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1 Introdu
tionPeriodi
 stru
ture problems largely exist in the s
ien
e and engineering and of-ten they are modeled by partial di�erential equations with periodi
 
oe�
ientsand/or periodi
 geometries. In order to numeri
ally solve these equations ef-�
iently one usually 
on�nes the spatial domain to a bounded 
omputationaldomain (in a neighborhood of the region of physi
al interest). The usual strat-egy is to introdu
e so�
alled arti�
ial boundaries and impose adequate bound-ary 
onditions. For wave-like equations, the ideal boundary 
onditions shouldnot only lead to well�posed problems, but also mimi
 the perfe
t absorp-tion of waves traveling out of the 
omputational domain through the arti�
ialboundaries. Right in this 
ontext, these boundary 
onditions are usually 
alledarti�
ial (or transparent, non-re�e
ting in the same spirit) in the literature.The interested reader is referred to a 
ouple of review papers [2℄, [11℄, [12℄,[24℄ on this resear
h topi
.Arti�
ial boundary 
onditions (ABCs) for the S
hrödinger equation and re-lated problems has been a hot resear
h topi
 for many years [2℄. Sin
e the�rst exa
t ABC for the S
hrödinger equation was derived by Papadakis [16℄25 years ago, many developments have been made on the designing and imple-menting of various ABCs, also for multi-dimensional and nonlinear problems.However, the question of exa
t ABCs for periodi
 stru
tures still remainedopen, and it is a very up-to-date resear
h topi
, 
f. the 
urrent papers [8℄,[9℄, [10℄, [13℄, [21℄, [22℄, [23℄, [27℄. These kind of new ABCs 
an be appliedin many physi
al problems, e.g. in opti
al appli
ations from mi
ro and nano�te
hnology [15℄, [20℄ and semi
ondu
tor superlatti
es. We refer to the bookfrom Bastard [4℄ or the review by Wa
ker [25℄ for more details on superlatti
etransport modelling.Very re
ently, Zheng [29℄ derived exa
t ABCs for the S
hrödinger equation ofthe form
iut + uxx = V (x)u, x ∈ R, (1a)

u(x, 0) = u0(x), x ∈ R, (1b)
u(x, t) → 0, x → ±∞. (1
)The initial fun
tion u0 ∈ L2(R) is assumed to be 
ompa
tly supported in aninterval [xL, xR], with xL < xR, and the real potential fun
tion V ∈ L∞(R) issupposed to be sinusoidal on (−∞, xL] and [xR, +∞). It is well�known thatthe system (1a) has a unique solution u ∈ C(R+, L2(R)) (
f. [17℄, [18℄, e.g.):Theorem 1 Let u0 ∈ L2(R) and V ∈ L∞(R). Then the system (1a) has aunique solution u ∈ C(R+, L2(R)). Moreover, the �energy� is preserved, i.e.

‖u(., t)‖L2(R) = ‖u0‖L2(R) , ∀t ≥ 0.2



More pre
isely, Zheng [29℄ assumed
V (x) = VL + 2qL cos

2π(xL − x)

SL

, ∀x ∈ (−∞, xL],

V (x) = VR + 2qR cos
2π(x − xR)

SR
, ∀x ∈ [xR, +∞),where SL and SR are the periods, VL and VR are the average potentials, andthe nonnegative numbers qL and qR relate to the amplitudes of sinusoidal partof the potential fun
tion V on (−∞, xL] and [xR, +∞), respe
tively. Let usnote that Gali
her [10℄ also 
onsidered the same problem but with a generalperiodi
 potential. Formally he set up at ea
h arti�
ial boundary point anexa
t Diri
hlet-to-Diri
hlet mapping, whi
h is nonlo
al in both time and spa
e.The organization of the paper is as follows. In Se
tion 2, we 
onje
ture an ele-gant analyti
al expression of the impedan
e operator for general periodi
 prob-lems and present an exa
t ABC in a form of Diri
hlet-to-Neumann mapping.In Se
tion 3 we use this result to 
ompute bound states for the S
hrödingeroperator. Finally, in Se
tion 4 we show how the results 
an be generalized tothe time�dependent S
hrödinger equation, a di�usion equation and a se
ondorder hyperboli
 equation and present a 
on
ise numeri
al example.2 A 
onje
ture on the impedan
e expressionLet us start with the following general se
ond order ODE

