compound option was shown by Kimura [21] to be very valuable when trying to
approximate the installment options Greeks. We have

c(t, St; q) + Kt = c(t, St) + Pc(t, St; q),

with
Kt =

q

r
(1− e−r(T−t)).
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Using the integral representation (3.5) we obtain

Kt − Pc(t, St; q) = q

T
∫

t

e−r(u−t)Φ(d−(St, Su, u− t)) du.

Substituting Φ(x) = 1− Φ(−x) we get an integral representation for the American
compound option

Pc(t, St; q) = q

T
∫

t

e−r(u−t)Φ(−d−(St, Su, u− t)) du.

Due to the linearity of the Laplace-Carson transform we get for the time-reversed val-
ues

LC
{

c̃(t, S̃t; q)
}

+ LC
{

K̃t

}

= LC
{

c̃(t, S̃t)
}

+ LC
{

P̃c(τ, S̃; q)
}

.

From Theorem 2 we see that

P∗
c (λ, St; q)− K∗

t =
q

λ + r

θ1
θ1 − θ2

(

S

S
∗

)θ2

− q

λ + r
. (5.8)

Here, the inverse Laplace-Carson transform of the term
q

λ+r can be computed analyti-
cally

LC−1

{

q

λ + r

}

= q

τ
∫

0

e−ru du =
q

r
(1− e−r(T−t)) = Kt,

thus for the transformed value of an American put on a call we have

P∗
c (λ, St; q) =

q

λ + r

θ1
θ1 − θ2

(

S

S
∗

)θ2

. (5.9)

Hence the Greeks of the continuous installment call option can be expressed by Greeks
of the vanilla call andGreeks of the American put on a vanilla call with a floating strike
price Kt:

∆c(t,S;q) =
∂c

∂S
= ∆ct,S + LC−1

{

∆P∗
c

}

,

Γc(t,S;q) =
∂2c

∂S2
= Γct,S + LC−1

{

ΓP∗
c

}

,

Θc(t,S;q) = − ∂c

∂τ
= Θct,S + qe−rτLC−1

{

ΘP∗
c

}

.

Now using (5.9) we find explicit formulas for the transformed values of American
compound option greeks,
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∆P∗
c
= LC

{

∂P∗
c

∂S

}

=
∂P∗

c

∂S
,

ΓP∗
c
= LC

{

∂2P∗
c

∂S2

}

= −∂2P∗
c

∂S2
,

ΘP∗
c
= −LC

{

∂P∗
c

∂τ

}

= −λ (P∗
c (λ, S; q)− P∗

c (0, S; q))

= −λP∗
c (λ, S; q).

Using the same arguments for the installment put case we obtain

∆p(t,S;q) =
∂p

∂S
= ∆pt,S + LC−1

{

∆P∗
p

}

,

Γp(t,S;q) =
∂2p

∂S2
= Γpt,S + LC−1

{

ΓP∗
p

}

,

Θp(t,S;q) = −∂p

∂τ
= Θpt,S + qe−rτLC−1

{

ΘP∗
p

}

.

Correspondingly, we have

∆P∗
p
= LC

{

∂P∗
p

∂S

}

=
∂P∗

p

∂S
,

ΓP∗
p
= LC

{

∂2P∗
p

∂S2

}

= −
∂2P∗

p

∂S2
,

ΘP∗
p
= −LC

{

∂P∗
p

∂τ

}

= −λ
(

P∗
p (λ, S; q)− P∗

p (0, S; q)
)

= −λP∗
p (λ, S; q).

6 Results

We developed a set of Matlab functions for valuing continuous installment options
and its Greeks via the inverse Laplace transform methods. The algorithm is based
on results of Kimura [21], in which the author uses two algorithms for the inverse
Laplace transform: the Euler summation [26] and the Gaver-Stehfest method. In our
case we use the Euler, the Gaver-Stehfest and also the Kryzhnyi algorithms, described
in Section 4.

Our algorithm of the continuous installment option valuing consists of two nu-
merical procedures. It is finding the stopping boundary and the numerical integration
of the integral in (3.5) or (3.6). The difference in comparison to Kimura’s algorithm
is that we use the standard quadrature Matlab routine quad, which uses the Simpson
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Figure 2: Stopping boundaries for put and call with T = 1, t = 0, δ = 0.03, r = 0.02.

formula for the integration and determines integration nodes automatically and then
evaluates the stopping boundary in each node.

The results of approximation of the stopping boundaries for the put and the call
cases and its sensitivity to the installment rate q and the dividend yield δ are presented
in Figure 2 and Figure 3. From the Figures it can be seen that in dependence on pa-
rameters q and δ, the stopping boundary can be either a monotonic or non-monotonic
function, unlike the exercise boundaries of the American style options. This non-
monotonic behavior also appears in some types of Asian options and draws great
interest of researchers.

