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Abstract. Environmental problems are becoming more and more impoigarur world and
their importance will even increase in the future. High ptidin of air, water and soil may cause
damage to plants, animals and humans. Therefore, the geneld of industry must be coupled
with the protection of the environment. In this connectiomshall consider the problems of optimal
location of industrial enterprises and optimization of ssions from enterprises for ensuring sani-
tary environment criteria. Moreover, we study the problendetermination of the coefficients of
diffusion and the coefficient of transformation of aeros@sveral numerical experiments illustrate
the ability of the presented methods.

1 Introduction

At the beginning of this chapter will give a brief introdumtito the mathematical formula-
tion of air pollution models. Le€ be a cylindrical domain in the three—dimensional space
with the side surfac®, the upper surfacEy (z = H) and the bottom surfacg, (z = 0).

In the sequel we shall use the following notations:

e o(z,y, z,t) denotes the concentration of aerosol pollutants

e u = ui + vj + wk is the velocity vector of wind

o > 0 stands for the transformation coefficient of pollutants

1, v are the horizontal and vertical coefficients of diffusiogspectively

> _ andX, are the parts of the side surfatewhereu,, = u-n < 0 andu,, > 0,
respectively. Heren is the outward unit normal t&

e w, = constant > 0 denotes the falling velocity of the pollutants by gravity

f is the power of the source.
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The problem of air pollution is stated as follows: Determihe functiony(z, y, 2, t) that
satisfies the differential equation
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and the following initial and boundary conditions

p=¢o at t=0,

0
—Lp:ozgo on X,
0z

dp
T =
p=¢s on X_,
dp
e
Moreover, we assume here that (cf. [13])
ou Ov OJw
or oy 0 ©)
w=0 at z=0,z=H.

0 on X, (2)

0 on X..

divu =

Using the first relation in (3) and considering-w, as the vertical component of the vector
u with the notationAy = ‘327“5 + ?;Tf we can rewrite the equation (1) in the form

Jp . 9 Oy _
¢ Tdiv(up) —plp — == (vo7) +op = f. (4)

Instead of the two boundary conditions on two part&dtfis possible to pose the following
one
p=ps on X. (5)
We shall refer to the equation (1) as ti@in equatiorand to the problem (1), (2) or (1), (5)
as themain problemsilt is well-known that the above problems allow for a uniqakigon.
The problem (1), (2) is a general 3D one. In many cases it iRiliseuse a 2D model
that is an adequate approximation of the 3D problem:

dp o = Oy

—— - — — uA = in Q

at+“ax+”ay wAp +op = f ,
p=wo at t=0, (6)
p=ws on I' at wu,<O0,
9y

—0 on T at wu,>0,
on

wherel is the boundary of the 2D domaid. Here it is assumed that the components
of velocity v andv do not change with the altitude in the active layer of the e
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transport and diffusion. In the above equatig(x, y, t) is the average of the concentration
of pollutants in all heights of the cylindrical domain una@ensideration.

Many practical problems, for example, the substance (elgpesand alum) propagation
in rivers (see [3], [16]), the stationary problem of air pibn generated by a point source
(see [4], [15]) can even be reduced to the following 1D proble

ot Ox M(%U?

p=¢o at t=0,

+op=f —o<x<+o00,t>0,

(7)

¢—0 as |z]— o0

If we limit the problem to a finite interval then we can pose fiblkbowing boundary condi-
tions

Y =@s at B—v

Op

= at B
ox 0 +>

whereB_ and B, denote the endpoints at which the flow comes in and comesesjtec-
tively.

2 Adjoint problems

In this section we consider the main problem (1), (2) with bgeneous initial and bound-
ary conditions, i.e. the problem

Jip . 0, dy
7F — uAp — — (V== =
5 T div(up) — plAp — (V") +op = f,
p=0 at t=0,
Z—(p =ap on 3,
. ®)
=0 )
0z on "
=0 on X_,
8_@ =0 on X,.
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By the same way as in [13], [14] for the main problem with homegous boundary condi-
tions and a periodic condition in the time variable we obth&adjoint problem
- 3t —dIV(UQO )_IMA@ _Z(V az)—'_o-so =D,
e =0 at t=T,
9o =ap® on X,
0z
. (©)
=0 on Xp,

0z

e =0 on X_,

*

’u(‘;i +u,p* =0 on Xj.