− d

dx

(

1

m(x)

dy

dx

)

+ V (x)y = ρ(x)zy, ∀x ≥ 0, (2)where z denotes a 
omplex parameter whose value spa
e is to be determined.We assume that the fun
tions m(x), V (x) and ρ(x) are all S�periodi
 in
[0, +∞) and 
entrally symmetri
 in ea
h period, i.e.,
m(x) = m(S−x), V (x) = V (S−x), ρ(x) = ρ(S−x), a.e. x ∈ [0, S]. (3)The symmetry 
ondition (3) simply implies that the even extensions of thesefun
tions to the whole real axis are still S�periodi
. Moreover, we assume thatthe fun
tions m(x), V (x) and ρ(x) are su�
iently smooth and bounded, i.e.there exist several 
onstants M0, M1, V0 and ρ0, su
h that
0 < M0 ≤ m(x) ≤ M1 < +∞, V (x) ≥ V0, ρ(x) ≥ ρ0 > 0, ∀x ∈ [0, S].By introdu
ing the new variable

w =
1

m(x)

dy

dx
,3



the se
ond order ODE (2) is transformed into a �rst order ODE system
d

dx







w

y





 =







0 V (x) − ρ(x)z

m(x) 0













w

y





 , ∀x ≥ 0. (4)This paper is 
on
erned with the L2-solution of (2) in [0, +∞). More pre
isely,we would like to know for what z the ODE (2) possess an L2-solution y(x),and in this 
ase what is the impedan
e I := y′(0)/y(0), namely the quotientof Neumann data over Diri
hlet data evaluated at x = 0.For any two points x1 and x2, the ODE system (4) uniquely determines alinear transformation from the two�dimensional ve
tor spa
e asso
iated with
x1, to the same spa
e asso
iated with x2. We identify this transformation withthe 2-by-2 matrix T (x1, x2), whi
h satis�es the same form of equation as (4),namely:

d

dx
T (x1, x) =







0 V (x) − ρ(x)z

m(x) 0





T (x1, x), ∀x1 ≥ 0, ∀x ≥ 0. (5)This transformation matrix T satis�es the following properties:
T (x, x) = I2×2, det T (x1, x2) = det T (x1, x1) = 1, (6a)

T (x2, x3)T (x1, x2) = T (x1, x3), (6b)
T (x1 + S, x2 + S) = T (x1, x2). (6
)A

ording to (6a), the matrix T (0, S) has two eigenvalues σ( 6= 0) and 1/σ with

|σ| ≤ 1. Their asso
iated eigenve
tors are denoted by (c+, d+)⊤ and (c−, d−)⊤.If |σ| < 1, then T (0, x)(c±, d±)⊤ yields two linearly independent solutions ofthe ODE system (4). By setting σ = eµS with Re µ < 0 it is straightforward toverify that e∓µxT (0, x)(c±, d±)⊤ are periodi
 fun
tions. Therefore, we 
on
ludethat
y+ := T (0, x)(c+, d+)⊤ = eµxe−µx T (0, x)(c+, d+)⊤is L2-bounded, while
y− := T (0, x)(c−, d−)⊤ = e−µxeµx T (0, x)(c−, d−)⊤is not. For the L2-bounded solution y+, the impedan
e I is thus given as

I :=
y′

+(0)

y+(0)
= m(0)

c+

d+

. (7)We remark that σ and (c+, d+)⊤ depend on z, and hen
e the impedan
e I alsodepends on z. In the sequel we will refer to σ as the Floquet's fa
tor [3,14,19℄.It typi
ally re�e
ts how fast the L2-bounded solution of the ODE (2) de
aysto zero when x tends to +∞: the smaller its modulus, the faster. Also note4



that σ(z̄) = σ(z) and I(z̄) = I(z) holds. The impedan
e (7) is 
omputed after
T (0, S) is obtained (
f. the impedan
e plots in Figs. 5, 6 for some values of z).In general, the matrix T (0, S) 
annot be represented with a simple analyti
alexpression in terms of the fun
tions m(x), V (x) and ρ(x). However, it 
an be
omputed su�
iently a

