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Abstract. Environmental problems are becoming more and more important for our world and
their importance will even increase in the future. High pollution of air, water and soil may cause
damage to plants, animals and humans. Therefore, the development of industry must be coupled
with the protection of the environment. In this connection we shall consider the problems of optimal
location of industrial enterprises and optimization of emissions from enterprises for ensuring sani-
tary environment criteria. Moreover, we study the problem of determination of the coefficients of
diffusion and the coefficient of transformation of aerosols. Several numerical experiments illustrate
the ability of the presented methods.

1 Introduction

At the beginning of this chapter will give a brief introduction to the mathematical formula-
tion of air pollution models. LetG be a cylindrical domain in the three–dimensional space
with the side surfaceΣ, the upper surfaceΣH (z = H) and the bottom surfaceΣ0 (z = 0).
In the sequel we shall use the following notations:

• ϕ(x, y, z, t) denotes the concentration of aerosol pollutants

• u = ui + vj + wk is the velocity vector of wind

• σ ≥ 0 stands for the transformation coefficient of pollutants

• µ, ν are the horizontal and vertical coefficients of diffusion, respectively

• Σ− andΣ+ are the parts of the side surfaceΣ, whereun = u · n < 0 andun ≥ 0,
respectively. Here,n is the outward unit normal toΣ

• wg = constant > 0 denotes the falling velocity of the pollutants by gravity

• f is the power of the source.
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The problem of air pollution is stated as follows: Determinethe functionϕ(x, y, z, t) that
satisfies the differential equation

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
+ (w − wg)

∂ϕ

∂z
− µ(

∂2ϕ

∂x2
+

∂2ϕ

∂y2
) −

∂

∂z
(ν

∂ϕ

∂z
) + σϕ = f, (1)

and the following initial and boundary conditions

ϕ = ϕ0 at t = 0,

∂ϕ

∂z
= αϕ on Σ0,

∂ϕ

∂z
= 0 on ΣH ,

ϕ = ϕs on Σ−,

∂ϕ

∂n
= 0 on Σ+.

(2)

Moreover, we assume here that (cf. [13])

divu =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

w = 0 at z = 0, z = H.

(3)

Using the first relation in (3) and consideringw−wg as the vertical component of the vector

u with the notation∆ϕ = ∂2ϕ
∂x2 + ∂2ϕ

∂y2 we can rewrite the equation (1) in the form

∂ϕ

∂t
+ div(uϕ) − µ∆ϕ −

∂

∂z
(ν

∂ϕ

∂z
) + σϕ = f. (4)

Instead of the two boundary conditions on two parts ofΣ it is possible to pose the following
one

ϕ = ϕs on Σ. (5)

We shall refer to the equation (1) as themain equationand to the problem (1), (2) or (1), (5)
as themain problems. It is well–known that the above problems allow for a unique solution.

The problem (1), (2) is a general 3D one. In many cases it is useful to use a 2D model
that is an adequate approximation of the 3D problem:

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
− µ∆ϕ + σϕ = f in Ω,

ϕ = ϕ0 at t = 0,

ϕ = ϕs on Γ at un < 0,

∂ϕ

∂n
= 0 on Γ at un ≥ 0,

(6)

whereΓ is the boundary of the 2D domainΩ. Here it is assumed that the components
of velocity u andv do not change with the altitude in the active layer of the substance
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transport and diffusion. In the above equationϕ(x, y, t) is the average of the concentration
of pollutants in all heights of the cylindrical domain underconsideration.

Many practical problems, for example, the substance (e.g. saline and alum) propagation
in rivers (see [3], [16]), the stationary problem of air pollution generated by a point source
(see [4], [15]) can even be reduced to the following 1D problem:

∂ϕ

∂t
+ u

∂ϕ

∂x
− µ

∂2ϕ

∂x2
+ σϕ = f, −∞ < x < +∞, t > 0,

ϕ = ϕ0 at t = 0,

ϕ → 0 as |x| → ∞.

(7)

If we limit the problem to a finite interval then we can pose thefollowing boundary condi-
tions

ϕ = ϕs at B−,

∂ϕ

∂x
= 0 at B+,

whereB− andB+ denote the endpoints at which the flow comes in and comes out, respec-
tively.

2 Adjoint problems

In this section we consider the main problem (1), (2) with homogeneous initial and bound-
ary conditions, i.e. the problem

∂ϕ

∂t
+ div(uϕ) − µ∆ϕ −

∂

∂z
(ν

∂ϕ

∂z
) + σϕ = f,

ϕ = 0 at t = 0,

∂ϕ

∂z
= αϕ on Σ0,

∂ϕ

∂z
= 0 on ΣH ,

ϕ = 0 on Σ−,

∂ϕ

∂n
= 0 on Σ+.