Here, thecomplementary conditior(8) are used. There is the following adjoint relation

/OTdt/GpgodG:/OTdt/Ggp*fdG. (10)

Similarly to the 3D case we consider the 2D problem with hoem&gpus initial and bound-
ary conditions

o
a—f —div(up) — pAp +op = f,

p=¢o at t=0,

(11)
p=¢ps on I' at wu,<0,
8_@20 on I' at wu,>0.
on
The adjoint problem for the above problem reads
0p* . %
- ; —div(up®) — pAp* +op* =p,
=0 at t=T,
e (12)
p'=¢; on I' at wu, <0,
dp* x
W +upe =0 on I' at wu, >0,
on

and the adjoint relation has the form

/OT/ngodG:/OTdt/an*fdQ. (13)

In the 1D case for the main problem with homogeneous initidlleoundary conditions

99 99 929
(9t u()x M g)xz f f7 <z < 9 > 07

=0 at B_, (14)

¢ _

= at B
I 0 +5
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the adjoint problem reads

a@* 8(,0* 82(,0*

_ _ - * = <x<b
Ot uax MaxQ tog =p, a<v ’
=0 at t=T,
i (15)
©*=0 at B_,
a*
WX Lup =0 at B,
oz

If the 1D main problem is considered in the unbounded domain < x < +oo with the
decay conditionp — 0 for |z| — oo, then its adjoint problem is

* * 2k
9" O _Maso
Ot oz 0z2
e =0 at t=T,

" —0 at |z|]— oc.

+op"=p, —o0<x< 00,

(16)

It is important to remark that all the stated adjoint prolderan be reduced to the corres-
ponding problems by making the substitutidn= 7' — t andu’ = —u. Therefore, all the
gualitative results such as the uniqueness of solutiomtontain problems are also valid for
the adjoint ones and all numerical methods for solving maoblems are also applicable
to adjoint problems.

3 Numerical solution of main and adjoint problems

For solving the main and adjoint problems of aerosol propagahere exists a large num-
ber of numerical schemes. Mainly, they are based on spjittiethods developed by Ya-
nenko [22] and Marchuk [13]. These schemes are stable arsbg®good approximation
properties, but they may lead to solutions with negativeesthat are meaningless. There-
fore, it is desired to construct difference schemes thadais defect. These difference
schemes must ensure that if all initial and boundary commitiare nonnegative, then the
solution of the corresponding problem is nonnegative, idte difference schemes of this
type are callednonotondor positive ones (see [7]). Below, we present the method for con-
structing monotone difference schemes for the main prolflgn(2) developed in [6], [5].
Throughout this chapter we shall use the standard differantations of Samarskii [17].

We begin with the consideration of the 1D parabolic problem

0
c(x,t)a—f:L¢+f(x,t), 0<z<l1, 0<t<T,

90(0775) = :ul(t)> (p(l, t) = ﬂQ(t)a
90(1‘70) = @O(x)a

(17)
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where
0 Oy Oy
Lo = —(k(z,t)== t)—— — t
o= 5o (k(@ )5 ) +riz,t) 5 — (@, ), (18)
0<c <k(x,t) <ca, c(z,t) > c1, q(z,t) > 0.
We will construct a difference scheme for this problem onuhigorm grid
whr ={z; =ih,t; =47,i=0,1,...,N;j=0,1,...,J;h=1/N;7 =T/J}.
Firstly, we associate with the operatbia perturbation operator
= 0 dy dy
Lo = x7_(k(z,t) 5 ) +r(@,t) 5 — q(z,t)p, (19)

wherex = 1/(1 + R), R = 0.5h|r|/k and approximate the latter one by the difference
operator

Ay = x(ayz). + bTa Dy, + b~ ay: — dy, (20)

where

bi:fi(x,t), a = k(x —0.5h,t), d=q(x,t),

rt = (r+1r))/2, it = Ti/l{i, agﬂ) = Ujt1-
Next, the problem (17) is replaced by the difference scheme

cle, Dy = ADg+ f, T=t+7/2,
y(O, t) = (t)a y(lv t) = MQ(t)v (21)
y(x,0) = ¢o().

This scheme has a truncation error of or@éh? + 7) and is monotone. In this aspect the
Crank—Nicolson difference scheme for the problem (17) tshedter than (21) although it
is of orderO(h? + 72) because the Crank—Nicolson method is monotone onty fif <
1/(2mink + hmax |r|). The same conclusion holds for the so—calietimal weighting
schemef Wang and Lacroix [21].

