
PAMM header will be provided by the publisher

Nonlocal Boundary Conditions for Higher–Order Parabolic Equations
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This work deals with the efficient numerical solution of the two–dimensional one–way Helmholtz equation posed on an
unbounded domain. In this case one has to introduce artificial boundary conditions to confine the computational domain.
Here we construct with theZ–transformation so–called discrete transparent boundaryconditions for higher–order parabolic
equations schemes. These methods are Padé “Parabolic” approximations of the one–way Helmholtz equation and frequently
used in integrated optics and (underwater) acoustics.
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1 Introduction

In this work we study a numerical method for two–dimensionalscalar wave propagation problems which are usually modeled
by the Helmholtz equation posed on an unbounded domain inR2. Typical applications are integrated optics, seismology and
underwater acoustics. Generally the full Helmholtz equation in R2 is solved as a boundary value problem with radiation
boundary conditions. However, often one can distinguish a main propagation direction and factorize the Helmholtz equation
if the wavenumber is assumed to be constant. Different one–way approximations yield various so–calledBeam Propagation
Methods (BPM)in optics orParabolic Equation (PE)methods in (underwater and aero) acoustics. In the sequel wewill use a
notation common to the application in underwater acoustics. Nevertheless our approach is generally applicable to all one–way
wave propagation problems in 2D.

In underwater acousticsone wants to calculate the underwater acoustic pressurep(z, r) emerging from a time–harmonic
point source of time dependenceexp(−i2πft) located in the water at(zs, 0). Here,r > 0 denotes the radial range variable,
0 < z < zb the depth variable andf denotes the (usually low) frequency of the emitted sound. The water surface is at
z = 0, and the (horizontal) sea bottom atz = zb. We denote the local sound speed byc(z, r), the density byρ(z, r), and the
attenuation byα(z, r) ≥ 0. n(z, r) = c0/c(z, r) is the refractive index, with a reference sound speedc0.

We start our considerations with theHelmholtz equationfor a variable–density medium and a time–harmonic point source
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with the refractive indexN(z, r) = n(z, r) + iα(z, r)/k0, and the reference wave numberk0 = 2πf/c0. In the far–field
approximation(k0r≫1) theoutgoing acoustic fieldψ(z, r) =

√
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−ik0r satisfies theone–way Helmholtz equation:
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Here,
√

1 − L is a pseudo–differential operator, andL theSchr̈odinger operatorwith thepotentialV (z, r) = 1 −N2(z, r).

2 The Higher–Order Parabolic Equations

An efficient solution method for (2) areHigher–order PEs; thesePad́e “Parabolic” approximationsof the one–way Helmholtz
equation (2) formally approximate the pseudo–differential operator
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1 − L by a(ℓ,m)–Pad́e approximant:
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This approach yields a PDE that is easier to discretize than the pseudo–differential equation (2).
In this paper we shall focus on adequate boundary conditions(BCs) at the sea–bottom for finite difference discretizations of

equations of the form (3). At the free water surface one usually employs a Dirichlet (“pressure release”) BC:ψ(z = 0, r) = 0.
At the sea bottom the wave propagation in water has to be coupled to the wave propagation in the sediments of the bottom.
The bottom will be modeled as the homogeneous half–space region z > zb with constant parameterscb, ρb, andαb.

First we discretize in range using animplicit midpointdiscretization withψn(z) ∼ ψ(z, rn), wherern = nk, (k = ∆r):
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Now using the Pad́e approximant (3) of the square root operator, (4) can be written as thesemi–discrete evolution equation
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To prevent high powers ofL we consider amultiplicative splittingand write (5) (involving only first powers ofL) in the form:

ψn+1(z) =
cU+

cU−

p∏

l=1

1 − alL

1 − blL
ψn(z), n ≥ 0. (6)

Finally, to solve (6) numerically it remains to discretize the operatorL w.r.t. the depth variablez (denoted byLh, h = ∆z):

Lhψ
n
j = −k−2

0 ρjD
0
h
2

(ρ−1

j D0
h
2

)ψn
j + V n

j ψ
n
j , D0

h
2

ψn
j =

ψn
j+ 1

2

− ψn
j− 1

2

h
, ψn

j ∼ ψn(zj), zj = jh. (7)

3 The Discrete Transparent Boundary Conditions

The discrete transparent boundary conditions(DTBCs) are obtained by aZ–transformation of the fully discrete numerical
scheme in the (homogeneous) fluid bottom regionj ≥ J . We make the basic assumptions that the initial dataψI , is confined
in the computational domain, i.e.suppψI ⊂ (0, zb) and that all physical parameters are constant forz > zb: ρ = ρb, V = Vb.

To derive the DTBC we consider (6) withL replaced byLh from (7) in the exterior domain (j ≥ J) and apply theZ–
transformationZ{ϕn
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, to the exterior scheme and obtain a discrete system of
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and the matricesX, Y ∈ C
p×p. By introducingξ̂j := ∆−

h ψ̂j we rewrite (8) as a system of 2p first order difference equations
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We split the Jordan formJ = diag(J1,J2) of A
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holds and thetransformed DTBCreadsP3ψ̂J + P4ξ̂J = 0. For a regularP4 the transformed DTBC can be written inDiri-
chlet-to-Neumann form∆−

h ψ̂J = D̂ψ̂J , whereD̂ = −(P4)
−1

P3. Finally, an inverseZ–transformation yields theDTBC
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where the convolution coefficientsDn given by the above Cauchy integral formula.

Remark 3.1 Let us remark that similar approaches are by Mikhin [2] and asemi–discrete TBCby Schmidt et al. [3].

We emphasize the fact that, due to its construction, our DTBC(10) yields exactly (up to round–off errors and evanescent
errors in the numerical inverseZ–transformation) the numerical solution on the unbounded domain restricted to the finite
computational interval. Several numerical examples [1] ofhigher–order PE approximants to the one–way Helmholtz equation
(including the split–step Padé algorithm of Collins) in the application to optics and underwater acoustics illustrates the superior
numerical results when using the DTBC (10). We refer the reader to [1] for a much more detailed version of this paper.
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2875 (2004).

[3] F. Schmidt, T. Friese and D. Yevick, Transparent Boundary Conditions for Split–Step Padé Approximations of the One–Way Helmholtz
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