(8)
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By the same way as in [13], [14] for the main problem with homogeneous boundary condi-
tions and a periodic condition in the time variable we obtainthe adjoint problem

−
∂ϕ∗

∂t
− div(uϕ∗) − µ∆ϕ∗ −

∂

∂z
(ν

∂ϕ∗

∂z
) + σϕ∗ = p,

ϕ∗ = 0 at t = T,

∂ϕ∗

∂z
= αϕ∗ on Σ0,

∂ϕ∗

∂z
= 0 on ΣH ,

ϕ∗ = 0 on Σ−,

µ
∂ϕ∗

∂n
+ unϕ∗ = 0 on Σ+.

(9)

Here, thecomplementary conditions(3) are used. There is the following adjoint relation
∫ T

0
dt

∫

G
pϕdG =

∫ T

0
dt

∫

G
ϕ∗fdG. (10)

Similarly to the 3D case we consider the 2D problem with homogeneous initial and bound-
ary conditions

∂ϕ

∂t
− div(uϕ) − µ∆ϕ + σϕ = f,

ϕ = ϕ0 at t = 0,

ϕ = ϕs on Γ at un < 0,

∂ϕ

∂n
= 0 on Γ at un ≥ 0.

(11)

The adjoint problem for the above problem reads

−
∂ϕ∗

∂t
− div(uϕ∗) − µ∆ϕ∗ + σϕ∗ = p,

ϕ∗ = 0 at t = T,

ϕ∗ = ϕ∗
s on Γ at un < 0,

µ
∂ϕ∗

∂n
+ unϕ∗ = 0 on Γ at un ≥ 0,

(12)

and the adjoint relation has the form
∫ T

0

∫

Ω
pϕdG =

∫ T

0
dt

∫

Ω
ϕ∗fdΩ. (13)

In the 1D case for the main problem with homogeneous initial and boundary conditions

∂ϕ

∂t
+ u

∂ϕ

∂x
− µ

∂2ϕ

∂x2
+ σϕ = f, a < x < b, t > 0,

ϕ = 0 at B−,

∂ϕ

∂x
= 0 at B+,

(14)
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the adjoint problem reads

−
∂ϕ∗

∂t
− u

∂ϕ∗

∂x
− µ

∂2ϕ∗

∂x2
+ σϕ∗ = p, a < x < b,

ϕ∗ = 0 at t = T,

ϕ∗ = 0 at B−,

µ
∂ϕ∗

∂x
+ uϕ∗ = 0 at B+.

(15)

If the 1D main problem is considered in the unbounded domain−∞ < x < +∞ with the
decay conditionϕ → 0 for |x| → ∞, then its adjoint problem is

−
∂ϕ∗

∂t
− u

∂ϕ∗

∂x
− µ

∂2ϕ∗

∂x2
+ σϕ∗ = p, −∞ < x < +∞,

ϕ∗ = 0 at t = T,

ϕ∗ → 0 at |x| → ∞.

(16)

It is important to remark that all the stated adjoint problems can be reduced to the corres-
ponding problems by making the substitutiont′ = T − t andu′ = −u. Therefore, all the
qualitative results such as the uniqueness of solution for the main problems are also valid for
the adjoint ones and all numerical methods for solving main problems are also applicable
to adjoint problems.

3 Numerical solution of main and adjoint problems

For solving the main and adjoint problems of aerosol propagation there exists a large num-
ber of numerical schemes. Mainly, they are based on splitting methods developed by Ya-
nenko [22] and Marchuk [13]. These schemes are stable and possess good approximation
properties, but they may lead to solutions with negative values that are meaningless. There-
fore, it is desired to construct difference schemes that avoid this defect. These difference
schemes must ensure that if all initial and boundary conditions are nonnegative, then the
solution of the corresponding problem is nonnegative, too.The difference schemes of this
type are calledmonotone(or positive) ones (see [7]). Below, we present the method for con-
structing monotone difference schemes for the main problem(1), (2) developed in [6], [5].
Throughout this chapter we shall use the standard difference notations of Samarskii [17].

We begin with the consideration of the 1D parabolic problem

c(x, t)
∂ϕ

∂t
= Lϕ + f(x, t), 0 < x < 1, 0 < t ≤ T,

ϕ(0, t) = µ1(t), ϕ(1, t) = µ2(t),

ϕ(x, 0) = ϕ0(x),

(17)
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where

Lϕ =
∂

∂x
(k(x, t)

∂ϕ

∂x
) + r(x, t)

∂ϕ

∂x
− q(x, t)ϕ,

0 < c1 ≤ k(x, t) ≤ c2, c(x, t) ≥ c1, q(x, t) ≥ 0.
(18)

We will construct a difference scheme for this problem on theuniform grid

ωhτ = {xi = ih, tj = jτ, i = 0, 1, . . . , N ; j = 0, 1, . . . , J ; h = 1/N ; τ = T/J}.