If instead of a Dirichlet boundary condition there are Rdbdundary conditions posed
at the endpoints, for example,

(0 + 22)(1,1) = alt),

then using the difference boundary condition

o + YN+1 — YN-1 _
PN — on 12,

we also obtain a monotone difference scheme for the corneléipg differential problem.
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Now, we consider the three—dimensional problem for the rpadblem (1), (2). For
simplicity we suppose that the domaihis a parallelepipedn, X] x [0,Y] x [0, Z]. In
order to construct a difference scheme for (1), (2) we rengguation (1) in a convenient

form
Oy

E—(Ll—l—Lg—l—Lg)«p:f in G x (0,7T], (22)
where
Lo L 0
o Dy
_,2r Y% 23
LQQO Hayz /Uaya ( )
0, Oy

Lsp = &(Vg) — (w —wy) — op.

We employ on the domai@' the uniform gridG), = {z; = ihi,y; = jho, 2z = khs} and
approximate the above differential operators (23) by tHevwieng monotone difference
operators

A1¢ = X(I)N(ba_:ac — udz,

Asg = X pdgy — vey,

Asp = x(ags). + bt a ™, + b"ags — o6,

where

X =1/(1+ B9, R® =0.5hu/p,
Y =1/1+RWY), R® =0.5h0/p,
X =1/(1+ R, R® = 05h0r| /v, r=w—w,,

a =v(z — 0.5h3), CLZ(Jrl =aip1, b =rt/v, T =(rtr])/2.

~—

Now we write the difference scheme for the equation (22) withboundary conditions for
the case that the wind velocity is given hy= (u, 0, 0):

I+1/3 _ 4l _

¢ ¢ Raghtis —o, gl —g, gl _glrs _ g

T I+1 I-1

P E I VE R 14+2/3 1+2/3 1+2/3
e 7Y "} =0 =0, =0,
- 26 ) O (24)
gt — g'ta Ml

~ ALttt = piHl +1 Y1 =0 +1 _
- 3¢ f 9 Oé¢0 2h3 ’ ¢K )

1=0,1,...

Here, for brevity, we write only one space index for the cotapan direction, omitting
other indexes, for examplg; stands foky ;.
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Due to the monotonicity of each component difference schien{g4) it is possible
to prove the positiveness of the solution of (24), its stgbdnd the convergence order
O(h? + 7). Finally, we note that we considered in [15] another finitfedence scheme
based on thébrashin alternative directions techniq{i.

It should be remarked that, as many authors, we considetgmsbof propagation of
pollutants in large bounded domains and put conditionshaundary. These conditions
indeed are artificial and close to real conditions. In the &Bedn [7] we have constructed
and studied monotone difference schemes for air pollutioblpms on unbounded domains
usingtransparent boundary conditioff3BC). This (discrete) TBC method was developed
by Ehrhardt for 1D parabolic problems [9], [10].

Numerical Example. In order to test the above proposed difference method we con-
sider the equation (1) witlf = d§(xo, yo, H)q(t), o0 = 0, u = (u,0,0), w, = 0 and the
following initial and boundary conditions

p=0 at t=0,
p—0 as z,y— Foo, z — o0,

99 _

—0 at z=0.
8ZOaZO

This problem admits the exact solution [12]

_ [t () (z —@o—ult—7))*  (y—y0)°
[ /0 873/2y11/2 P ( a 4(;L(t —7)  Aul(t —07'))

o H)2 . 2
[exp ( — %) +exp<— %)]dr (25)

We performed the numerical computation using the diffeeesuheme for the problem with
the following data;. = 2, v = 0.2, ¢(¢) = 10, u = 2. We limit the computational domain
to [0, 50] x [0,50] x [0,10] and locate a source at the po{ib, 25, 5). Below we present
some isograms of concentration of aerosols obtained byiffieesthce scheme and the exact
solution.

From the Figures 1-5 one can clearly observe that the nuateotution of the problem
(1) in a limited domain agrees well with the analytical smnt(25) in the unbounded
domain.

For the problem when the source of emission is a point and basstant power under
some assumptions on wind velocity and vertical coefficidrdiffusion a monotone dif-
ference scheme for unbounded domains was constructed agh arlder of accuracy was
proven (see [5]).
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Numerical sI;Dlution of Iconcentratign distlibutlion at z=4m

50

40 - - - - - .

30 A

20

U 1 1 1 1
0 10 20 30 40 50

Figure 1: Concentration distribution computed by numéscéution atz = 4.

