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conditions is then used for computing the bound states of the Schrodinger operator
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1 Introduction

Periodic structure problems largely exist in the science and engineering and of-
ten they are modeled by partial differential equations with periodic coefficients
and /or periodic geometries. In order to numerically solve these equations ef-
ficiently one usually confines the spatial domain to a bounded computational
domain (in a neighborhood of the region of physical interest). The usual strat-
egy is to introduce so called artificial boundaries and impose adequate bound-
ary conditions. For wave-like equations, the ideal boundary conditions should
not only lead to well-posed problems, but also mimic the perfect absorp-
tion of waves traveling out of the computational domain through the artificial
boundaries. Right in this context, these boundary conditions are usually called
artificial (or transparent, non-reflecting in the same spirit) in the literature.
The interested reader is referred to a couple of review papers [2|, [11], [12],
[24| on this research topic.

Artificial boundary conditions (ABCs) for the Schrédinger equation and re-
lated problems has been a hot research topic for many years [2|. Since the
first exact ABC for the Schrodinger equation was derived by Papadakis [16]
25 years ago, many developments have been made on the designing and imple-
menting of various ABCs, also for multi-dimensional and nonlinear problems.
However, the question of exact ABCs for periodic structures still remained
open, and it is a very up-to-date research topic, cf. the current papers [§],
9], [10], [13], [21], [22], [23], [27]. These kind of new ABCs can be applied
in many physical problems, e.g. in optical applications from micro and nano

technology [15], [20] and semiconductor superlattices. We refer to the book
from Bastard [4] or the review by Wacker |25] for more details on superlattice
transport modelling.

Very recently, Zheng [29] derived exact ABCs for the Schrodinger equation of
the form

iuy + Uge = V(z)u, z€R, (1a)
u(z,0) = up(x), x€R, (1b)
u(z,t) — 0, x — Foo. (1c)

The initial function ug € L?(R) is assumed to be compactly supported in an
interval [xp,zg|, with 2, < xg, and the real potential function V' € L*(R) is
supposed to be sinusoidal on (—oo, x| and [xg,+00). It is well-known that
the system (1a) has a unique solution v € C(R*, L*(R)) (cf. [17], [18], e.g.):

Theorem 1 Let ug € L*(R) and V € L®(R). Then the system (la) has a
unique solution u € C(RT, L*(R)). Moreover, the “energy” is preserved, i.e.

||u(7t)||L2(R) = ||u0||L2(R) 5 Vt Z 0.



More precisely, Zheng [29] assumed

9 _
V(z) = Vi, + 2qy cos w, Vo € (—oo, xr],
L
27(x — xR)

V(z) = Vg + 2qg cos Vo € [zR, +00),

Sk ’
where S;, and Sg are the periods, V, and Vi are the average potentials, and
the nonnegative numbers ¢y, and gg relate to the amplitudes of sinusoidal part
of the potential function V on (—oo,zy] and [zg, +00), respectively. Let us
note that Galicher |10] also considered the same problem but with a general
periodic potential. Formally he set up at each artificial boundary point an
exact Dirichlet-to-Dirichlet mapping, which is nonlocal in both time and space.

The organization of the paper is as follows. In Section 2, we conjecture an ele-
gant analytical expression of the impedance operator for general periodic prob-
lems and present an exact ABC in a form of Dirichlet-to-Neumann mapping.
In Section 3 we use this result to compute bound states for the Schrodinger
operator. Finally, in Section 4 we show how the results can be generalized to
the time dependent Schrodinger equation, a diffusion equation and a second
order hyperbolic equation and present a concise numerical example.

2 A conjecture on the impedance expression

Let us start with the following general second order ODE

4 (ma)j_@ +V(2)y = pla)zy, Va0, (2)

where z denotes a complex parameter whose value space is to be determined.
We assume that the functions m(z), V(z) and p(x) are all S-periodic in
[0, 4+00) and centrally symmetric in each period, i.e.,

m(z) =m(S—z), V(r)=V(S—=x), plz)=p(S—z), ae xe€]0,5]. (3)

The symmetry condition (3) simply implies that the even extensions of these
functions to the whole real axis are still S—periodic. Moreover, we assume that
the functions m(z), V(z) and p(x) are sufficiently smooth and bounded, i.e.
there exist several constants My, M, Vo and pg, such that

0 < Mo <m(z) <M <+oo, V(z)=Vo, px)=po>0, Vzel0,5].

