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Nonlocal Boundary Conditions for Higher—Order Parabolic Equations
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This work deals with the efficient numerical solution of theot-dimensional one—way Helmholtz equation posed on an
unbounded domain. In this case one has to introduce artificiandary conditions to confine the computational domain.
Here we construct with th€—transformation so—called discrete transparent bounaarglitions for higher—order parabolic
equations schemes. These methods aré FRarabolic” approximations of the one—way Helmholtz emumand frequently
used in integrated optics and (underwater) acoustics.
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1 Introduction

In this work we study a numerical method for two—dimensiatallar wave propagation problems which are usually modeled
by the Helmholtz equation posed on an unbounded domai? ifTypical applications are integrated optics, seismolagy a
underwater acoustics. Generally the full Helmholtz equmain R? is solved as a boundary value problem with radiation
boundary conditions. However, often one can distinguistammropagation direction and factorize the Helmholtz ¢igna

if the wavenumber is assumed to be constant. Different oag-approximations yield various so—callBdam Propagation
Methods (BPM)n optics orParabolic Equation (PE)nethods in (underwater and aero) acoustics. In the sequellivgse a
notation common to the application in underwater acoushievertheless our approach is generally applicable tonaH-way
wave propagation problems in 2D.

In underwater acousticene wants to calculate the underwater acoustic preggure) emerging from a time—harmonic
point source of time dependeneep(—i2x ft) located in the water dt;, 0). Here,r > 0 denotes the radial range variable,
0 < z < z, the depth variable and denotes the (usually low) frequency of the emitted sounde Whter surface is at
z = 0, and the (horizontal) sea bottomat= z,. We denote the local sound speeddy, ), the density by(z,r), and the
attenuation byx(z,7) > 0. n(z,7) = co/c(z,r) is the refractive index, with a reference sound spged

We start our considerations with thielmholtz equatioffior a variable—density medium and a time—harmonic pointe®u

19 (.0p O (0PN L ane .
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with the refractive indexN(z,r) = n(z,r) + ia(z,r)/ko, and the reference wave number = 27 f/cy. In the farfield
approximation(kor > 1) theoutgoing acoustic field(z, ) = vkor p(z, r) e~ **o" satisfies thene—way Helmholtz equation

Y =iko(-1+V1—L)y, r>0 with L=—k;?p0.(p '0.)+V(zn). (2)

Here,/1 — L is a pseudo—differential operator, ahdhe Schibdinger operatomwith thepotential V (z,r) = 1 — N?(z, 7).

2 The Higher—Order Parabolic Equations

An efficient solution method for (2) atdigher—order PEsthesePact “Parabolic” approximationsof the one—way Helmholtz
equation (2) formally approximate the pseudo—differdmterator\/1 — L by a (¢, m)—Pae approximant:

Py(L) . Po — P1A + paA? — .+ peAt Py(N)
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This approach yields a PDE that is easier to discretize thapseudo—differential equation (2).

In this paper we shall focus on adequate boundary condif®@s) at the sea—bottom for finite difference discretizagiof
equations of the form (3). At the free water surface one lgealploys a Dirichlet (“pressure release”) BG(z = 0,r) = 0.
At the sea bottom the wave propagation in water has to be eduplthe wave propagation in the sediments of the bottom.
The bottom will be modeled as the homogeneous half-spaa@nreg> z;, with constant parameters, p;,, anday,.

First we discretize in range using anplicit midpointdiscretization with)™ (z2) ~ ¥ (z, r,,), wherer,, = nk, (k = Ar):

(14 340 VT ) 12) = (1= k(-T2 nzo “

by = iko
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Now using the Pa&lapproximant (3) of the square root operator, (4) can béemrids thesemi—discrete evolution equation

YL(z) = ?Eg o), UL = (17 %k)@m(L) + %m@), deg(U%) = p = max(£,m). (5)

To prevent high powers df we consider anultiplicative splittingand write (5) (involving only first powers df) in the form:

p
n+1 _ Cy+ 1-— alL n >
W) = E L V() nzo (6)

Finally, to solve (6) numerically it remains to discretihetoperatol. w.r.t. the depth variable (denoted byL;,, h = Az):

n n

L n __ k72 DO 71D0 n Viam DO n o __ ’L/)j'*'% ,(/)-j_% n n = ih 7
h’(/}j__() Py %(Pj %)d’j‘" jwja %¢j—T> ij¢(Zj)a zj = Jn. (7)

3 The Discrete Transparent Boundary Conditions

The discrete transparent boundary conditio@3TBCs) are obtained by &—transformation of the fully discrete numerical
scheme in the (homogeneous) fluid bottom region J. We make the basic assumptions that the initial ddtais confined
in the computational domain, i.eapp ¢! C (0, 2;,) and that all physical parameters are constant forz,: p = py, V = V.

To derive the DTBC we consider (6) with replaced byL; from (7) in the exterior domainj(> J) and apply theZ—
transformationZ{¢? } = ¢;(() := > (T}, ¢ € C,[¢] > Ry, to the exterior scheme and obtain a discrete system of
p second order difference equatious;(, A, denote the standard forward and backward differences wéfisizen):

and the matriceX, Y € CP*P. By introducingéj = Agﬂzj we rewrite (8) as a system of 2p first order difference eqnatio

0 X ¥, Y 0\ (%) P, 1 ¥, ‘
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We split the Jordan fornd = diag(J4,J2) of A='B + I'in (9): J; € CP*P containing the Jordan blocks corresponding to

solutions decaying fof — oo andJ, € CP*? those which increase. With the matrix of left eigenveci®rs = (g; Ej)

(s A ) n (31 0\ (P, P, (¢, Ji 0\ [Py, +PoE.
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holds and théransformed DTBGeadsPsv ; + P,£& ; = 0. For a regulaiP, the transformed DTBC can be written iri-
chlet-to-Neumann formy; ¢ ; = D4 ;, whereD = —(P,)~'Pj3. Finally, an inverseZ—transformation yields thBTBC

n 2m
T -yt DO =Y "Dy DR = 271 {D(2)} = %T /ﬁ(mw)eiw dep. (10)
=1 0

where the convolution coefficienf3™ given by the above Cauchy integral formula.

Remark 3.1 Let us remark that similar approaches are by Mikhin [2] aseémi—discrete TBBy Schmidt et al. [3].

We emphasize the fact that, due to its construction, our DB yields exactly (up to round—off errors and evanescent
errors in the numerical inversé—transformation) the numerical solution on the unboundaain restricted to the finite
computational interval. Several numerical examples [Higher—order PE approximants to the one—way Helmholtz temua
(including the split—step P&dalgorithm of Collins) in the application to optics and urvdgter acoustics illustrates the superior
numerical results when using the DTBC (10). We refer theeesal[1] for a much more detailed version of this paper.
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