Analytical solution of concentration distribution at z=4m

40 1 1 1 ! -

30 A

20

U T T T 1
0 10 20 30 40 50

Figure 2: Concentration distribution computed by anagitgolution at: = 4.
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Numerical sI;Dlution of Iconcentratign distlibutlion at z=bm
50
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20
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Figure 3: Concentration distribution computed by anaitgolution at: = 6.

Analytical solution of concentration distribution at z=6m

40 1 1 1 ! -

30 A

20

U T T T 1
0 10 20 30 40 50

Figure 4: Concentration distribution computed by anagltsolution atz = 6.
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Numerical and analytical concentration profile at y=25m, z=5m
I L L I L L I I I

® Nurmerical
a8 | | | | | | | ® Analytical |
6 i
4 - i

JNENERER

T T 1
0 5 110 15 20 25 30 35 40 45 50

Figure 5: Concentration distribution computed by anagjtgolution aty = 25, z = 5.

4 Rational location of industrial plants

First, as in [13], [14], we introduce a functional charaieig the level of pollution in a
sensitive are&;, on the plane: = 0 in the base domaik

T
Ty = / dat / prdGh, (26)
0 Gy

where Gy, is a unit cylinder over the sensitive arga;. In Equation (26), denotes, as
before, the concentration of pollutants,

b +ard(z) InG
A @)
0 outsideGy,
Usually we take
1
b = T Ok =Wy + av, (28)
wherew, = constant > 0 denotes the falling velocity of the pollutants by gravitheh
1 T
— / dt / wdGy, (29)
T Jo G
is the average amount of aerosol<ip and
T T
/ dt/ ard(z)pdGy, = ak/ dt/ wdX (30)
0 G 0 Xk
is the total fallout of pollutants in the arég,.
Now let there ben sensitive area¥;, k = 1,...,m on the plane = 0 in the domain

Yo. These may be populated areas, recreation zones, wateraieseetc. We consider the



12 Quang A Dang, Matthias Ehrhardt, Gia Lich Tran and Duc Le

problem of locating a new industrial plant so that the padluiof all them areasy; does
not exceed the approved standards (if such a location isip@#sX at all). If the location
proves impossible ofl, we formulate restrictions on the rate of pollution emissigh
which will make the location of the plant possible.

Suppose that thepproved standards of air pollutidior the sensitive areg,, are given
by c;. Then the problem is to choose the positign= ro(x, y, H) of the source of aerosol
emission such that the conditions

Jp<c, k=1,2,....m (31)

are satisfied.
Instead of this problem we can state the problem of finding sitipa rg, such that
maxy, Ji is minimal, i.e.
Igélél max Ji. (32)
There may be two methods for solving the above problems.
The first method consists of the following steps:

1. Choose a positiory € G
2. Solve the main problem (1), (2) with= Q4d(r — ro)
3. Compute the levels of pollutia, of the areag’;, and verify the conditions (31)

If all the conditions are satisfied then the selected positi may be a location of the
source of pollutant emission. Otherwise, choose anathe@nd repeat the above process
until a positionrg satisfies all the conditions.

The described method for solving the problem of plant lacatiequires a great deal
of computation due to the solution of many main problems féfeknt test positionsg,
especially if there is a large number of sensitive areasrashasitrial plants to be constructed.
This method in some sense is a "blind method”. Another mefioodhe plant location
problem is to use adjoint problems. Below we describe thihote

Let us represent the solution of the main equation

o
a_f + Lo = Q5(r — ro),

where for short we denote

) 0
Ly = div(up) — pAp — —Z(Va—j) + o,

with the initial and boundary conditions (2) in the form ofisyw = 1 + ¢2, Wherep; and
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o are the solutions of the two problems

dp1
Lo =0
Z?t + P1 )
Y1 = Qo at t= 0,
0
% =ap; on X,
N (33)
% =0 on Xy
0z ’
p1r=s Oon X_,
% =0 on X,
on ’
0
2+ Lipa = Q3(x — o),
t
©2 = Yo at t= O,
0
% =apr Oon X,
N (34)
% =0 on Xy,
0z
p2=0 on X_|
0
92 _0 on ..
on

We remark that the solutiop;, does not depend on the source of emission while the solution
o depends only on it.
The pollution level functional for a sensitive arBa now is