By introducing the new variable

1 dy

m(z) da’



the second order ODE (2) is transformed into a first order ODE system

d [w) _ 0 V(z)—plx)z w Ve, ()
v\ y m(z) 0 Y
This paper is concerned with the L2-solution of (2) in [0, +00). More precisely,
we would like to know for what 2z the ODE (2) possess an L%-solution y(z),
and in this case what is the impedance I := ¢/(0)/y(0), namely the quotient
of Neumann data over Dirichlet data evaluated at x = 0.

For any two points x; and x, the ODE system (4) uniquely determines a
linear transformation from the two dimensional vector space associated with
x1, to the same space associated with xo. We identify this transformation with
the 2-by-2 matrix T'(z1, 22), which satisfies the same form of equation as (4),
namely:

iT(ycl,:v) = 0 Via)=pl@) T(zy,x), Vo1 >0, Ve>0. (5)
dx m(zx) 0

This transformation matriz T satisfies the following properties:

T(x,x) = Ihxo, detT(x1,29) =detT(z1,21) =1, (6a)
T(l’g, l’g)T(l’l, 1’2) = T(ZL’l, ZL’3), (Gb)
T(z1 4 S, 224+ 5) =T (21, z2). (6¢)

According to (6a), the matrix 7°(0, .S) has two eigenvalues o(# 0) and 1/0 with
|o| < 1. Their associated eigenvectors are denoted by (ci,d.)" and (c_,d_)".
If |o| < 1, then T(0,7)(cs,ds)" yields two linearly independent solutions of
the ODE system (4). By setting o = e*¥ with Re p < 0 it is straightforward to
verify that e7#*T(0, z)(cx,d+)" are periodic functions. Therefore, we conclude
that
y+ = T(0,2)(cy, d-l—)T = e T(0,z)(cy, d-l—)T

is L2-bounded, while

y_ :=T(0,2)(c_,d_)" = e e T(0,2)(c_,d_)"

is not. For the L?>-bounded solution y., the impedance I is thus given as

I = zi—ggg = m(0) 2—: (7)

We remark that o and (c,,d, )" depend on z, and hence the impedance I also
depends on z. In the sequel we will refer to o as the Floquet’s factor [3,14,19].
It typically reflects how fast the L?-bounded solution of the ODE (2) decays
to zero when z tends to +oo: the smaller its modulus, the faster. Also note



that o(z) = o(z) and I(Z) = I(z) holds. The impedance (7) is computed after
T(0,.5) is obtained (cf. the impedance plots in Figs. 5, 6 for some values of z).

In general, the matrix 7°(0,.S) cannot be represented with a simple analytical
expression in terms of the functions m(z), V(z) and p(x). However, it can be
computed sufficiently accurately by integrating the ODE (5) (setting x; = 0)
in the interval [0, S] with the initial data 7°(0,0) = Isx9. Since this task is a
standard issue, the detailed discussion is omitted here.

We consider in the sequel three cases:

Case A: m(z) =p(x) =1, V(z)=2cos(2x);
Case B: m(z) = p(x) =1+ cos (256)/ V(x) = cos(2x);
Case C: m(z) = p(z) =14 cos(2z)/5, V(z)=sin(2z).

Figs. 1-3 show the modulus of o, which denotes the eigenvalue of T'(0,5)
with a smaller modulus. We observe that apart from some intervals in the
real axis, for any z in the complex plane, ¢ has a modulus less than 1, thus
the second order ODE (2) has a nontrivial L?-solution. Furthermore, it turns
out that the ending points of these intervals are exactly the eigenvalues of the
following characteristic problem :

Find A € R and a nontrivial y € CL, [0,285], such that

per

i () + Ve = o ®)

We note that the symmetry condition (3) is not necessary for the above state-
ments (In fact Case C does not satisfy (3)). We admit that the above state-
ments have not been proven up to this time, but a vast number of other
numerical evidences also support their validity.