Firstly, we associate with the operatorL a perturbation operator

L̃ϕ = χ
∂

∂x
(k(x, t)

∂ϕ

∂x
) + r(x, t)

∂ϕ

∂x
− q(x, t)ϕ, (19)

whereχ = 1/(1 + R), R = 0.5h|r|/k and approximate the latter one by the difference
operator

Λ̃y = χ(ayx̄)x + b+a(+1)yx + b−ayx̄ − dy, (20)

where

b± = r̃±(x, t), a = k(x − 0.5h, t), d = q(x, t),

r± = (r ± |r|)/2, r̃± = r±/k, a
(+1)
i = ai+1.

Next, the problem (17) is replaced by the difference scheme

c(x, t̄)yt = Λ̃(t̄)ŷ + f, t̄ = t + τ/2,

y(0, t) = µ1(t), y(1, t) = µ2(t),

y(x, 0) = ϕ0(x).

(21)

This scheme has a truncation error of orderO(h2 + τ) and is monotone. In this aspect the
Crank–Nicolson difference scheme for the problem (17) is not better than (21) although it
is of orderO(h2 + τ2) because the Crank–Nicolson method is monotone only ifτ/h2 ≤
1/(2min k + hmax |r|). The same conclusion holds for the so–calledoptimal weighting
schemeof Wang and Lacroix [21].

If instead of a Dirichlet boundary condition there are Robinboundary conditions posed
at the endpoints, for example,

(

αϕ +
∂ϕ

∂x

)

(1, t) = µ2(t),

then using the difference boundary condition

αϕN +
yN+1 − yN−1

2h
= µ2,

we also obtain a monotone difference scheme for the corresponding differential problem.
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Now, we consider the three–dimensional problem for the mainproblem (1), (2). For
simplicity we suppose that the domainG is a parallelepiped[0, X] × [0, Y ] × [0, Z]. In
order to construct a difference scheme for (1), (2) we rewrite equation (1) in a convenient
form

∂ϕ

∂t
− (L1 + L2 + L3)ϕ = f in G × (0, T ], (22)

where

L1ϕ = µ
∂2ϕ

∂x2
− u

∂ϕ

∂x
,

L2ϕ = µ
∂2ϕ

∂y2
− v

∂ϕ

∂y
,

L3ϕ =
∂

∂z
(ν

∂ϕ

∂z
) − (w − wg) − σϕ.

(23)

We employ on the domainG the uniform gridGh = {xi = ih1, yj = jh2, zk = kh3} and
approximate the above differential operators (23) by the following monotone difference
operators

Λ̃1φ = χ(x)µφx̄x − uφx̄,

Λ̃2φ = χ(y)µφȳy − vφȳ,

Λ̃3φ = χ(z)(aφz̄)z + b+a(+1)φx + b−aφx̄ − σφ,

where

χ(x) = 1/(1 + R(x)), R(x) = 0.5h1u/µ,

χ(y) = 1/(1 + R(y)), R(y) = 0.5h2v/µ,

χ(z) = 1/(1 + R(z)), R(z) = 0.5h3|r|/ν, r = w − wg,

a =ν(z − 0.5h3), a
(+1)
i = ai+1, b± = r±/ν, r± = (r ± |r|)/2.

Now we write the difference scheme for the equation (22) withthe boundary conditions for
the case that the wind velocity is given byu = (u, 0, 0):

φl+1/3 − φl

τ
− Λ̃1φ

l+1/3 = 0, φ
l+1/3
0 = 0, φ

l+1/3
I+1 − φ

l+1/3
I−1 = 0,

φl+2/3 − φl+1/3

τ
− Λ̃2φ

l+2/3 = 0, φ
l+2/3
0 = 0, φ

l+2/3
J = 0,

φl+1 − φl+2/3

τ
− Λ̃3φ

l+1 = f l+1, αφl+1
0 −

φl+1
1 − φl+1

−1

2h3
= 0, φl+1

K = 0,

l = 0, 1, . . .

(24)

Here, for brevity, we write only one space index for the computation direction, omitting
other indexes, for exampleφI stands forφIjk.
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Due to the monotonicity of each component difference schemein (24) it is possible
to prove the positiveness of the solution of (24), its stability and the convergence order
O(h2 + τ). Finally, we note that we considered in [15] another finite difference scheme
based on theAbrashin alternative directions technique[1].

It should be remarked that, as many authors, we consider problems of propagation of
pollutants in large bounded domains and put conditions on its boundary. These conditions
indeed are artificial and close to real conditions. In the 1D case in [7] we have constructed
and studied monotone difference schemes for air pollution problems on unbounded domains
usingtransparent boundary conditions(TBC). This (discrete) TBC method was developed
by Ehrhardt for 1D parabolic problems [9], [10].