The values of the continuous installment options obtained by our Matlab pro-
gramme are given in the last three columns of Tables 1 and 2. The results of the
developed Euler method are compared to the results taken from [21]. Kimura also
notes that every value obtained by the Gaver-Stehfest algorithm is smaller than the
values obtained by the Euler summation. In his results, these values differ signifi-
cantly, which caused the author to mistrust to the Gaver-Stehfest algorithm. But as for
our results, it can be seen from the tables that all three algorithms produce very close
values. In Figure 4 you can see a 3D plot of the call and the put values in dependence
on time and asset price.

The values for different Greeks are presented in Figures 5, 6, 7. Actually not all
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Figure 3: Stopping boundaries for the put and the call with T = 1, t = 0, q = 10,
r = 0.02.

values for Greeks presented here make sense. We can only evaluate Greeks if we are
above the stopping boundary in the call case and below a stopping boundary in the
put case. In Figure 6 you can see an unexpected blow up of the put gamma in case
of q = 15. In the figure black markers define the value of the stopping boundary in
each case. So this unexpected behavior has no mean for us, because it happens after
reaching the stopping boundary.

Kimura [21] noticed that the Gaver-Stehfest method behaves badly for valuing
Greeks when the position is out of the money, but we did not notice that. The results
for both used inverse methods look quite reasonable in the whole region where the
stopping boundary is not reached, even for a time very close to expiration.

Trying to compare the Gaver-Stehfest and the Kryzhnyi algorithmswe used a com-
parison method, proposed by Kryzhnyi [22]. The method is based on inverting the
function eλx, which analytical inverse transform is the delta function. The better the
algorithm approximates the delta function while inverting eλx and preserves its peak-
ness while increasing t, the better it will approximate other functions too. In Figure 8
you can see the results of the reconstructing the delta function. The Kryzhnyi method
shows more peaked values and more slowly flatterns with time, therefore Kryzhnyi
method reconstructs the function much better in the area of a peak.
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q S Euler-based (Kimura) Euler-based Gaver-Stehfest Kryzhnyi

1 95 3.7071 3.7072 3.7072 3.7069
105 8.3994 8.3995 8.3995 8.3993
115 14.8530 14.8531 14.8531 14.8531

3 95 2.2280 2.2283 2.2283 2.2266
105 6.6385 6.6388 6.6388 6.6379
115 12.9687 12.9690 12.9690 12.9686

6 95 0.6754 0.6761 0.6761 0.6703
105 4.2745 4.2752 4.2752 4.2723
115 10.2533 10.2540 10.2540 10.2527

Table 1: Values of call with t = 0, T = 1, K = 100, r = 0.03, δ = 0.05, σ = 0.2 computed
by different algorithms.

q S Euler-based (Kimura) Euler-based Gaver-Stehfest Kryzhnyi

1 85 16.9438 16.9439 16.9439 16.9439
95 10.3046 10.3047 10.3047 10.3047
105 5.5703 5.5703 5.5704 5.5705

3 85 15.0001 15.0007 15.0008 15.0009
95 8.4283 8.4285 8.4286 8.4289
105 3.8486 3.8489 3.8489 3.8497

6 85 12.1253 12.1259 12.1259 12.1263
95 5.7647 5.7652 5.7652 5.7666
105 1.7010 1.7018 1.7018 1.7051

Table 2: Values of put with t = 0, T = 1, K = 100, r = 0.03, δ = 0.05, σ = 0.2 computed
by different algorithms.

When reconstructing monotonic functions from its Laplace transform both Kryzh-
nyi and the Gaver-Stehfest methods show good results, but when dealing with a
damped oscillating function it occurs that the Gaver-Stehfest algorithm cannot com-
pete with the Kryzhnyi method. In Figure 9we see that the curve, produced by the Ste-
hfest algorithm flatterns much faster than the one produced by the Kryzhnyi method.
In our case it is difficult to say which of the methods is more precise because we are
reconstructing the non-oscillating functions, but as for computational costs it is more
convenient to use the Gaver-Stehfest algorithm.
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Figure 4: The option value for the put and the call with T = 1, t = 0, δ = 0.03, r = 0.02,
q = 10 and stopping boundaries.
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Figure 5: The Delta value for the put and the call, in dependence on q where q = 6, 9,
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Figure 6: The Gamma value for the put and the call, in dependence on q where q = 5,
10, 15 with T = 1, t = 0, r = 0.02, δ = 0.04.
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Figure 7: The Theta value for the put and the call, in dependence on δ where δ = 0.08,
0.04, 0.02 with T = 1, t = 0, r = 0.02, δ = 0.04.
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Figure 9: The reconstruction of the damped oscillating function by Stehfest and Kryzh-
nyi algorithms. The dashed line – the exact values, the red line – values obtained by
the Gaver-Stehfest method, the blue line – values obtained by the Kryzhnyi method.
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7 Conclusions

We considered the valuation of the European continuous installment options, where
we faced the stopping boundary problem. To simplify the stopping boundary expres-
sion we used the Laplace-Carson transformation as it was proposed by Kimura [21].
The computation of the transformed values is followed by the inverse Laplace trans-
formation procedure.

Wemainly consider twomethods of the inverse Laplace transformation: the Gaver-
Stehfest method that was used by Kimura to valuate the continuous installment op-
tions and the Kryzhnyi method that was never applied before for the valuation of
options. Eventually, we developed the program code for Matlab to compute the stop-
ping boundaries, values and Greeks of the European continuous installment options,
implementing above methods.

