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This paper is concerned with the efficient implementation of transparent boundary condi-
tions (TBCs) for wide angle parabolic equations (WAPEs) assuming cylindrical symmetry.

In [1] a discrete TBC of convolution type was derived from the fully discretized whole–space
problem that is reflection–free and yields an unconditionally stable scheme. Since the dis-

crete TBC includes a convolution with respect to range with a weakly decaying kernel, its
numerical evaluation becomes very costly for long-range simulations.

As a remedy we construct new approximative transparent boundary conditions involving

exponential sums as an approximation to the convolution kernel. This special approxima-
tion enables us to use a fast evaluation of the convolution type boundary condition.

This new approach was outlined in detail in [2] for the standard “parabolic” equation.

1. INTRODUCTION

This paper is concerned with a finite difference discretization of wide angle “parabolic”
equations. These models appear as one–way approximations to the Helmholtz equation in
cylindrical coordinates with azimuthal symmetry. In particular we will discuss the efficient
implementation of transparent boundary conditions.

In oceanography one wants to calculate the underwater acoustic pressure p(z, r) emerg-
ing from a time–harmonic point source located in the water at (zs,0). Here, r > 0 denotes
the radial range variable, 0 < z < zb is the depth variable. The water surface is at z = 0,
and the (horizontal) sea bottom at z = zb. We denote the local sound speed by c(z, r), the
density by ρ(z, r), and the attenuation by α(z, r) ≥ 0. n(z, r) = c0/c(z, r) is the refractive
index, with a reference sound speed c0. Then the reference wave number is k0 = 2π f/c0,



where f denotes the (usually low) frequency of the emitted sound.

We consider the wide–angle “parabolic” equations (WAPE)

ψr = ik0

(

p0− p1L

1−q1L
−1

)

ψ, r > 0, (1)

with real parameters p0, p1, q1. Here, L denotes the Schrödinger operator

L = −k−2
0 ρ∂z(ρ

−1∂z)+V (z, r) (2)

with the complex valued “potential” V (z, r) = 1−N2(z, r). With the choice p0 = 1, p1 =
1/2, q1 = 0 one obtains the standard “parabolic” equation (SPE) of Tappert and p0 = 1,
p1 = 3/4, q1 = 1/4 gives the WAPE of Claerbout.

In practical simulations one is only interested in the acoustic field ψ(z, r) in the water, i.e.
for 0 < z < zb. While the physical problem is posed on the unbounded z–interval (0,∞), one
wishes to restrict the computational domain in the z–direction by introducing an artificial
boundary at or below the sea bottom. At the water surface one usually employs a Dirichlet

(“pressure release”) BC: ψ(z = 0, r) = 0.

In [3] an impedance BC or transparent boundary condition (TBC) for the WAPE was
derived, which completely solves the problem of restricting the z–domain without changing
the physical model: complementing the WAPE (1) with a TBC at zb allows to recover — on
the finite computational domain 0 < z < zb — the exact half–space solution on 0 < z < ∞.

While TBCs fully solve the problem of cutting off the z–domain for the analytical equa-
tion, their numerical treatment (approximation, stability, efficiency) is a delicate question.
In [1] so–called discrete transparent boundary conditions (DTBCs) were derived for a
Crank–Nicolson finite–difference approximation of the WAPE such that the overall scheme
is unconditionally stable and as accurate as the discretized half–space problem. However,
there remains the question of relatively high computational costs for their implementation.

The paper is organized as follows: In §2 and §3 we review the (discrete) TBC for the
WAPE. In Section 4 we sketch our new approach of approximating the DTBC by a discrete
sum of exponentials and present an efficient recursion for evaluating these approximate
DTBCs. The numerical example of §5 illustrate the efficiency of the proposed method.

2. TRANSPARENT BOUNDARY CONDITIONS

We assume ρ = ρ(z) (vertical density variations) and apply the operator 1−q1L to (1):

[

1−q1V +q1k
−2
0 ρ∂z(ρ

−1∂z)
]

ψr

= ik0

[

p0 −1− (p1 −q1)V +(p1 −q1)k
−2
0 ρ∂z(ρ

−1∂z)
]

ψ. (3)

As the density is typically discontinuous at the water–bottom interface (z = zb), one
requires continuity of the (acoustic) pressure and the normal particle velocity:

ψ(zb−, r) = ψ(zb+, r),
ψz(zb−, r)

ρw

=
ψz(zb+, r)

ρb

, (4)

where ρw is the water density just above the bottom and ρb is the constant bottom density.