Numerical Example. In order to test the above proposed difference method we con-
sider the equation (1) withf = δ(x0, y0, H)q(t), σ = 0, u = (u, 0, 0), wg = 0 and the
following initial and boundary conditions

ϕ = 0 at t = 0,

ϕ → 0 as x, y → ±∞, z → ∞,

∂ϕ

∂z
= 0 at z = 0.

This problem admits the exact solution [12]

ϕ =

∫ t

0

q(t)

8π3/2µν1/2
exp

(

−
(x − x0 − u(t − τ))2

4µ(t − τ)
−

(y − y0)
2

4µ(t − τ)

)

[

exp
(

−
(z − H)2

4ν(t − τ)

)

+ exp
(

−
(z + H)2

4ν(t − τ)

)]

dτ. (25)

We performed the numerical computation using the difference scheme for the problem with
the following data:µ = 2, ν = 0.2, q(t) = 10, u = 2. We limit the computational domain
to [0, 50] × [0, 50] × [0, 10] and locate a source at the point(10, 25, 5). Below we present
some isograms of concentration of aerosols obtained by the difference scheme and the exact
solution.

From the Figures 1–5 one can clearly observe that the numerical solution of the problem
(1) in a limited domain agrees well with the analytical solution (25) in the unbounded
domain.

For the problem when the source of emission is a point and has aconstant power under
some assumptions on wind velocity and vertical coefficient of diffusion a monotone dif-
ference scheme for unbounded domains was constructed and a high order of accuracy was
proven (see [5]).
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Figure 1: Concentration distribution computed by numerical solution atz = 4.

Figure 2: Concentration distribution computed by analytical solution atz = 4.
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Figure 3: Concentration distribution computed by analytical solution atz = 6.

Figure 4: Concentration distribution computed by analytical solution atz = 6.
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Figure 5: Concentration distribution computed by analytical solution aty = 25, z = 5.

4 Rational location of industrial plants

First, as in [13], [14], we introduce a functional characterizing the level of pollution in a
sensitive areaΣk on the planez = 0 in the base domainΣ0

Jk =

∫ T

0
dt

∫

Gk

pkϕdGk, (26)

whereGk is a unit cylinder over the sensitive areaΣK . In Equation (26)ϕ denotes, as
before, the concentration of pollutants,

pk =

{

bk + akδ(z) in Gk

0 outsideGk

. (27)

Usually we take

bk =
1

T
, ak = wg + αν, (28)

wherewg = constant > 0 denotes the falling velocity of the pollutants by gravity. Then

1

T

∫ T

0
dt

∫

Gk

ϕdGk (29)

is the average amount of aerosols inGk and

∫ T

0
dt

∫

Gk

akδ(z)ϕdGk = ak

∫ T

0
dt

∫

Σk

ϕdΣk (30)

is the total fallout of pollutants in the areaΣk.
Now let there bem sensitive areasΣk, k = 1, . . . , m on the planez = 0 in the domain

Σ0. These may be populated areas, recreation zones, water reservoirs, etc. We consider the
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problem of locating a new industrial plant so that the pollution of all them areasΣk does
not exceed the approved standards (if such a location is possible in Σ0 at all). If the location
proves impossible onΣ0 we formulate restrictions on the rate of pollution emissions Q
which will make the location of the plant possible.

Suppose that theapproved standards of air pollutionfor the sensitive areaΣk are given
by ck. Then the problem is to choose the positionr0 = r0(x, y, H) of the source of aerosol
emission such that the conditions

Jk ≤ ck k = 1, 2, . . . , m (31)

are satisfied.
Instead of this problem we can state the problem of finding a position r0, such that

maxk Jk is minimal, i.e.

min
r∈G

max
k

Jk. (32)

There may be two methods for solving the above problems.
The first method consists of the following steps:

1. Choose a positionr0 ∈ G

2. Solve the main problem (1), (2) withf = Qδ(r− r0)

3. Compute the levels of pollutionJk of the areasΣk and verify the conditions (31)

If all the conditions are satisfied then the selected position r0 may be a location of the
source of pollutant emission. Otherwise, choose anotherr0 and repeat the above process
until a positionr0 satisfies all the conditions.

The described method for solving the problem of plant location requires a great deal
of computation due to the solution of many main problems for different test positionsr0,
especially if there is a large number of sensitive areas and industrial plants to be constructed.
This method in some sense is a ”blind method”. Another methodfor the plant location
problem is to use adjoint problems. Below we describe this method.