If the coefficient functions m(z), V(x) and p(z) satisfy the symmetry condition
(3), then the characteristic problem (8) has a nice property: all the eigenvalues
can be classified into two different groups

ar < az <ag<... and b1<b2<b3<...,

where the eigenvalues a, are associated with even eigenfunctions, and b, with
odd eigenfunctions. Besides, it holds that

a; < min(ag, by) < max(ag, b1) < min(as, be) < max(ag, by) <

For the Schrédinger equation (SE) with a periodic cosine potential, a special
case of (2) with m(z) = p(x) = 1 and V() = 2¢g cos(2x), the second author
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Fig. 1. Case A: Modulus of ¢ with respect to z.
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Fig. 2. Case B: Modulus of o with respect to z.
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Fig. 3. Case C: Modulus of ¢ with respect to z.

[29] made a conjecture upon the impedance expression

Y2 Fa,
Isp(z) = \/—z—i-alH \/Tbﬂ Im z >0,

where {/- denotes the branch of the square root with positive real part. The
branch cut is set as the negative real axis. Intensive numerical tests in [29]
verified the validity of this formula. Since formally Isg(Z) = Isp(2) ) for any z
with Im z # 0, it is thus tempting to generalize the above conjecture to our
general second order ODE (2), i.e.,

—Jm V—z+ a; ﬁ +' T GTH Im z # 0. (9)

Remark 2 For a better understanding of the impedance condition (9) let us
discuss how to obtain the constant coefficient case from the more general for-
mula (9). The impedance for constant coefficients is given by

I(z) = —\/m_p{/—z + % =—{m(V —pz).



All the eigenvalues of (8) are

(%) +mV
mp '

An =

The eigenspace of \g is the set of constant functions. Forn > 0, the eigenvalue
An 1s degenerate. Its eigenspace is two dimensional, spanned by cos(rz/S) and
sin(rx/S). Notice that cos is even and sin is odd. Thus we have

n =M1, n>1, and b,=X\,, n>1.

Since a,41 = b, for any r > 1, the equation (9) yields

I=—ympy/—z+a=—{m(V —pz),
the correct impedance expression.

Let us consider another two numerical tests:

400
Case D: m(x) =p(z)=1, V(r)= Z e—lﬁ(x—n/2—n7r)2’

n=—oo

Case E: m(z)=1, V(z)=0, p(z)=14 cos(2x)/5.

Case D corresponds to the Schrodinger equation with a periodic Gaussian
potential, cf. Fig. 4, and Case E could arise from a second order hyperbolic
wave equation in a periodic medium.

Potential

Fig. 4. Periodic Gaussian potential function V(z) = 1> ¢ 16(z—m/2-nm)?



Figs. 5 and 6 show the impedance function 7(z) when z is very close to the real
axis. It can be clearly seen that the impedance turns out to be either real or
purely imaginary. Those real intervals with purely imaginary impedance are
exactly those values of z for which the ODE (2) has no nontrivial L?-solution.
In the engineering literature these intervals are called pass bands, while their
complementary intervals are called stop bands. Several remarks have to be
made at this point.
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Fig. 5. Case D: Impedance I(z) for the Schrédinger equation with a periodic Gaus-
sian potential V(z) = 327> ¢~ 16(z—m/2-nm)?

Remark 3 The impedance 1(z) becomes much more complicated as z ap-
proaches the real axis if one of the coefficient functions m(x), V(z) and p(z)
is not centrally symmetric, cf. (3).

Remark 4 The eigenvalues a, and b, can be computed with a high-accuracy
solver for the characteristic problem (8). The first few eigenvalues are listed
in Tables 1 and 2 with 6 digits. We observe that the relative difference between
ary1 and b, decays very fast when r increases.

Remark 5 If the coefficient functions m(z) and p(z) are constant and V (z) =
2q cos(2x) with g > 0, then the general ODE (2) is reduced to the well known
Mathieu’s equation /3,19/. In this case, we obtain

a1<b1<a2<b2<a3<b3<....