T T T
Ji :/ dt/ pkcpdG:/ dt/ pkcpldG—t-/ dt/ Prp2dG. (35)
0 G 0 G 0 G

We denote byys, the solution of the problem adjoint to (34), namely, the feab

0vs ) . . 0, 0¢ .
o2 — div(upy) — pdgh, — (V) + o = pi,

= apy, On Xy, a6

on Xy, %)
¢, =0 on X_,

9ot

o

+upps, =0 on X,.
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In view of the duality relation

T T
/ dt/ pmpgdG:/ dt/ 05, Q0(r — ro)dG, (37)
0 G 0 G
we obtain
T T
Jy :/ dt/ pmpldG—l—Q/ ©or(ro,t). (38)
0 G 0
Thus, in the adjoint approach for calculating the functleng, £k = 1,...,m we have

to solve one main problem (33) amd adjoint problems (36) formn sensitive areas. Do-
ing so, the amount of computation is significantly reducedamparison with the direct
approach. This saving of computational effort is a remaekalvantage of the proposed
adjoint approach.
In order to choose a suitable position for a plant it is coietrto introduce the follow-
ing function
J(r) = max Ji(r)

and draw isograms of this function.

Numerical Example. In this example we want to study the problem of a plant locatio
with given sensitive areas and approved standards of dirtfpsl. We choose the following
parameters:

- domainG = [0, 1000] x [0, 1000] x [0, 50] (in meters)

- uniformly grid with step sizedz = 20m, dy = 20m, dz = 5m

- time of simulationl” = 1000sec, time ste@t = 5sec

- velocity vectoru = (1, —1,0)

- falling velocity w, = 0.1

- diffusion coefficientg, = 2,v = 0.2

- coefficient of transformatios = 0

- source of emissiofy = 50

- three sensitive areas:

¥ = [24.5,27.5]dx x [8.5,10.5]dy,
Yo =[37.5,39.5]dx x [12.5,14.5]dy,
Y3 =1[29.5,31.5]dx x [33.5,36.5]dy

- approved standards of air pollutiep =1,k =1,2,3

- initial and boundary conditions are homogeneous.

Below we present in Figures 6-13 isograms of the pollutiaelléunctionals./x(r)
for each sensitive area and of the functiod@) at the heights = 30m andz = 35m.
Afterwards, we show in Figures 14 and 15 all the places whegaust cannot be located
at the heights = 30m andz = 40m for the approved standards of air pollutignset to
unity.

Remark that in this section we consider the problem of rafiéwcation of industrial
plants in 3D formulation.The 2D and 1D cases were studied &#yynauthors, for example,
in [20] its authors found places for locating plants in Hajd@ay with the use of 2D model.



On the numerical solution of some problems of environmegua#ilition 15

IDistribution Iof pollution level rcﬂcctinlg functional ¥1atz=30m

1000
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400

200 H

T T 1 T
0 200 400 600 800 1000

Figure 6: Isogram of pollution level functiond] at z = 30m.

Distribution Iof pollution level rcﬂcctinlg functional Y1atz=35m

1000

800

&00

400 -
[ |
200 | s
U T T 1 T
0 200 400 600 800 1000

Figure 7: Isogram of pollution level functiond| atz = 35m.
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Distribution of pollution level rcﬂcctinlg functional Y2 atz=30m

1000

800 H

600

400

200 H

T T 1 T
0 200 400 600 800 1000

Figure 8: Isogram of pollution level functiond} at z = 30m.

IDiﬁtribution Iof pollution level rcﬂcctinlg functional Y2 atz=35m

1000

800

400

200

T T 1 T
0 200 400 600 800 1000

Figure 9: Isogram of pollution level functiond} at z = 35m.
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Distribution of pollution level rcﬂcctinlg functional ¥3 atz=30m

1000

800 H

600 - - - - -

400 | | | | -

200 1 1 - 1 1 -

T T 1 T
0 200 400 600 800 1000

Figure 10: Isogram of pollution level functiond} atz = 30m.

Distribution of pollution level rcﬂcctinlg functional Y3 atz=35m
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0 200 400 600 800 1000

Figure 11: Isogram of pollution level functiond at z = 35m.
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Distribution of pollution level n:ﬂcctip_g functionall"r' at z=30m
1000 == — ———rr

T

400

200 H

T T 1 T
0 200 400 600 800 1000

Figure 12: Isogram of pollution level functiondlat = = 30m.