Let us represent the solution of the main equation

∂ϕ

∂t
+ Lϕ = Qδ(r− r0),

where for short we denote

Lϕ = div(uϕ) − µ∆ϕ −
∂

∂z
(ν

∂ϕ

∂z
) + σϕ,

with the initial and boundary conditions (2) in the form of sum ϕ = ϕ1 +ϕ2, whereϕ1 and
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ϕ2 are the solutions of the two problems

∂ϕ1

∂t
+ Lϕ1 = 0,

ϕ1 = ϕ0 at t = 0,

∂ϕ1

∂z
= αϕ1 on Σ0,

∂ϕ1

∂z
= 0 on ΣH ,

ϕ1 = ϕs on Σ−,

∂ϕ1

∂n
= 0 on Σ+,

(33)

∂ϕ2

∂t
+ Lϕ2 = Qδ(r− r0),

ϕ2 = ϕ0 at t = 0,

∂ϕ2

∂z
= αϕ1 on Σ0,

∂ϕ2

∂z
= 0 on ΣH ,

ϕ2 = 0 on Σ−,

∂ϕ2

∂n
= 0 on Σ+.

(34)

We remark that the solutionϕ1 does not depend on the source of emission while the solution
ϕ2 depends only on it.

The pollution level functional for a sensitive areaΣk now is

Jk =

∫ T

0
dt

∫

G
pkϕdG =

∫ T

0
dt

∫

G
pkϕ1dG +

∫ T

0
dt

∫

G
pkϕ2dG. (35)

We denote byϕ∗
2k the solution of the problem adjoint to (34), namely, the problem

−
∂ϕ∗

2k

∂t
− div(uϕ∗

2k) − µ∆ϕ∗
2k −

∂

∂z
(ν

∂ϕ∗
2k

∂z
) + σϕ∗

2k = pk,

ϕ∗
2k = 0 at t = T,

∂ϕ∗
2k

∂z
= αϕ∗

2k on Σ0,

∂ϕ∗
2k

∂z
= 0 on ΣH ,

ϕ∗
2k = 0 on Σ−,

µ
∂ϕ∗

2k

∂n
+ unϕ∗

2k = 0 on Σ+.

(36)
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In view of the duality relation

∫ T

0
dt

∫

G
pkϕ2dG =

∫ T

0
dt

∫

G
ϕ∗

2kQδ(r− r0)dG, (37)

we obtain

Jk =

∫ T

0
dt

∫

G
pkϕ1dG + Q

∫ T

0
ϕ∗

2k(r0, t). (38)

Thus, in the adjoint approach for calculating the functionals Jk, k = 1, . . . , m we have
to solve one main problem (33) andm adjoint problems (36) form sensitive areas. Do-
ing so, the amount of computation is significantly reduced incomparison with the direct
approach. This saving of computational effort is a remarkable advantage of the proposed
adjoint approach.

In order to choose a suitable position for a plant it is convenient to introduce the follow-
ing function

J(r) = max
k

Jk(r)

and draw isograms of this function.
Numerical Example. In this example we want to study the problem of a plant location

with given sensitive areas and approved standards of air pollution. We choose the following
parameters:

- domainG = [0, 1000] × [0, 1000] × [0, 50] (in meters)
- uniformly grid with step sizesdx = 20m, dy = 20m, dz = 5m
- time of simulationT = 1000sec, time stepdt = 5sec
- velocity vectoru = (1,−1, 0)

- falling velocitywg = 0.1

- diffusion coefficientsµ = 2, ν = 0.2
- coefficient of transformationσ = 0

- source of emissionQ = 50

- three sensitive areas:
Σ1 = [24.5, 27.5]dx × [8.5, 10.5]dy,
Σ2 = [37.5, 39.5]dx × [12.5, 14.5]dy,
Σ3 = [29.5, 31.5]dx × [33.5, 36.5]dy

- approved standards of air pollutionck = 1, k = 1, 2, 3
- initial and boundary conditions are homogeneous.
Below we present in Figures 6–13 isograms of the pollution level functionalsJk(r)

for each sensitive area and of the functionalJ(r) at the heightsz = 30m andz = 35m.
Afterwards, we show in Figures 14 and 15 all the places where aplant cannot be located
at the heightsz = 30m andz = 40m for the approved standards of air pollutionck set to
unity.

Remark that in this section we consider the problem of rational location of industrial
plants in 3D formulation.The 2D and 1D cases were studied by many authors, for example,
in [20] its authors found places for locating plants in Halong Bay with the use of 2D model.
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Figure 6: Isogram of pollution level functionalJ1 atz = 30m.

Figure 7: Isogram of pollution level functionalJ1 atz = 35m.
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Figure 8: Isogram of pollution level functionalJ2 atz = 30m.

Figure 9: Isogram of pollution level functionalJ2 atz = 35m.
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Figure 10: Isogram of pollution level functionalJ3 atz = 30m.

Figure 11: Isogram of pollution level functionalJ3 atz = 35m.
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Figure 12: Isogram of pollution level functionalJ atz = 30m.