urately by integrating the ODE (5) (setting x1 = 0)in the interval [0, S] with the initial data T (0, 0) = I2×2. Sin
e this task is astandard issue, the detailed dis
ussion is omitted here.We 
onsider in the sequel three 
ases:Case A: m(x) = ρ(x) = 1, V (x) = 2 cos(2x);Case B: m(x) = ρ(x) = 1 + cos(2x)/5, V (x) = cos(2x);Case C: m(x) = ρ(x) = 1 + cos(2x)/5, V (x) = sin(2x).Figs. 1�3 show the modulus of σ, whi
h denotes the eigenvalue of T (0, S)with a smaller modulus. We observe that apart from some intervals in thereal axis, for any z in the 
omplex plane, σ has a modulus less than 1, thusthe se
ond order ODE (2) has a nontrivial L2-solution. Furthermore, it turnsout that the ending points of these intervals are exa
tly the eigenvalues of thefollowing 
hara
teristi
 problem :Find λ ∈ R and a nontrivial y ∈ C1

per[0, 2S], su
h that
− d

dx

(

1

m(x)

dy

dx

)

+ V (x)y = ρ(x)λy. (8)We note that the symmetry 
ondition (3) is not ne
essary for the above state-ments (In fa
t Case C does not satisfy (3)). We admit that the above state-ments have not been proven up to this time, but a vast number of othernumeri
al eviden
es also support their validity.If the 
oe�
ient fun
tions m(x), V (x) and ρ(x) satisfy the symmetry 
ondition(3), then the 
hara
teristi
 problem (8) has a ni
e property: all the eigenvalues
an be 
lassi�ed into two di�erent groups
a1 < a2 < a3 < . . . and b1 < b2 < b3 < . . . ,where the eigenvalues ar are asso
iated with even eigenfun
tions, and br withodd eigenfun
tions. Besides, it holds that

a1 < min(a2, b1) ≤ max(a2, b1) < min(a3, b2) ≤ max(a3, b2) < . . .For the S
hrödinger equation (SE) with a periodi
 
osine potential, a spe
ial
ase of (2) with m(x) = ρ(x) = 1 and V (x) = 2q cos(2x), the se
ond author5



Fig. 1. Case A: Modulus of σ with respe
t to z.

Fig. 2. Case B: Modulus of σ with respe
t to z.6



Fig. 3. Case C: Modulus of σ with respe
t to z.[29℄ made a 
onje
ture upon the impedan
e expression
ISE(z) = − +

√
−z + a1

+∞
∏

r=1

+
√−z + ar+1

+
√
−z + br

, Im z > 0,where +
√· denotes the bran
h of the square root with positive real part. Thebran
h 
ut is set as the negative real axis. Intensive numeri
al tests in [29℄veri�ed the validity of this formula. Sin
e formally ISE(z̄) = ISE(z) for any zwith Im z 6= 0, it is thus tempting to generalize the above 
onje
ture to ourgeneral se
ond order ODE (2), i.e.,
I(z) = −

√

m(0)ρ(0) +
√
−z + a1

+∞
∏

r=1

+
√−z + ar+1

+
√
−z + br

, Im z 6= 0. (9)Remark 2 For a better understanding of the impedan
e 
ondition (9) let usdis
uss how to obtain the 
onstant 
oe�
ient 
ase from the more general for-mula (9). The impedan
e for 
onstant 
oe�
ients is given by
I(z) = −√

mρ +

√

−z +
V

ρ
= − +

√

m(V − ρz).7



All the eigenvalues of (8) are
λn =

(nπ
S

)2 + mV

mρ
.The eigenspa
e of λ0 is the set of 
onstant fun
tions. For n > 0, the eigenvalue

λn is degenerate. Its eigenspa
e is two�dimensional, spanned by cos(πx/S) and
sin(πx/S). Noti
e that cos is even and sin is odd. Thus we have

an = λn−1, n ≥ 1, and bn = λn, n ≥ 1.Sin
e ar+1 = br for any r ≥ 1, the equation (9) yields
I = −√

mρ +
√
−z + a1 = − +

√

m(V − ρz),the 
orre
t impedan
e expression.Let us 
onsider another two numeri
al tests:Case D: m(x) = ρ(x) = 1, V (x) =
+∞
∑

n=−∞

e−16(x−π/2−nπ)2 ,Case E: m(x) = 1, V (x) = 0, ρ(x) = 1 + cos(2x)/5.Case D 
orresponds to the S
hrödinger equation with a periodi
 Gaussianpotential, 
f. Fig. 4, and Case E 
ould arise from a se
ond order hyperboli
wave equation in a periodi
 medium.
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 Gaussian potential fun
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n=−∞ e−16(x−π/2−nπ)2 .8