&00

400 H

200

T T 1 T
0 200 400 600 800 1000

Figure 13: Isogram of pollution level functiondlat = = 40m.
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Places wlllcre the plant can’t I:I:-c located at z:30ml

1000

800

&00

400

200

T T T T
0 200 400 600 800 1000

Figure 14: Places where a plant cannot be located=aB0m if c; = co = ¢c3 = 1.

1000 Places where the plant can’t be located at z=40m_

800
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400 - -
[
200 - - -
U T T T T
0 200 400 600 800 1000

Figure 15: Places where a plant cannot be located=atlOm if ¢c; = co = ¢35 = 1.
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A review of 1D problems concerning location of plants androjgation of emissions of
operating plants can be found in [8].

5 Optimization of emissions at operating industrial plants

Assume that plants A; are located at pointg;, i = 1,2,...,n of a assigned are&.
The plants emit);, i = 1,...,n of aerosols per time unit. For simplicity we assume that
the emission composition is the same. Furthermore, we s@pihat there are: sensitive
aread7;, k = 1,...,mto be protected from the polluted aerosols. The task is terdehe
affordable planned pollution level emissions rélefor every plant so that the pollution
level of the sensitive areas do not exceed the standandisder the condition that the total
investment into technology to keep up the same productia is minimal.

Now we formulate the above problem as a problem of optinorati

I = Zfl — @;) — min (39)

JkSCIW k:1727"'7n7
whereg; is the cost for reducing emissions per unit of emission rEie. problem (39) may

be reduced to a problem of linear programming. Two diffegmproaches are possible:
main and adjoint equations.

i) Main equation approach. The main equation of diffusion and transportation of
substances emitted byplants located at the positionsis

_+L ZQ@ 17

p=¢y at t=0,

Iy
9.~ on o (40)
g
—_— = on X
aZ 0 H,
p=¢s on X_,
g
—_— = on X..
on 0 *

We represent the solution of this problem as a superpositicgolutions of elementary
problems

o= Z Qipi(r,t) + ¢y, (41)
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whereyp;(r, t) is a solution to the problem

88? + Ly; = 6(r —ry),
p;=0 at t=0,
aa% =ap; on X,
6; (42)
‘=0 on X,
0z H
p;i=0 on X_,
i
= on X
an 0 +’
andy, is a solution to the problem
0py
94 Lo, =
ot Tlee =0
SOg = ¥0 at 1= 07
% =ap, on Xy,
o (43)
—2=0 on X
BP 0 H
pg=ps On X_,
% =0 on 3.
on

If we assume that all the problems (42) and (43) are solvesh) the can calculate the
pollution level functional for every sensitive area by

T T n
J] :/ dt/p dG:/ dt/p Q, i(r, ) +
k ; g 312 ) - k(; pi(r,t) <Pg>

= Z @ik Qi + b,

i=1

(44)

where

T
ain = / dt / pepidG, (45)
0 G

T
bk :/ dt/pk(pgdG. (46)
0 G
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Now the optimization problem (39) has the form

I—Zfz i Qz — min,

n 47)
Zaik@i+bk§0k7 k=1,....,m.
=1
Passing fronQ; to ¢; = Q; — Q; we obtain a linear programming problem
n
> &igi — min,
i—1
Y (48)
Zaik%’ >Ry, k=1,2,....m,

=1
>0, i=12...,n

where

n
Ri = ainQi+ b — cx.
i=1

Thus, we have to solve in the first approach- 1 main problems and one linear program-
ming problem.

i) Adjoint equation approach. Represent the solution of the main problem (40) as the
sum

@:Wh+90ga

whereyp,, as above, denotes the solution of the problem (43)@ni$ the solution of the
problem

%—I—L h-Zér—rl

ppb=0 at t=0,

O,
i N
5, MmO =0 (49)
o,
— = on X
0z H
ppb=0 on X_,
% — 0 on 2_,’_.



On the numerical solution of some problems of environmeguadilition 23

Let o7, be the solution of the adjoint problem

- a;;k —div(upp,) — pAppy, — &(V agk) + 0Pk = Pks

go}klk:() at t:T,

a *
% =gy, on X,
oot (50)
=0 DM
0z on - sm,
¢he =0 on X_,
s
Then we have the duality relation
T T n
/ dt/ PrprdG = / dt/ ZQid(r —1;)¢5,,dG
0 G :
n (51)
= Z QZ/O Sohk rlv Zaszla
=1
where we abbreviate
T
o= [ it 0t (52)