For the derivation of the following TBC we shall make the two assumptions (strategies
to soften these restrictions could be found in [4]): Let the initial data ψI = ψ(z,0), which
models a point source located at (zs,0), be supported in the interior domain 0 < z < zb. Let
the bottom region be homogenous, i.e. let all physical parameters be constant for z > zb.
The TBC for the WAPE was derived by Papadakis [3] and slightly generalized in [1]:

ψz(zb, r) =
i

η

ρw

ρb

ψ(zb, r) +
β

η

ρw

ρb

Z r

0
ψ(zb, r− τ)eiθτeiβτ

[

J0(βτ)− iJ1(βτ)
]

dτ, (5)

η =
1

k0

+

√

q1

δb

, δb = 1−q1(1−N2
b ), β = −

p1− p0q1

2q1

k0

δb

, θ =
p1−q1

q1

k0,

where J0, J1 denote the Bessel functions of order 0 and 1, respectively. This TBC is non–
local in the range r; in range marching algorithms it thus requires storing the bottom bound-
ary data ψ(zb, .) of all previous range levels. Moreover, the discretization of the TBC (5) is
not trivial at all and inadequate discretizations may introduce strong numerical reflections.
In the following we will sketch a new approach to remedy this situation. First we present
in §3 the discrete TBC which will be approximated by the sum–of–exponential ansatz in §4.

3. DISCRETE TRANSPARENT BOUNDARY CONDITIONS

We consider a Crank–Nicolson finite difference scheme for the WAPE. For simplicity
we use the uniform grid points rn = nk, k = ∆r, z j = jh, h = ∆z, (where J∆z = zb) and the

approximation ψ
(n)
j ∼ ψ(z j, rn), j ≥ 0, n ∈ IN0. The discretized WAPE (3) then reads:

[

1−q1V
(n+ 1

2)
j +q1k

−2
0 ρ jD

0
h
2

(ρ−1
j D0

h
2

)
]

D+
k ψ

(n)
j

= ik0

[

p0−1− (p1−q1)V
(n+ 1

2 )
j +(p1−q1)k

−2
0 ρ jD

0
h
2

(ρ−1
j D0

h
2

)
]

(ψ
(n)
j +ψn+1

j )/2, (6)

with V
(n+ 1

2)
j := V (z j, r

n+ 1
2
), D+

k ψn
j =(ψn+1

j −ψn
j)/k, D0

h
2

ψn
j =(ψn

j+ 1
2

−ψn

j− 1
2

)/h.

We remark that the depth discretization on the computational interval [0, zb] can be
nonuniform (e.g. adaptive in range) without changing our subsequent analysis. Instead of
using an ad–hoc discretization of the TBC (5) we constructed in [1] a discrete TBC (DTBC)
of the fully discretized half–space problem. This strategy solves at no additional computa-
tional costs both problems of instabilities and numerical reflections of the discretized TBC.

The DTBC for (6) including the density jump is a discrete convolution in range (cf. [1]):

(1+ iq)
ρb

ρe f f

ψ̃
(n)
J−1 +

[

(1+ iq)
(

1−
ρb

ρe f f

)

− s0

]

ψ̃
(n)
J

= −(1− iq)
ρb

ρe f f

ψ̃
(n−1)
J−1 − (1− iq)

(

1−
ρb

ρe f f

)

ψ̃
(n−1)
J +

n−1

∑
m=1

ψ̃
(m)
J sn−m, (7)

with q = kq1/(2k0)/(p1−q1) and the convolution coefficients sn given explicitly in [1] and
the effective density defined by ρe f f = (ρw + ρb)/2. We proposed to use an offset grid,

i.e. z j = ( j + 1
2
)h, ψ̃

(n)
j ∼ ψ(z j, rn), j = −1(1)J, where the water–bottom interface with the

density jump lies between the grid points j = J −1 and J.



Using formula (7) for calculations avoids any boundary reflections and it renders the
discrete scheme unconditionally stable (just like the underlying Crank–Nicolson scheme).
However, the linearly in r increasing numerical effort to evaluate the DTBCs can sharply
raise the total computational costs. Note that we need to evaluate just one convolution of
(7) at each range step (at the endpoint of the interval [0, rn]). Since the other points of this
convolution are not needed, using an FFT is not practical.

The DTBC (7) includes the discrete convolution of the unknown function with a given
kernel sn. Our approach for fast evaluation of this convolution consists of approximating
the kernel by a finite sum of exponentials that decay with respect to range: this will permit
us to use recurrence formulas for the range marching algorithms.