However, in general this property does not hold, and we can only expect the
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Fig. 6. Case E: Impedance plot for m =1, V =0 and p = 1 + cos(2z)/5.

r Ar41 b r Ar41 b, r Qr41 b,

0 1.30811(-1) 5 2.51111(1)  2.51730(1) | 10 1.00142(2)  1.00141(2)
1 1.00842(0) 1.26431(0) | 6 3.61574(1) 3.61260(1) | 11 1.21141(2) 1.21141(2)
2 4.25428(0)  4.03081(0) | 7 4.91344(1) 4.91486(1) | 12  1.44141(2) 1.44141(2)
3 9.06010(0) 9.22586(0) | 8 6.41442(1) 6.41386(1) | 13  1.69141(2) 1.69141(2)
4 1.61965(1)  1.60886(1) | 9  8.11403(1)  8&.11423(1) | 14  1.96141(2) 1.96141(2)

Table 1

Case D: The first several eigenvalues of
+oo o —16(z—m/2-nm)?

(8) with m(z)

n=-—o0
T ar41 by T ar41 by r ar41 by
1 9.08164(-1)  1.10938 | 5 2.51315(1) 2.51328(1) | 9  8.14157(1)  8.14157(1)
2 4.06748 3.98676 | 6 3.61880(1) 3.61877(1) | 10 1.00512(2) 1.00512(2)
3 9.04010 9.06316 | 7 4.92536(1) 4.92537(1) | 11 1.21618(2) 1.21618(2)
4 1.60896(1)  1.60838(1) | 8 6.43296(1)  6.43296(1) | 12 1.44735(2)  1.44735(2)
Table 2
Case E: The first few eigenvalues of (8), where m(z) = 1, V(x) = 0 and p(x)

1+ cos(2x)/5. Notice that a; = 0.

following

a; < min(asg, by) < max(ag, b)) < min(as, by) < max(as, by) <

Remark 6 The stop bands are characterized as

(—00,a1), (min(as, by), max(as,by)), (min(as,by), max(as,bs)),

10



and the pass bands are given by

(a1, min(ag, by)), (max(ag,b;), min(as, by)), (max(as,by), min(ay,bs)),

Now let us consider the expression (9) with the infinite product limited to R
factors:

ﬁmn Vo2 i Z“"“H Imz#0.  (10)

Figs. 7 and 8 show the maximum errors between the impedance I(z) and
Ir(z) on 4001 equidistant points on three segments of the upper half complex
plane. We detect that these errors become very small with increasing R. This
observation has also been made for many other numerical tests. It is thus
reasonable to conjecture that the limit of Ir(z) as R tends to 4oo is the
impedance I(z), i.e. the formula (9) states the correct impedance expression.

5

10 T T
—— Segment One
—6— Segment Two
—6— Segment Three

Maximum Error

-10

10

Fig. 7. Case D: Maximum error between the impedance I(z) and Ir(z). Segment
One: [—10,10] +107137. Segment Two: [—10, 10] +i. Segment Three: [—10, 10] + 10i.

Let us note that we are trying to prove conjecture presented above, namely if
the potential is centrally symmetric, then (9) gives the analytical expression of
the impedance operator. The proofs will rely on the theory on so called bound-
ary triplets and the analysis of the associated (Titchmarsh-) Weyl functions
and it will be a generalization of the two recent works [5], [6].

If z = 2y is a real number, then the impedance expression (9) might not be

11
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-10

10 I I I I

Fig. 8. Case E: Maximum error between the impedance I(z) and Ir(z). Segment
One: [—10,10] +107137. Segment Two: [—10, 10] +i. Segment Three: [—10, 10] + 10i.

well defined. If zy lies in one of the stop bands, we already know that

lim Im I(zp +¢€) =0.

e—0

Due to the symmetry property of the impedance, i.e. I(Z) = I(z), we can
define

I(z) = el_i>I(I)1+ I(z L e).

Hence the impedance expression (9) still can be considered valid. If z; lies in
one of the pass bands, the ODE (2) has no nontrivial bounded L?-solution. In
this case, we have to specify what kind of solution is really what we are seeking
for. The impedance of this solution is thus the one-sided limit of I(zy + €) as
either ¢ — 0% or € — 07. In most cases, this choice can be made naturally
under physical considerations.