Therefore, the pollution level functional for the sengtiarea>; may be calculated as

follows
T T T
Ji :/ dt/pkLpdG:/ dt/pkgoth—i-/ dt/pkgpgdG
0 G 0 G 0 G

n
=Y ahQi + b,

=1

whereby, is computed by (46).
Hence, the optimization problem (39) becomes

Z@ — Qi) — min,
(53)

ZakaierZ <cp, k=1,2,...,m,
=1

wherea,. are given by (52) ané;, = by,.
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Let us note that

T T
ay, :/ o (ri, t)dt :/ dt/ d(r —ry)pp,dG
0 0 G

T
—/ dt/ pkgoidG:aik.
0 G

As in the main equation approach, we transform the probl@nig lettingg; = Q; — Q;
to the form

n
E §iq; — min,
i1

n
S aha > R k=1,2,...,m,
=1

(54)

¢G>0, 1=1,2,...,n,
where .
R} = Za;‘in + b; — ¢k
=1
This is again a linear programming problem.

It should be noticed that in the adjoint approach beforeisglthe linear programming
problem it is necessary to solwe adjoint problems (50) and one main problem (42) while
in the main equation approach we have to selvel main problems. Thus, the choice of a
method depends on the relatiormafandn, namely, ifm > n it is better to use the adjoint
approach, otherwise to use the main equation approach.

We remark that here the problem of optimization of emissioheperating plants is
considered in 3D case. The 2D case was studied by Tran G.LPhawh T.N. [19], where
they carried out many experiments with the use of an up—wifferdnce scheme for main
and adjoint problems in order to verify qualitative propestof the problem. Below we
report some numerical results of the problem under conredider for two examples.

Numerical Example 1.Consider the optimization problem of emissions of planthwi
the following data:

- domainG = [0, 1000] x [0, 1000] x [0, 50] (in meters)

- step sizeglx = 20m, dy = 20m, dz = 5m

- time of simulation?” = 4000 sec, time stegt = 4 sec

- velocity vectoru = (1, 0, 0), falling velocity w, = 0.1

- diffusion coefficientg: = 2, v = 0.2

- coefficient of transformation = 0.005

- 3 sensitive areas marked by rectangles:

¥y = [24.5,26.5]dx x [25.5,26.5]dy with ¢; = 10,
Yo =[39.5,40.5]dx x [33.5, 35.5]dy with ¢ = 30,
Y3 =[39.5,40.5]dx x [14.5,16.5]dy with c¢3 = 20
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- initial and boundary conditions are homogeneous.

- 4 sources of emissions marked by circles: the first sourpeiat (200, 500, 20) with
rate 100, the second source at poif#00, 700, 30) with rate 70, the third source at point
(300, 300, 25) with rate50 and the fourth source at poi00, 500, 15) with rate90.

- costs for reducing one unit of emission rate of plantsla2el.4, 1.0 and1.5, resp.
The result of the numerical computation is given in the Tdble

Source Planned emission rate Cost for reducing emissien rat

1 88.326 14.009
2 60.670 13.062
3 36.259 13.741
4 90 0

Table 1: Optimal emission rates in Example 1.

The pollution level functionals of the sensitive areas befind after reducing emission
rates aré11.322, 34.613,27.579) and(10, 30, 20), respectively.

Next, the following Figures 16 and 17 show the average (ire}iconcentration dis-
tribution of aerosols at = 0m before and after optimizing emission rates of sources,
respectively.

Average concentration distribution at z=0m before optimization
Il I I Il

1000
\—#—h.\’. B

—

800

600

400

200

0

1 T T 1
0 200 400 600 800 1000

Figure 16: Average concentration distributionzat= 0m before optimizing sources in
Example 1.
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mOUA\-'er:lge concentration distribution at z=0m after optimization

800

600

400

200

0 1 T T T
0 200 400 600 800 1000

Figure 17: Average concentration distributiorzat Om after optimizing sources in Exam-
ple 1.

Numerical Example 2. The data in this example are the same as in the previous exam-
ple except for the following changes:

- velocity vectoru = (1, —0.5,0)

- approved pollution standards are= 1,¢cy = 2, ¢c3 = 15.

The result of calculations is given in the following Table 2.

Source Planned emissionrate Cost for reducing emissiea rat

1 84.288 18.927
2 63.055 9.723
3 50 0

4 90 0

Table 2: Optimal emission rates in Example 2.

Here, the pollution level functionals of the sensitive aréafore and after reducing
emission rates arg.120, 2.061, 17.388) and(1, 1.856, 15), respectively.