Figure 13: Isogram of pollution level functionalJ atz = 40m.
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Figure 14: Places where a plant cannot be located atz = 30m if c1 = c2 = c3 = 1.

Figure 15: Places where a plant cannot be located atz = 40m if c1 = c2 = c3 = 1.
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A review of 1D problems concerning location of plants and optimization of emissions of
operating plants can be found in [8].

5 Optimization of emissions at operating industrial plants

Assume thatn plantsAi are located at pointsri, i = 1, 2, . . . , n of a assigned areaG.
The plants emit̄Qi, i = 1, . . . , n of aerosols per time unit. For simplicity we assume that
the emission composition is the same. Furthermore, we suppose that there arem sensitive
areasGk, k = 1, . . . , m to be protected from the polluted aerosols. The task is to determine
affordable planned pollution level emissions rateQi for every plant so that the pollution
level of the sensitive areas do not exceed the standardsck under the condition that the total
investment into technology to keep up the same production level is minimal.

Now we formulate the above problem as a problem of optimization

I =
n

∑

i=1

ξi(Q̄i − Qi) → min

Jk ≤ ck, k = 1, 2, . . . , n,

(39)

whereξi is the cost for reducing emissions per unit of emission rate.The problem (39) may
be reduced to a problem of linear programming. Two differentapproaches are possible:
main and adjoint equations.

i) Main equation approach. The main equation of diffusion and transportation of
substances emitted byn plants located at the positionsri is

∂ϕ

∂t
+ Lϕ =

n
∑

i=1

Qiδ(r− ri),

ϕ = ϕ0 at t = 0,

∂ϕ

∂z
= αϕ on Σ0,

∂ϕ

∂z
= 0 on ΣH ,

ϕ = ϕs on Σ−,

∂ϕ

∂n
= 0 on Σ+.

(40)

We represent the solution of this problem as a superpositionof solutions of elementary
problems

ϕ =

n
∑

i=1

Qiϕi(r, t) + ϕg, (41)
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whereϕi(r, t) is a solution to the problem

∂ϕi

∂t
+ Lϕi = δ(r− ri),

ϕi = 0 at t = 0,

∂ϕi

∂z
= αϕi on Σ0,

∂ϕi

∂z
= 0 on ΣH ,

ϕi = 0 on Σ−,

∂ϕi

∂n
= 0 on Σ+,

(42)

andϕg is a solution to the problem

∂ϕg

∂t
+ Lϕg = 0,

ϕg = ϕ0 at t = 0,

∂ϕg

∂z
= αϕg on Σ0,

∂ϕg

∂z
= 0 on ΣH ,

ϕg = ϕs on Σ−,

∂ϕg

∂n
= 0 on Σ+.

(43)

If we assume that all the problems (42) and (43) are solved, then we can calculate the
pollution level functional for every sensitive area by

Jk =

∫ T

0
dt

∫

G
pkϕdG =

∫ T

0
dt

∫

G
pk

(

n
∑

i=1

Qiϕi(r, t) + ϕg

)

=

n
∑

i=1

aikQi + bk,

(44)

where

aik =

∫ T

0
dt

∫

G
pkϕidG, (45)

bk =

∫ T

0
dt

∫

G
pkϕgdG. (46)
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Now the optimization problem (39) has the form

I =
n

∑

i=1

ξi(Q̄i − Qi) → min,

n
∑

i=1

aikQi + bk ≤ ck, k = 1, . . . , m.

(47)

Passing fromQi to qi = Q̄i − Qi we obtain a linear programming problem

n
∑

i=1

ξiqi → min,

n
∑

i=1

aikqi ≥ Rk, k = 1, 2, . . . , m,

qi ≥ 0, i = 1, 2, . . . , n,

(48)

where

Rk =
n

∑

i=1

aikQ̄i + bk − ck.

Thus, we have to solve in the first approachn + 1 main problems and one linear program-
ming problem.

ii) Adjoint equation approach. Represent the solution of the main problem (40) as the
sum

ϕ = ϕh + ϕg,

whereϕg, as above, denotes the solution of the problem (43) andϕh is the solution of the
problem

∂ϕh

∂t
+ Lϕh =

n
∑

i=1

δ(r− ri),

ϕh = 0 at t = 0,

∂ϕh

∂z
= αϕh on Σ0,

∂ϕh

∂z
= 0 on ΣH ,

ϕh = 0 on Σ−,

∂ϕh

∂n
= 0 on Σ+.

(49)
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Let ϕ∗
hk be the solution of the adjoint problem

−
∂ϕ∗

hk

∂t
− div(uϕ∗

hk) − µ∆ϕ∗
hk −

∂

∂z
(ν

∂ϕ∗
hk

∂z
) + σϕ∗

hk = pk,

ϕ∗
hk = 0 at t = T,

∂ϕ∗
hk

∂z
= αϕ∗

hk on Σ0,

∂ϕ∗
hk

∂z
= 0 on ΣH ,

ϕ∗
hk = 0 on Σ−,

µ
∂ϕ∗

hk

∂n
+ unϕ∗

hk = 0 on Σ+.