3 Bound states for the Schrodinger operator

As a first application of the impedance expression (9), we consider the follow-

ing bound state problem for the Schridinger operator :

Find an energy F € R and a nontrivial real function v € L*(R), such that
d*u

—@ +V($)UIEU, reR, (11)

12



where

Vi) = {2 + 2cos(mz), |z|>1,
0, lx| < 1.
The potential function V() is periodic in R\(—1,1). In order to ensure that
the solution u has a bounded L?-norm, the energy £ must be valued in the
stop bands. The first few eigenvalues of the characteristic problem (8) with
m(z) = p(z) =1 and V(x) = 2 — 2cos(mz) (NOT V(z) = 2 + 2cos(nz)) are
listed in Table 3.

T Qr41 b, T Gp41 by

0  1.80087 3 2.42294(1) 2.42345(1)

1 341926 541414 |4 4.14920(1) 4.14919(1)
2 1.20349(1) 1.18359(1) | 5 6.36935(1) 6.36935(1)

Table 3
The first few eigenvalues of (8) with m(z) = p(z) =1 and V =2 — 2 cos(7x).

The first three stop bands are given by

(—o0, 1.80087), (3.41926,5.41414), (11.8359,12.0349).

If E is a bound state energy, then it must be an eigenvalue of the following
nonlinear characteristic problem :
Find an energy E € R and a nontrivial real function u € L?(—1,1), such that

_% +V(z)u=FEu, ze€(-1,1), (12a)
~M ) = I(Bu(-), (12b)
%(1) — I(E)u(1). (12¢)

A direct discretization of the above problem (12) leads to a very complicated
nonlinear algebraic equation with respect to F/, and its solvability is not com-
pletely clear. Actually, the problem (12) is equivalent to the following fized
point problem. For a given energy E we can solve the linear characteristic
problem

Find a function ®(F) € R and a nontrivial real function u € L?(—1,1), such
that

—Upy + V(2)u = ®(E)u, =€ (-1,1), (13a)
S 1) = I(Byu(-1), (130)
2—2(1) — I(E)u(1). (13¢)

13



The bound state energy thus satisfies £ = ®(FE), i.e. E is a fixed point of the

function ®(£). Notice that ®(E) is a multi valued function and hence a series
of bound states are expected.

Fig. 9 shows the first three branches of ®(E) being restricted to [—8, 15]. The
time-harmonic Schrodinger equation is discretized by 50 eighth-order finite
elements in [—1,1]. I(E) is approximated by I14(E), which is equal to I(E)
within machine precision if |F| < 20. Three bound states exist in this energy
range. By performing the Newton—Steffenson iterations, the energies are found
to be Ey = 0.642647, F; = 4.88651 and Ey = 12.0164. Our computations show

that these values do not change within 6 digits by refining the finite element
mesh.
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Fig. 9. Ey = 6.42647(—1). Ey = 4.88651. Ey = 1.20164(1).

The bound state wave functions (not normalized) are plotted in Fig. 10. We
observe in Fig. 10 that the ground state is well-localized, while the second
excited bound state is greatly delocalized. This demonstrates the advantage
of the artificial boundary method and especially our ABCs (13b) (13c), since
a direct domain truncation method necessitates a very large computational
domain to ensure the approximating accuracy of the wave function.

14
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Fig. 10. The ground state and the first two excited bound states.

4 Exact artificial boundary conditions for time—dependent prob-
lems

Based on the fundamental impedance expression (9), exact artificial boundary
conditions can be derived for many time-dependent periodic structure prob-
lems, e.g., the Schridinger equation (SE)

Z’p(x)g—;‘ + % (%%) — V(@)u,

the diffusion equation (DE)

= () s
(z)

and the second order hyperbolic equation (HE)
9, 1 Ou o*u
=)~ L@ = .
Ox <m(1’) 0:)3) (w)u = pla )8t2
Here, the coefficients V' (z), p(x), m(z) and L(x) are supposed to be centrally

symmetric periodic functions at infinity. Moreover, p(x) and m(x) are positive,
and L(x) is nonnegative. The impedances for these three equations are given

by
+o0o +/__ 5 _'_ -
[SE ZS —\/m \/ —is + ay H \/%H (14)