The following Figures 18—19 present the average (in timegeatration distribution of
aerosols at = Om before and after optimizing emission rates of sourcepga@sely.
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Average conc elntr:nion di sltribution at z=0m befolre optimization
1000

800 - - - - - -

600

400

200

1 T T 1
0 200 400 600 800 1000

Figure 18: Average concentration distributionzat=0m before optimizing sources in
Example 2.

mDUAvcmge concentration distribution at z=0m after optimization

800 - - - - - -

600

400

200

1 T T 1
0 200 400 600 800 1000

Figure 19: Average concentration distributiorzat Om after optimizing sources in Exam-
ple 2.
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6 Determination of the coefficients of diffusion and transfoma-
tion of pollutants

The coefficients of diffusiom, v and the coefficient of transformatienof aerosols are im-

portant parameters of mathematical models for the studiy pbéution in the atmosphere.

These coefficients depend on many factors. Following Késtveli [11], in general, these

coefficients may depend on the concentration of aerosoksagan approximation we sup-
pose that they are constants and shall find them under thenpseun that the concentration
field of pollutants is known from measurements at grid poamis at some times. Discretiz-
ing the equation (1) and considering difference equation#iose grid points at those time
moments where and when measurements are made, we obtatem sf®quations of the

form

3
Zai]’)\j:bi, izl,...,N,
j=1

where we use the notatidn\;, A2, \3) = (u, v, 0). This is a system oN equations with 3
unknowns. For finding them it is possible to use the methodadtisquares, which gives an
approximation ofu, v, o with minimal error. However, this may lead to negative Solut

In order to avoid this drawback, it is better to solve thedwaling quadratic programming
problem

N

ai‘/\-—bi2—>min,
Z(Z JNj ) (55)
A>0 i=1,2,3.

Numerical Example. For illustrating the ability of the above method we perfodme
a numerical experiment, where the concentration field iaiabtl from the solution of the
problem (1), (2) with the following data:

- domainG = [0, 1000] x [0, 1000] x [0, 50] (in meters)

- step sizeglr = 20m, dy = 20m, dz = 5m.

- time stepdt = 4sec

- velocity vectoru = (0,0, 0)

- falling velocity w, = 0

- diffusion coefficientg: = 2, v = 0.2

- coefficient of transformation = 0.005

- source of emissio) = 10 at position(100, 100, 25)

- initial and boundary conditions are homogeneous.

We use the data of the concentration field obtained in thepgints

(xi,yj, 2), @ = istart, ...,iend; j = jstart, ..., jend; k = kstart, ..., kend

at timest,,, m = mstart,...,mend, which for brevity we write as(istart :
iend, jstart : jend, kstart : kend, mstart : mend).

Below we present in Table 3 the results of computing numbyica, v, o) for various
grids.
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Grid domain (u, v, 0) found
(0:8, 0:8, 2:6, 99:101)  (1.959, 0.205, 4.643e-4)
(0:8,0:8, 2:6,499:501)  (1.957, 0.205, 4.849e-4)
(0:8,0:8, 2:6,999:1001) (1.957,0.205, 4.858e-4)
(6:14, 6:14, 0:4,99:101)  (2.021, 0.197, 6.214e-4)
(6:14, 6:14, 0:4, 499:501) (2.072,0.206, 5.376e-4)
(1:49, 1:49, 0:4, 499:501) (2.012, 0.204, 4.976e-4)

Table 3: Computed values ¢f:, v, o) for input data in various grid domains

Conclusion

In this chapter we have presented a monotone differencersctor solving the 3D problem
of diffusion and transport of aerosols in a bounded domaiickvbnsures high accuracy and
especially ensures the positivity of the solution. Theiradion of the scheme is reduced
to solving 1D problems that require economical computatiamount. Using the solution
of the main problems of propagation of aerosols and thewiatdproblems we solve the
problem of locating new plants and the problem of optimaatf emissions rates of op-
erating industrial plants in order to keep the pollutiorelan given sensitive areas under a
prescribed level. They are very important problems to beesbto achieve sustainable de-
velopment, especially in developing countries, such agndi®m, when foreign investment
increases from year to year. A simple way for determiningesgvparameters of the air
pollution model also is proposed and experimentally sulifbe its applicability.
Future work will be concerned with problems in unbounded 2id 8D domains, in

domains with complicated geometry, the propagation olacerosols and problems with
complex environmental standards.
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