Figs. 5 and 6 show the impedan
e fun
tion I(z) when z is very 
lose to the realaxis. It 
an be 
learly seen that the impedan
e turns out to be either real orpurely imaginary. Those real intervals with purely imaginary impedan
e areexa
tly those values of z for whi
h the ODE (2) has no nontrivial L2�solution.In the engineering literature these intervals are 
alled pass bands, while their
omplementary intervals are 
alled stop bands. Several remarks have to bemade at this point.
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+10−13i Fig. 5. Case D: Impedan
e I(z) for the S
hrödinger equation with a periodi
 Gaus-sian potential V (x) =
∑+∞

n=−∞ e−16(x−π/2−nπ)2 .Remark 3 The impedan
e I(z) be
omes mu
h more 
ompli
ated as z ap-proa
hes the real axis if one of the 
oe�
ient fun
tions m(x), V (x) and ρ(x)is not 
entrally symmetri
, 
f. (3).Remark 4 The eigenvalues ar and br 
an be 
omputed with a high-a

ura
ysolver for the 
hara
teristi
 problem (8). The �rst few eigenvalues are listedin Tables 1 and 2 with 6 digits. We observe that the relative di�eren
e between
ar+1 and br de
ays very fast when r in
reases.Remark 5 If the 
oe�
ient fun
tions m(x) and ρ(x) are 
onstant and V (x) =
2q cos(2x) with q > 0, then the general ODE (2) is redu
ed to the well�knownMathieu's equation [3,19℄. In this 
ase, we obtain

a1 < b1 < a2 < b2 < a3 < b3 < . . . .However, in general this property does not hold, and we 
an only expe
t the9
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e plot for m = 1, V = 0 and ρ = 1 + cos(2x)/5.
r ar+1 br r ar+1 br r ar+1 br0 1.30811(-1) 5 2.51111(1) 2.51730(1) 10 1.00142(2) 1.00141(2)1 1.00842(0) 1.26431(0) 6 3.61574(1) 3.61260(1) 11 1.21141(2) 1.21141(2)2 4.25428(0) 4.03081(0) 7 4.91344(1) 4.91486(1) 12 1.44141(2) 1.44141(2)3 9.06010(0) 9.22586(0) 8 6.41442(1) 6.41386(1) 13 1.69141(2) 1.69141(2)4 1.61965(1) 1.60886(1) 9 8.11403(1) 8.11423(1) 14 1.96141(2) 1.96141(2)Table 1Case D: The �rst several eigenvalues of (8) with m(x) = ρ(x) = 1 and V (x) =

∑+∞
n=−∞ e−16(x−π/2−nπ)2 .

r ar+1 br r ar+1 br r ar+1 br1 9.08164(-1) 1.10938 5 2.51315(1) 2.51328(1) 9 8.14157(1) 8.14157(1)2 4.06748 3.98676 6 3.61880(1) 3.61877(1) 10 1.00512(2) 1.00512(2)3 9.04010 9.06316 7 4.92536(1) 4.92537(1) 11 1.21618(2) 1.21618(2)4 1.60896(1) 1.60838(1) 8 6.43296(1) 6.43296(1) 12 1.44735(2) 1.44735(2)Table 2Case E: The �rst few eigenvalues of (8), where m(x) = 1, V (x) = 0 and ρ(x) =
1 + cos(2x)/5. Noti
e that a1 = 0.following

a1 < min(a2, b1) ≤ max(a2, b1)) < min(a3, b2) ≤ max(a3, b2) < . . . .Remark 6 The stop bands are 
hara
terized as
(−∞, a1), (min(a2, b1), max(a2, b1)), (min(a3, b2), max(a3, b2)), . . .10



and the pass bands are given by
(a1, min(a2, b1)), (max(a2, b1), min(a3, b2)), (max(a3, b2), min(a4, b3)), . . .Now let us 
onsider the expression (9) with the in�nite produ
t limited to Rfa
tors:

IR(z) = −
√

m(0)ρ(0) +
√
−z + a1

R
∏

r=1

+
√−z + ar+1

+
√
−z + br

, Im z 6= 0. (10)Figs. 7 and 8 show the maximum errors between the impedan
e I(z) and
IR(z) on 4001 equidistant points on three segments of the upper half 
omplexplane. We dete
t that these errors be
ome very small with in
reasing R. Thisobservation has also been made for many other numeri
al tests. It is thusreasonable to 
onje
ture that the limit of IR(z) as R tends to +∞ is theimpedan
e I(z), i.e. the formula (9) states the 
orre
t impedan
e expression.
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Fig. 7. Case D: Maximum error between the impedan
e I(z) and IR(z). SegmentOne: [−10, 10]+10−13i. Segment Two: [−10, 10]+ i. Segment Three: [−10, 10]+10i.Let us note that we are trying to prove 
onje
ture presented above, namely ifthe potential is 
entrally symmetri
, then (9) gives the analyti
al expression ofthe impedan
e operator. The proofs will rely on the theory on so�
alled bound-ary triplets and the analysis of the asso
iated (Tit
hmarsh-) Weyl fun
tionsand it will be a generalization of the two re
ent works [5℄, [6℄.If z = z0 is a real number, then the impedan
e expression (9) might not be11
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e I(z) and IR(z). SegmentOne: [−10, 10]+10−13i. Segment Two: [−10, 10]+ i. Segment Three: [−10, 10]+10i.well�de�ned. If z0 lies in one of the stop bands, we already know that
lim

ǫ→0+
Im I(z0 + ǫ) = 0.Due to the symmetry property of the impedan
e, i.e. I(z̄) = I(z), we 
ande�ne

I(z0) = lim
ǫ→0+

I(z0 ± ǫ).Hen
e the impedan
e expression (9) still 
an be 
onsidered valid. If z0 lies inone of the pass bands, the ODE (2) has no nontrivial bounded L2-solution. Inthis 
ase, we have to spe
ify what kind of solution is really what we are seekingfor. The impedan
e of this solution is thus the one-sided limit of I(z0 + ǫ) aseither ǫ → 0+ or ǫ → 0−. In most 
ases, this 
hoi
e 
an be made naturallyunder physi
al 
onsiderations.3 Bound states for the S
hrödinger operatorAs a �rst appli
ation of the impedan
e expression (9), we 
onsider the follow-ing bound state problem for the S
hrödinger operator :Find an energy E ∈ R and a nontrivial real fun
tion u ∈ L2(R), su
h that
−d2u

dx2
+ V (x)u = Eu, x ∈ R, (11)12



where
V (x) =







2 + 2 cos(πx), |x| > 1,

0, |x| < 1.The potential fun
tion V (x) is periodi
 in R\(−1, 1). In order to ensure thatthe solution u has a bounded L2-norm, the energy E must be valued in thestop bands. The �rst few eigenvalues of the 
hara
teristi
 problem (8) with
m(x) = ρ(x) = 1 and V (x) = 2 − 2 cos(πx) (NOT V (x) = 2 + 2 cos(πx)) arelisted in Table 3.

r ar+1 br r ar+1 br0 1.80087 3 2.42294(1) 2.42345(1)1 3.41926 5.41414 4 4.14920(1) 4.14919(1)2 1.20349(1) 1.18359(1) 5 6.36935(1) 6.36935(1)Table 3The �rst few eigenvalues of (8) with m(x) = ρ(x) = 1 and V = 2 − 2 cos(πx).The �rst three stop bands are given by
(−∞, 1.80087), (3.41926, 5.41414), (11.8359, 12.0349).If E is a bound state energy, then it must be an eigenvalue of the followingnonlinear 
hara
teristi
 problem :Find an energy E ∈ R and a nontrivial real fun
tion u ∈ L2(−1, 1), su
h that

−d2u

dx2
+ V (x)u = Eu, x ∈ (−1, 1), (12a)
−du

dx
(−1) = I(E)u(−1), (12b)

du

dx
(1) = I(E)u(1). (12
)A dire
t dis
retization of the above problem (12) leads to a very 
ompli
atednonlinear algebrai
 equation with respe
t to E, and its solvability is not 
om-pletely 
lear. A
tually, the problem (12) is equivalent to the following �xedpoint problem. For a given energy E we 
an solve the linear 
hara
teristi
problem :Find a fun
tion Φ(E) ∈ R and a nontrivial real fun
tion u ∈ L2(−1, 1), su
hthat