(50)

Then we have the duality relation

∫ T

0
dt

∫

G
pkϕhdG =

∫ T

0
dt

∫

G

n
∑

i=1

Qiδ(r− ri)ϕ
∗
hkdG

=

n
∑

i=1

Qi

∫ T

0
ϕ∗

hk(ri, t)dt =

n
∑

i=1

a∗ikQi,

(51)

where we abbreviate

a∗ik =

∫ T

0
ϕ∗

hk(ri, t)dt. (52)

Therefore, the pollution level functional for the sensitive areaΣk may be calculated as
follows

Jk =

∫ T

0
dt

∫

G
pkϕdG =

∫ T

0
dt

∫

G
pkϕhdG +

∫ T

0
dt

∫

G
pkϕgdG

=
n

∑

i=1

a∗ikQi + bk,

wherebk is computed by (46).
Hence, the optimization problem (39) becomes

n
∑

i=1

ξi(Q̄i − Qi) → min,

n
∑

i=1

a∗ikQi + b∗k ≤ ck, k = 1, 2, . . . , m,

(53)

wherea∗ik are given by (52) andb∗k = bk.
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Let us note that

a∗ik =

∫ T

0
ϕ∗

hk(ri, t)dt =

∫ T

0
dt

∫

G
δ(r− ri)ϕ

∗
hkdG

=

∫ T

0
dt

∫

G
pkϕidG = aik.

As in the main equation approach, we transform the problem (53) by lettingqi = Q̄i − Qi

to the form

n
∑

i=1

ξiqi → min,

n
∑

i=1

a∗ikqi ≥ R∗
k, k = 1, 2, . . . , m,

qi ≥ 0, i = 1, 2, . . . , n,

(54)

where

R∗
k =

n
∑

i=1

a∗ikQ̄i + b∗k − ck.

This is again a linear programming problem.
It should be noticed that in the adjoint approach before solving the linear programming

problem it is necessary to solvem adjoint problems (50) and one main problem (42) while
in the main equation approach we have to solven+1 main problems. Thus, the choice of a
method depends on the relation ofm andn, namely, ifm > n it is better to use the adjoint
approach, otherwise to use the main equation approach.

We remark that here the problem of optimization of emissionsof operating plants is
considered in 3D case. The 2D case was studied by Tran G.L. andPham T.N. [19], where
they carried out many experiments with the use of an up–wind difference scheme for main
and adjoint problems in order to verify qualitative properties of the problem. Below we
report some numerical results of the problem under consideration for two examples.

Numerical Example 1.Consider the optimization problem of emissions of plants with
the following data:

- domainG = [0, 1000] × [0, 1000] × [0, 50] (in meters)
- step sizesdx = 20m, dy = 20m, dz = 5m
- time of simulationT = 4000 sec, time stepdt = 4 sec
- velocity vectoru = (1, 0, 0), falling velocitywg = 0.1
- diffusion coefficientsµ = 2, ν = 0.2
- coefficient of transformationσ = 0.005
- 3 sensitive areas marked by rectangles:

Σ1 = [24.5, 26.5]dx × [25.5, 26.5]dy with c1 = 10,
Σ2 = [39.5, 40.5]dx × [33.5, 35.5]dy with c2 = 30,
Σ3 = [39.5, 40.5]dx × [14.5, 16.5]dy with c3 = 20
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- initial and boundary conditions are homogeneous.
- 4 sources of emissions marked by circles: the first source atpoint (200, 500, 20) with

rate100, the second source at point(300, 700, 30) with rate70, the third source at point
(300, 300, 25) with rate50 and the fourth source at point(600, 500, 15) with rate90.

- costs for reducing one unit of emission rate of plants are1.2, 1.4, 1.0 and1.5, resp.
The result of the numerical computation is given in the Table1.

Source Planned emission rate Cost for reducing emission rates
1 88.326 14.009
2 60.670 13.062
3 36.259 13.741
4 90 0

Table 1: Optimal emission rates in Example 1.

The pollution level functionals of the sensitive areas before and after reducing emission
rates are(11.322, 34.613, 27.579) and(10, 30, 20), respectively.

Next, the following Figures 16 and 17 show the average (in time) concentration dis-
tribution of aerosols atz = 0m before and after optimizing emission rates of sources,
respectively.

Figure 16: Average concentration distribution atz = 0m before optimizing sources in
Example 1.
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Figure 17: Average concentration distribution atz = 0m after optimizing sources in Exam-
ple 1.