15



and
1o i/s Fa,
IDE —\/m \/S + aq H +1 (15)
r=1

and

oo g2
= —y/m(0)p Wﬂnh ¢+Tb+ (16)

In equations (14)-(16) the variable s with Re s > 0 denotes the free argument
in the Laplace domain. Notice that due to our assumption, all coefficients a,.
and b, in (15) and (16) are nonnegative and thus the formulas (15), (16) are
well-defined. The numerical solution to the Schrédinger equation in conjunc-
tion with the ABC (14) has been investigated in [29]. Similar techniques can
be used for the diffusion equation with the ABC (15) with minor modifica-
tions. In the sequel we will focus on a second order hyperbolic equation in a
two—dimensional setting.

IHE

To do so, we consider the propagation of electromagnetic waves in a waveguide
with cavity, cf. the schematic map Fig. 11. For a TM polarized electromagnetic
wave, the electric field F is governed by the equation

0*E N PE  e(r,2)PE
0x? 022 2 ot?

~0. (17)

The relative dielectric permittivity €, depending only on z after the artificial
boundary, is supposed to be periodic. We assume that this waveguide is en-
closed with a perfect conductor and hence we have a homogeneous Dirichlet
boundary condition £ = 0 on the physical boundary.

Wave In Periodic Media
\

\

Artificial Boundary

Fig. 11. Schematic map of a waveguide with cavity.

On the semi-infinite slab region [0, +00) x [0, 1], the characteristic decompo-
sition can be applied with respect to the z variable. The eigenvalues are given
by n?7? and the eigenfunctions are sin(nrz), n > 1. An exact ABC in the

16



frequency domain is thus set up as

R 0 © /g2 4 ar
E™M0,s) = — <0 \/52+a’1‘H ’ “ n>1. (18)

C +S2+bn

Here, E"(x,s) denotes the n-th mode of E(z, z, s) in the z-direction defined
as

A LN
E"(z,s) = 2/ E(z,z,s)sin(nrz)dz, x>0, n>1.
0
E(z,z,s) is determined by E"(x,s) as

+o0o
E(z,z,8) =Y E"(z,s)sin(nmz), z>0.

n=1

The constants a]' and b in (18) are the eigenvalues of the characteristic prob-
lem (8) with the coefficients m(z) = 1, V(z) = n’n? and p(z) = e(x)/c*. By
setting

oo +82+a

VT g
i 0,s), k>1,n>1,
T’k +S2+bn

we obtain the recursion relation

{s2Hbpwg(s) = {/s?+aj w1 (s), k>1,n>1,

and (18) reads

E"Os

\/52+a?u§’f(s), n>1. (19)

Now going back to the physical domain yields

n n ay, . J 1/&” t by J byt
dwg _ dwk“—l— by )*w” ——\/: 15\/: )*wza k>1,n2>0,

dt dt t ktl

and from (19) we get

8E"(0’t)__ ¢(0) (dwl \/_Jl Vait) | )

ox N c dt
€(0) (oE" ak+1J1 aj t) "
k=0
oo bR J (/DR t
.
k=1 t

Here, x denotes a convolution with respect to the time variable ¢ and J; is the
Bessel function of first order. In a real implementation the infinite summation
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terms in (20) have to be truncated. By simply keeping the first K, terms we
obtain

OE™ \/ €(0) [oE™ Kn aZ+1J1(\/ A1 t)
(0,t) = — (0,t) + Z * Wp
Ox c ot = t 1)
21
Kn S0P T (/00 T) .
= f\/» o
k=1

and
w1 (t) = E"(0,1).
If we want to resolve the n-th mode in the z-direction, we typically set K,, > 0.

In order to ensure the approximating accuracy of the ABC, K, should be
increased for larger values of n. Of course, if we are not interested in the

n-th mode at all, we only need to set K,, = —1. In the following numerical
example, we simply set K,, = 10 for any n = 0,1--- N, and K,, = —1 for
any n =N +1,---, where N denotes the number of modes in the z-direction

we want to resolve.