4. APPROXIMATION BY SUMS OF EXPONENTIALS AND FAST EVALUATION

The convolution coefficients sn appearing in the DTBC (7) can be calculated by an ex-
plicit formula (see [1]) and by a numerical calculation of the inverse Z–transform, see [2].
In order to derive a fast numerical method to calculate the discrete convolutions in (7) we
will approximate the coefficients sn by the following sum-of-exponential ansatz:

sn ≈ s̃n :=











sn, n = 0,1, . . .,n0−1,
L

∑
l=1

bl q−n
l , n = n0,n0 +1, . . . ,

(8)

where L ∈ IN, n0 ≥ 0 are fixed number. For practical purposes we shall choose n0 = 2.
Evidently, the approximation properties of s̃n depend on L and the corresponding set {bl,ql}.
We give a deterministic method of finding {bl,ql} for fixed L. Consider the power series:

f (x) := sn0 + sn0+1x+ sn0+2x2 + . . ., |x| ≤ 1. (9)

If there exists the [L−1|L] Padé approximation f̃ (x) := PL−1(x)
QL(x)

of (9), then its Taylor series

f̃ (x) = s̃n0 + s̃n0+1x+ s̃n0+2x2 + . . . (10)

satisfies the conditions s̃n = sn, n = n0,n0 +1, . . .,2L + n0−1, according to the definition
of the Padé approximation rule.

Theorem 1 ([2]). Let QL(x) have L simple roots ql with |ql| > 1, l = 1, . . .,L. Then

s̃n =
L

∑
l=1

blq
−n
l , n = n0,n0 +1, . . . , (11)

bl :=−
PL−1(ql)

Q′
L(ql)

q
n0−1
l 6= 0, l = 1, . . .,L. (12)

We remark that all our practical calculations confirm that the assumption on QL(x) in
Theorem 1 holds for any desired L, although we cannot prove this.

The set {bl,ql} can be used in (8) at least for n = n0,n0 +1, . . .,2L +n0−1. The main
question is: is it possible to use {bl,ql} also for n > 2L+n0−1? What quality of approxi-
mation s̃n ≈ sn, n > 2L+n0−1 can one expect?



Although the asymptotic behaviour of sn and s̃n (as n → ∞) differs strongly (algebraic
versus exponential decay), the error of the approximation decays exponentially in L (cf. §5).

Let us consider the approximation (8) of the discrete convolution kernel appearing in the
DTBC (7). With these “exponential” coefficients the convolution

C(n)(ψ̃J) :=
n−1

∑
m=1

s̃n−mψ̃
(m)
J , s̃n =

L

∑
l=1

bl q−n
l , |ql| > 1, (13)

of a discrete function ψ̃
(m)
J , m = 1,2, . . ., with the kernel coefficients s̃n can be calculated

by recurrence formulas. And this will reduce the numerical effort drastically (cf. [2]). The

value C(n)(ψ̃J) from (13) for n ≥ n0 +1 is represented by C(n)(ψ̃J) = ∑L
l=1C

(n)
l (ψ̃J), where

C
(n0)
l

(ψ̃J) ≡ 0, (14)

C
(n)
l (ψ̃J) = q−1

l C
(n−1)
l (ψ̃J)+bl q

−n0

l ψ̃
(n−n0)
J , n = n0 +1,n0 +2, . . . . (15)

5. NUMERICAL EXAMPLE

We consider the WAPE of Claerbout and the NORDA test case 3B from the PE Work-
shop I (cf. [1, Example 2]). The environment for this example consists of an isovelocity
water column (c(z) = 1500ms−1) over an isovelocity half–space bottom (cb = 1590ms−1).

The density changes at zb = 100m from ρw = 1.0gcm−3 in the water to ρb = 1.2gcm−3

in the bottom. The source and the receiver are located at the same depth zs = zr = 99.5m.
The source frequency is f = 250Hz. The attenuation in the water is zero and the bottom
attenuation is αb = 0.5dB/λb, where λb = cb/ f is the wavelength of sound in the bottom.

The maximum range of interest is 10km and the reference sound speed is chosen as
c0 = 1500ms−1. The calculations were carried out using the depth step ∆z = 0.25m and
the range step ∆r = 2.5m, i.e. 4000 steps in range. Since the source is placed close to the
bottom, the TBC was applied 10m below the ocean–bottom interface.

In the following Table 1 we show the `∞-error of the approximated s̃n to the exact sn. We
remark that the `∞-error is the significant quantity in the error estimates in [2].

L = 10 20 30 40 50

error ‖s̃n − sn‖`∞ 5.4386e-04 3.9713e-05 1.0114e-05 9.3090e-07 5.1059e-08

Table 1: Maximum error of approximated convolution coefficients for n = 1, . . .,4000.

Figure 1 shows the relative L2-error of the approximate solution ψa in the water region
defined by eL(z, r) := (ψa(z, r)−ψre f (z, r))/||ψI ||2.

6. CONCLUSIONS

We have constructed new approximate TBCs with a kernel having the form of a finite
sum–of–exponentials, which can be evaluated efficiently by a simple recursion. This ap-
proach will reduce the numerical effort drastically especially for large–range computations.

A much more detailed version of this article (including stability proofs, error estimates
and numerical results) will be published elsewhere.
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Fig. 1: Relative L2-error due to approximative TBC.
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