−uxx + V (x)u = Φ(E)u, x ∈ (−1, 1), (13a)
−du

dx
(−1) = I(E)u(−1), (13b)

du

dx
(1) = I(E)u(1). (13
)13



The bound state energy thus satis�es E = Φ(E), i.e. E is a �xed point of thefun
tion Φ(E). Noti
e that Φ(E) is a multi�valued fun
tion and hen
e a seriesof bound states are expe
ted.Fig. 9 shows the �rst three bran
hes of Φ(E) being restri
ted to [−8, 15]. Thetime-harmoni
 S
hrödinger equation is dis
retized by 50 eighth-order �niteelements in [−1, 1]. I(E) is approximated by I14(E), whi
h is equal to I(E)within ma
hine pre
ision if |E| < 20. Three bound states exist in this energyrange. By performing the Newton�Ste�enson iterations, the energies are foundto be E0 = 0.642647, E1 = 4.88651 and E2 = 12.0164. Our 
omputations showthat these values do not 
hange within 6 digits by re�ning the �nite elementmesh.
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Fig. 9. E0 = 6.42647(−1). E1 = 4.88651. E2 = 1.20164(1).The bound state wave fun
tions (not normalized) are plotted in Fig. 10. Weobserve in Fig. 10 that the ground state is well�lo
alized, while the se
ondex
ited bound state is greatly delo
alized. This demonstrates the advantageof the arti�
ial boundary method and espe
ially our ABCs (13b)�(13
), sin
ea dire
t domain trun
ation method ne
essitates a very large 
omputationaldomain to ensure the approximating a

ura
y of the wave fun
tion.14
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Fig. 10. The ground state and the �rst two ex
ited bound states.4 Exa
t arti�
ial boundary 
onditions for time�dependent prob-lemsBased on the fundamental impedan
e expression (9), exa
t arti�
ial boundary
onditions 
an be derived for many time-dependent periodi
 stru
ture prob-lems, e.g., the S
hrödinger equation (SE)
iρ(x)

∂u

∂t
+

∂

∂x

(

1

m(x)

∂u

∂x

)

= V (x)u,the di�usion equation (DE)
ρ(x)

∂u

∂t
=

∂

∂x

(

1

m(x)

∂u

∂x

)

− L(x)u,and the se
ond order hyperboli
 equation (HE)
∂

∂x

(

1

m(x)

∂u

∂x

)

− L(x)u = ρ(x)
∂2u

∂t2
.Here, the 
oe�
ients V (x), ρ(x), m(x) and L(x) are supposed to be 
entrallysymmetri
 periodi
 fun
tions at in�nity. Moreover, ρ(x) and m(x) are positive,and L(x) is nonnegative. The impedan
es for these three equations are givenby

ISE(is) = −
√

m(0)ρ(0) +
√
−is + a1

+∞
∏

r=1

+
√−is + ar+1

+
√
−is + br

, (14)15



and
IDE(−s) = −

√

m(0)ρ(0) +
√

s + a1

+∞
∏

r=1

+
√

s + ar+1

+
√

s + br

, (15)and
IHE(−s2) = −

√

m(0)ρ(0) +

√

s2 + a1

+∞
∏

r=1

+

√

s2 + ar+1

+
√

s2 + br

. (16)In equations (14)�(16) the variable s with Re s > 0 denotes the free argumentin the Lapla
e domain. Noti
e that due to our assumption, all 
oe�
ients arand br in (15) and (16) are nonnegative and thus the formulas (15), (16) arewell-de�ned. The numeri
al solution to the S
hrödinger equation in 
onjun
-tion with the ABC (14) has been investigated in [29℄. Similar te
hniques 
anbe used for the di�usion equation with the ABC (15) with minor modi�
a-tions. In the sequel we will fo
us on a se
ond order hyperboli
 equation in atwo�dimensional setting.To do so, we 
onsider the propagation of ele
tromagneti
 waves in a waveguidewith 
avity, 
f. the s
hemati
 map Fig. 11. For a TM polarized ele
tromagneti
wave, the ele
tri
 �eld E is governed by the equation
∂2E

∂x2
+

∂2E

∂z2
− ǫ(x, z)

c2

∂2E

∂t2
= 0. (17)The relative diele
tri
 permittivity ǫ, depending only on x after the arti�
ialboundary, is supposed to be periodi
. We assume that this waveguide is en-
losed with a perfe
t 
ondu
tor and hen
e we have a homogeneous Diri
hletboundary 
ondition E = 0 on the physi
al boundary.