Numerical Example. We now study the wave field generated by a periodic
disturbance at the left physical boundary

+oo
B(=2,2,t) =sin(rz) Y 1000 +09)) 2 e (0, 1).

n=0

The wave speed is set to 1, and the dielectric permittivity € is set to be

(2. 2) 1 ,r <0,
e(z,z) =
1.2 —0.2cos(2rx) ,x > 0.

We limit our computational time interval to [0,6]. Due to the finite wave
propagation speed (at most 1), we can compute a reference solution E,.; in
a large domain (—2,4) x (0,1) U (—1,0) x (1,2) with small mesh sizes Ax =
Az = 0.00125 and At = 0.000625. The leap-frog central difference scheme
is employed in all the computations. We use the standard fast evaluation
technique proposed by Alpert, Greengard and Hagstrom [1| for the convolution
operations involved in the ABC (21). The poles and weights are taken from
the webpage of Hagstrom. The relative L2-error is defined as

||Eref('a ) t) - Enum(’ ) t)”LZ
[Erer(-,+ 6)|[r2 7

where E,.r stands for the reference solution, while £,,,,,, denotes the numerical
solution.
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In Figs. 12 and 13 we compare the numerical solutions with the reference
solutions at two different time steps. No difference can be observed with eyes.
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Fig. 12. At time ¢t = 3. The number of modes is 10. The contour lines are
—1:2/21:1. Az = Az = 0.005. At = 0.0025. The reference solution is obtained by
taking Ax = Az = 0.00125 and At = 0.000625.
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Fig. 13. At time ¢t = 6. The number of modes is 10. The contour lines are
—1:2/21:1. Az = Az = 0.005. At = 0.0025. The reference solution is obtained by
taking Ax = Az = 0.00125 and At = 0.000625.
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In Fig. 14 we depict the errors when different number of modes in the z-
direction are used. The accuracy of the numerical solutions is greatly improved
for large number of modes.

0.2 :
— Reference
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Num. Modes=5
Num. Modes=7 ||
0.15 + Num. Modes=10

01 |
©
N
S
L

0.05 N
R,
¢ V0000
00609 %00 \
of %00}

-0.05 : : : :

Fig. 14. At time t = 6. Ax = Az = 0.02. At = 0.01. The reference solution is
obtained by taking Az = Az = 0.00125 and At = 0.000625. The line is x = 0.

The error evolution with respect to the time ¢ is shown in Fig. 15. At the
initial stage, the wave does not reach the artificial boundary, thus the ABC
has no influence on the numerical solutions. The error arises completely from
the interior discretization. After a critical time point (almost t = 2.5), the
artificial boundary condition comes into effect. We see that if enough number
of modes are used, the error from the approximate boundary condition is
nearly on the same level of interior discretization, which means the ABC is
sufficiently accurate in this parameter regime. Finally, we analyzed numerically
in Fig. 16 the convergence rate of the relative L2-errors at t = 6. Data fitting
reveals that the errors decay with an order of 1.851 in the parameter range
At € [0'—32, 0.01], when the number of modes in the z-direction is set to 10.
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Fig. 15. Relative L? error. Ax = Az = 0.005. At = 0.0025. The reference solution
is obtained by taking Az = Az = 0.00125 and At = 0.000625.
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Fig. 16. Relative L? error. Az = Az = 2At. The reference solution is obtained by
taking Az = Az = 0.00125 and At = 0.000625.
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Conclusions

In this paper we have generalized a recent result of Zheng [29] and derived an
exact Dirichlet-to-Neumann artificial boundary condition for general problems
with periodic structures at infinity. We considered in detail the bound state
problem for the Schrodinger operator and a second order hyperbolic equation
in two space dimensions. Intensive numerical tests have strongly supported
the validity of this new kernel expression for the artificial boundary condition,
though at this stage we did not prove it theoretically, but the proof of this
conjecture is currently under study.

It is tempting to generalize the result of this paper to the derivation of fully dis-
crete artificial boundary conditions |7| for periodic potential problems. These
boundary conditions are directly derived for the numerical scheme. Another
very challenging task would be the extension of the present work to multi-
dimensional problems with periodic structures.
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