Numerical Example 2.The data in this example are the same as in the previous exam-
ple except for the following changes:

- velocity vectoru = (1,−0.5, 0)
- approved pollution standards arec1 = 1, c2 = 2, c3 = 15.
The result of calculations is given in the following Table 2.

Source Planned emission rate Cost for reducing emission rates
1 84.288 18.927
2 63.055 9.723
3 50 0
4 90 0

Table 2: Optimal emission rates in Example 2.

Here, the pollution level functionals of the sensitive areas before and after reducing
emission rates are(1.120, 2.061, 17.388) and(1, 1.856, 15), respectively.

The following Figures 18–19 present the average (in time) concentration distribution of
aerosols atz = 0m before and after optimizing emission rates of sources, respectively.
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Figure 18: Average concentration distribution atz = 0m before optimizing sources in
Example 2.

Figure 19: Average concentration distribution atz = 0m after optimizing sources in Exam-
ple 2.
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6 Determination of the coefficients of diffusion and transforma-
tion of pollutants

The coefficients of diffusionµ, ν and the coefficient of transformationσ of aerosols are im-
portant parameters of mathematical models for the study of air pollution in the atmosphere.
These coefficients depend on many factors. Following Kartvelishvili [11], in general, these
coefficients may depend on the concentration of aerosols. But as an approximation we sup-
pose that they are constants and shall find them under the assumption that the concentration
field of pollutants is known from measurements at grid pointsand at some times. Discretiz-
ing the equation (1) and considering difference equations for those grid points at those time
moments where and when measurements are made, we obtain a system of equations of the
form

3
∑

j=1

aijλj = bi, i = 1, . . . , N,

where we use the notation(λ1, λ2, λ3) = (µ, ν, σ). This is a system ofN equations with 3
unknowns. For finding them it is possible to use the method of least squares, which gives an
approximation ofµ, ν, σ with minimal error. However, this may lead to negative solution.
In order to avoid this drawback, it is better to solve the following quadratic programming
problem

N
∑

i=1

(
3

∑

j=1

aijλj − bi)
2 → min,

λi ≥ 0 i = 1, 2, 3.

(55)

Numerical Example. For illustrating the ability of the above method we performed
a numerical experiment, where the concentration field is obtained from the solution of the
problem (1), (2) with the following data:

- domainG = [0, 1000] × [0, 1000] × [0, 50] (in meters)
- step sizesdx = 20m, dy = 20m, dz = 5m.
- time stepdt = 4sec
- velocity vectoru = (0, 0, 0)
- falling velocitywg = 0
- diffusion coefficientsµ = 2, ν = 0.2
- coefficient of transformationσ = 0.005
- source of emissionQ = 10 at position(100, 100, 25)
- initial and boundary conditions are homogeneous.
We use the data of the concentration field obtained in the gridpoints
(xi, yj , zk), i = istart, ..., iend; j = jstart, ..., jend; k = kstart, ..., kend
at times tm, m = mstart, ..., mend, which for brevity we write as(istart :

iend, jstart : jend, kstart : kend, mstart : mend).
Below we present in Table 3 the results of computing numerically (µ, ν, σ) for various

grids.
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Grid domain (µ, ν, σ) found
(0:8, 0:8, 2:6, 99:101) ( 1.959, 0.205, 4.643e-4)
(0:8, 0:8, 2:6, 499:501) ( 1.957, 0.205, 4.849e-4)
(0:8, 0:8, 2:6, 999:1001) ( 1.957, 0.205, 4.858e-4)
(6:14, 6:14, 0:4, 99:101) ( 2.021, 0.197, 6.214e-4)
(6:14, 6:14, 0:4, 499:501) ( 2.072, 0.206, 5.376e-4)
(1:49, 1:49, 0:4, 499:501) ( 2.012, 0.204, 4.976e-4)

Table 3: Computed values of(µ, ν, σ) for input data in various grid domains

Conclusion

In this chapter we have presented a monotone difference scheme for solving the 3D problem
of diffusion and transport of aerosols in a bounded domain which ensures high accuracy and
especially ensures the positivity of the solution. The realization of the scheme is reduced
to solving 1D problems that require economical computational amount. Using the solution
of the main problems of propagation of aerosols and their adjoint problems we solve the
problem of locating new plants and the problem of optimization of emissions rates of op-
erating industrial plants in order to keep the pollution level in given sensitive areas under a
prescribed level. They are very important problems to be solved to achieve sustainable de-
velopment, especially in developing countries, such as Vietnam, when foreign investment
increases from year to year. A simple way for determining several parameters of the air
pollution model also is proposed and experimentally studied for its applicability.

Future work will be concerned with problems in unbounded 2D and 3D domains, in
domains with complicated geometry, the propagation of active aerosols and problems with
complex environmental standards.
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