Cavity 

Wave In Periodic Media 

Artificial Boundary Fig. 11. S
hemati
 map of a waveguide with 
avity.On the semi-in�nite slab region [0, +∞) × [0, 1], the 
hara
teristi
 de
ompo-sition 
an be applied with respe
t to the z variable. The eigenvalues are givenby n2π2 and the eigenfun
tions are sin(nπz), n ≥ 1. An exa
t ABC in the16



frequen
y domain is thus set up as
Ên

x (0, s) = −
√

ǫ(0)

c
+

√

s2 + an
1

∞
∏

r=1

+

√

s2 + an
r+1

+

√

s2 + bn
r

Ên(0, s), n ≥ 1. (18)Here, Ên(x, s) denotes the n-th mode of Ê(x, z, s) in the z-dire
tion de�nedas
Ên(x, s) = 2

∫ 1

0
Ê(x, z, s) sin(nπz)dz, x ≥ 0, n ≥ 1.

Ê(x, z, s) is determined by Ên(x, s) as
Ê(x, z, s) =

+∞
∑

n=1

Ên(x, s) sin(nπz), x ≥ 0.The 
onstants an
r and bn

r in (18) are the eigenvalues of the 
hara
teristi
 prob-lem (8) with the 
oe�
ients m(x) = 1, V (x) = n2π2 and ρ(x) = ǫ(x)/c2. Bysetting
ŵn

k (s) =
∞
∏

r=k

+

√

s2 + an
r+1

+

√

s2 + bn
r

Ên(0, s), k ≥ 1, n ≥ 1,we obtain the re
ursion relation
+

√

s2 + bn
k ŵn

k (s) = +

√

s2 + an
k+1 ŵn

k+1(s), k ≥ 1, n ≥ 1,and (18) reads
Ên

x (0, s) = −
√

ǫ(0)

c
+

√

s2 + an
1 ŵn

1 (s), n ≥ 1. (19)Now going ba
k to the physi
al domain yields
dwn

k

dt
=

dwn
k+1

dt
+

√

an
k+1J1(

√

an
k+1 t)

t
∗wn

k+1−
√

bn
kJ1(

√

bn
k t)

t
∗wn

k , k ≥ 1, n ≥ 0,and from (19) we get
∂En

∂x
(0, t) = −

√

ǫ(0)

c

(

dwn
1

dt
+

√
an

1J1(
√

an
1 t)

t
∗ wn

1

)

= −
√

ǫ(0)

c





∂En

∂t
(0, t) +

+∞
∑

k=0

√

an
k+1J1(

√

an
k+1 t)

t
∗ wn

k+1

−
+∞
∑

k=1

√

bn
kJ1(

√

bn
k t)

t
∗ wn

k



 .

(20)
Here, ∗ denotes a 
onvolution with respe
t to the time variable t and J1 is theBessel fun
tion of �rst order. In a real implementation the in�nite summation17



terms in (20) have to be trun
ated. By simply keeping the �rst Kn terms weobtain
∂En

∂x
(0, t) = −

√

ǫ(0)

c





∂En

∂t
(0, t) +

Kn
∑

k=0

√

an
k+1J1(

√

an
k+1 t)

t
∗ wn

k+1

−
Kn
∑

k=1

√

bn
kJ1(

√

bn
k t)

t
∗ wn

k



 ,

(21)and
wn

Kn+1(t) = En(0, t).If we want to resolve the n-th mode in the z-dire
tion, we typi
ally set Kn ≥ 0.In order to ensure the approximating a

ura
y of the ABC, Kn should bein
reased for larger values of n. Of 
ourse, if we are not interested in the
n-th mode at all, we only need to set Kn = −1. In the following numeri
alexample, we simply set Kn = 10 for any n = 0, 1 · · · , N , and Kn = −1 forany n = N + 1, · · · , where N denotes the number of modes in the z-dire
tionwe want to resolve.Numeri
al Example. We now study the wave �eld generated by a periodi
disturban
e at the left physi
al boundary