Contrary to Kimura’s conclusions, who relies on the Euler method only as the
most precise one, our numerical computation shows that all three methods – the Euler,
the Gaver-Stehfest and the Kryzhnyi – produce very close results. We conclude that
there is no reason to mistrust any of them. They all can be used to value continuous
installment options, however considering the computational costs we would rather
suggest to use the Euler method as it is the fastest one of the considered methods.

In our future work we will consider more alternative algorithms for the numerical
inverse Laplace transform, like e.g. a modification of the original (Gaver-Stehfest) al-
gorithm, the BigNumber-Stehfest algorithm [1] or the Fourier Series Expansionmethod
[9, 15] with its quotient-difference acceleration algorithm by De Hoog et al. [19] (the
later method is available as Matlab routine invlap). Each of these methods has the
ability to invert properly certain classes of Laplace space functions, e.g. the Fourier
Series method is suitable for the long time integration of dissipative equations and
thus we expect that it is also a good candidate in our application to the parabolic
Black-Scholes equation.

Moreover, based on the numerical inverse Mellin transform method of Migneron
and Narayanan [25] we will derive on a fully discrete way an efficient three term re-
cursion algorithm to compute numerically the inverse Mellin transform, hereby using
the ideas proposed by Ehrhardt in [16]. The resulting method will be applied to op-
tion pricing problems, where the Mellin transformwas already employed by Ballester,
Company and Jódar [3].
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A Appendix: The Mellin Transformation

Definition 3 (Mellin-transformation [28]). The Mellin-transformation of a local inte-
grable function f (t) of (0,∞) is defined as follows

M[ f ;λ] = f̂ (λ) =
∫ ∞

0
f (t) tλ−1 dt, (A.1)

if the integral converges.

We remark that this integral converges absolutely, if for each ǫ > 0

f (t) =

{

O(t−a−ǫ) t → 0+

O(t−b+ǫ) t → ∞

holds with a < b. I.e. the Mellin-transformation (A.1) exists on a vertical strip in the λ-
plane, where the bounds results from the asymptotic behaviour of f (t) for t → 0+ and
t → ∞. The Mellin transform defines an analytic function on the strip a < Re(λ) < b.

The Mellin-transformation can be derived from the Laplace-transformation

L[g;λ] =
∫ +∞

−∞
g(τ) e−λτ dτ

with the aid of the transformation of variables τ := − ln t. Here we set f (t) ≡
g(− log t). Using the same transformation of variables one arrives from the Laplace
inversion at the inverse Mellin transformation.

Definition 4 (inverse Mellin-transformation).

M−1[ f̂ (λ); t] = f (t) =
1

2πi

∫ c+i∞

c−i∞
t−λ f̂ (λ) dλ, (A.2)

for a < c < b. (A.2) exists for all t ≥ 0, where f (t) is continuous. For a proof we refer to [28].
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[18] S. Griebsch, C. Kühn and U. Wystup, Instalment Options: a Closed-Form Solution and
the Limiting Case, Mathematical Control Theory and Finance, Springer, Heidelberg,
2008, pp. 211-229.

[19] F.R. de Hoog, J.H. Knight and A.N. Stokes, An improvedmethod for numerical inversion
of Laplace transforms, SIAM J. Sci. Stat. Comp, 3 (1982), 357-366.

[20] F. Karsenty and J. Sikorav, Installment plan, Over the Rainbow, Risk magazin (1993),
36-40.

[21] T. Kimura, Valuing Continuous-Installment Options, European J. Oper. Res, 201 (2010),
222-230.

[22] V. Kryzhnyi, Numerical inversion of the Laplace transform: analysis via regularized an-
alytic continuation, Inverse Problems, 22 (2006), 579-597.

[23] V. Kryzhnyi, Freeware DLL for Matlab at http://www.laplacetransform.org/
[24] C.D. MacRae, The Employee Stock Option: An Installment Option, 2008, Available at

SSRN: http://ssrn.com/abstract=1286928.
[25] R.Migneron and K.S.S. Narayanan, Numerical Inversion ofMellinMoments and Laplace

Transforms, Comput. Phys. Commun, 49 (1988), 457-463.
[26] C. O’Cinneide, Euler summation for Fourier series and Laplace transform inversion,

Stochastic Models, 13 (1997), 315-337.
[27] E.L. Post, Generalized differentiation, Trans. Am. Math. Soc, 32 (1930), 723-781.
[28] I.H. Sneddon, The Use of Integral Transforms, McGraw-Hill Book Company, 1972.
[29] H. Stehfest, Algorithm 368: Numerical inversion of Laplace Transform, Comm. ACM, 13

(1970), 47-49.
[30] L. Thomassen and M. Van Wouwe, The Influence of a Stochastic Interest Rate on the n-



Efficient Numerical Valuation of Continuous Installment Options 27

fold Compound option, Statistics for Industry and Technology, Springer-Verlag, Berlin,
2004, pp. 343-353.
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