E(−2, z, t) = sin(πz)
+∞
∑

n=0

e−160(t−(n+0.5))2 , z ∈ (0, 1).The wave speed is set to 1, and the diele
tri
 permittivity ǫ is set to be
ǫ(x, z) =







1 , x < 0,

1.2 − 0.2 cos(2πx) , x > 0.We limit our 
omputational time interval to [0, 6]. Due to the �nite wavepropagation speed (at most 1), we 
an 
ompute a referen
e solution Eref ina large domain (−2, 4) × (0, 1) ∪ (−1, 0) × (1, 2) with small mesh sizes ∆x =
∆z = 0.00125 and ∆t = 0.000625. The leap-frog 
entral di�eren
e s
hemeis employed in all the 
omputations. We use the standard fast evaluationte
hnique proposed by Alpert, Greengard and Hagstrom [1℄ for the 
onvolutionoperations involved in the ABC (21). The poles and weights are taken fromthe webpage of Hagstrom. The relative L2-error is de�ned as

||Eref(·, ·, t) − Enum(·, ·, t)||L2

||Eref(·, ·, 6)||L2

,where Eref stands for the referen
e solution, while Enum denotes the numeri
alsolution. 18



In Figs. 12 and 13 we 
ompare the numeri
al solutions with the referen
esolutions at two di�erent time steps. No di�eren
e 
an be observed with eyes.
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Fig. 12. At time t = 3. The number of modes is 10. The 
ontour lines are
−1 : 2/21 : 1. ∆x = ∆z = 0.005. ∆t = 0.0025. The referen
e solution is obtained bytaking ∆x = ∆z = 0.00125 and ∆t = 0.000625.
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Fig. 13. At time t = 6. The number of modes is 10. The 
ontour lines are
−1 : 2/21 : 1. ∆x = ∆z = 0.005. ∆t = 0.0025. The referen
e solution is obtained bytaking ∆x = ∆z = 0.00125 and ∆t = 0.000625.19



In Fig. 14 we depi
t the errors when di�erent number of modes in the z-dire
tion are used. The a

ura
y of the numeri
al solutions is greatly improvedfor large number of modes.
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Fig. 14. At time t = 6. ∆x = ∆z = 0.02. ∆t = 0.01. The referen
e solution isobtained by taking ∆x = ∆z = 0.00125 and ∆t = 0.000625. The line is x = 0.The error evolution with respe
t to the time t is shown in Fig. 15. At theinitial stage, the wave does not rea
h the arti�
ial boundary, thus the ABChas no in�uen
e on the numeri
al solutions. The error arises 
ompletely fromthe interior dis
retization. After a 
riti
al time point (almost t = 2.5), thearti�
ial boundary 
ondition 
omes into e�e
t. We see that if enough numberof modes are used, the error from the approximate boundary 
ondition isnearly on the same level of interior dis
retization, whi
h means the ABC issu�
iently a

urate in this parameter regime. Finally, we analyzed numeri
allyin Fig. 16 the 
onvergen
e rate of the relative L2-errors at t = 6. Data��ttingreveals that the errors de
ay with an order of 1.851 in the parameter range
∆t ∈ [0.02

7
, 0.01], when the number of modes in the z-dire
tion is set to 10.
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Con
lusionsIn this paper we have generalized a re
ent result of Zheng [29℄ and derived anexa
t Diri
hlet-to-Neumann arti�
ial boundary 
ondition for general problemswith periodi
 stru
tures at in�nity. We 
onsidered in detail the bound stateproblem for the S
hrödinger operator and a se
ond order hyperboli
 equationin two spa
e dimensions. Intensive numeri
al tests have strongly supportedthe validity of this new kernel expression for the arti�
ial boundary 
ondition,though at this stage we did not prove it theoreti
ally, but the proof of this
onje
ture is 
urrently under study.It is tempting to generalize the result of this paper to the derivation of fully dis-
rete arti�
ial boundary 
onditions [7℄ for periodi
 potential problems. Theseboundary 
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tly derived for the numeri
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