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Summary

This paper is concerned with transparent boundary conditions (TBCs) for wide angle parabolic
equations (WAPEs) in the application to underwater acoustics (assuming cylindrical symmetry).
These TBCs can be derived for a bottom region in which the squared refractive index is constant or
varies linearly with depth. In a previous work a discrete TBC of convolution type was derived from
the fully discretized whole–space problem that is reflection–free and yields an unconditionally
stable scheme. However, since the perfect discrete TBC for the WAPE is non–local in range, its
numerical evaluation becomes very costly for large–range simulations. As a remedy we construct
new approximate TBCs in the form of a discrete sum–of–exponentials, which can be evaluated in a
very efficient recursion. Furthermore, we extend the discrete TBC to the case that the starting field
is not supported inside the water region (which is the computational domain).

1. Introduction

This paper is concerned with an efficient im-

plementation of transparent boundary conditions

(TBCs) for a finite difference discretization of stan-

dard and wide angle “parabolic” equations (see e.g.

[10]). These models appear as one–way approxima-

tions to the Helmholtz equation in cylindrical coor-

dinates with azimuthal symmetry.

In oceanography one wants to calculate the un-

derwater acoustic pressure p(z,r) emerging from a

time–harmonic point source located in the water at
(zs,0). Here, r > 0 denotes the radial range variable

and 0 < z < zb the depth variable. The water surface

is at z = 0, and the (horizontal) sea bottom at z = zb.

We denote the local sound speed by c(z,r), the den-

sity by ρ(z,r), and the attenuation by α(z,r) ≥ 0.

n(z,r)= c0/c(z,r) is the refractive index, with a ref-

erence sound speed c0. The reference wave number

is k0 = 2π f/c0, where f denotes the (usually low)

frequency of the emitted sound.

In the far field approximation (k0r � 1) the

(complex valued) outgoing acoustic field ψ(z,r) =√
k0r p(z,r)e−ik0r satisfies the one–way Helmholtz

equation:

ψr = ik0

(
√

1−L−1
)

ψ, r > 0. (1)

Here,
√

1−L is a pseudo–differential operator, and

L the Schrödinger operator

L = −k−2
0 ρ∂z(ρ−1∂z)+1−N2(z,r), (2)

where N(z,r) = n(z,r) + iα(z,r)/k0 denotes the

complex refractive index.

“Parabolic” approximations of (1) consist in for-

mally approximating the pseudo–differential opera-

tor
√

1−L by rational functions of L [10]. The linear

approximation of
√

1−λ by 1−λ/2 gives the nar-

row angle or standard “parabolic” equation (SPE)

ψr = − ik0

2
Lψ, r > 0. (3)

Rational approximations of the form
√

1−λ ≈
f (λ) = (p0− p1λ)/(1−q1λ) with real p0, p1, q1 yield

the wide angle “parabolic” equations (WAPE)

ψr = ik0

(

p0 − p1L

1−q1L
−1

)

ψ, r > 0. (4)

In the sequel we will require f ′(0) = p0q1 − p1 < 0.

With the choice p0 = 1, p1 = 3/4, q1 = 1/4
(

(1,1)–

Padé approximant of
√

1−λ
)

one obtains the WAPE

of Claerbout.



In this paper we shall focus on boundary condi-

tions (BCs) for the SPE (3) and the WAPE (4). At
the water surface one usually employs a Dirichlet

(“pressure release”) BC : ψ(z = 0,r) = 0. In the

z–direction one wishes to restrict the computational

domain by introducing an artificial boundary at or

below the sea bottom. In [14] Papadakis derived

impedance BCs or transparent boundary conditions

(TBCs) for the SPE and the WAPE: complementing

the WAPE (4) with a TBC at zb allows to recover —

on the finite computational domain (0,zb) — the ex-

act half–space solution on 0 < z < ∞. As the SPE is

a Schrödinger equation, similar strategies have been

developed independently for quantum mechanical

applications (see e.g. [3] and the references therein).

While TBCs fully solve the problem of cutting

off the z–domain for the analytical equation, all
available numerical discretizations suffer from re-

duced accuracy (in comparison to the discretized

half–space problem) and render the overall numeri-

cal scheme only conditionally stable [13, 16]. In [4]

discrete transparent boundary conditions (DTBCs)

for a Crank–Nicolson finite difference discretization

of the WAPE were constructed such that the overall

scheme is unconditionally stable and as accurate as

the discretized half–space problem.

We shall now turn to the main motivation of this

paper. As the TBCs, the DTBCs are non–local in

r, i.e. in range marching algorithms they thus re-

quire storing the bottom boundary data of all pre-

vious range levels. The (in r) increasing numerical

effort to evaluate the DTBCs can sharply raise the
total computational costs. Strategies to overcome

this drawback will be the key issue of this paper.

The paper is organized as follows: In §2 and §3

we review different (discrete) TBCs for the SPE and

the WAPE. In Section 4 we sketch our new approach

of approximating the DTBC by a discrete sum of

exponentials, and in §5 we present an efficient

recursion for evaluating these approximate DTBCs.

2. Transparent Boundary Conditions

As the density is typically discontinuous at the
water–bottom interface (z = zb), one requires conti-

nuity of the pressure and the normal particle velocity

(matching conditions):

ψ(zb−,r) = ψ(zb+,r),

ψz(zb−,r)

ρw

=
ψz(zb+,r)

ρb

,
(5)

where ρw = ρ(zb−,r) and ρb denotes the constant
density of the bottom.

We assume that the initial data ψI = ψ(z,0)
which models a point source located at (zs,0), is
supported in the computational domain 0 < z < zb

and that the bottom region be homogenous, i.e. all

physical parameters are constant for z > zb (denoted

with a subscript ‘b‘). The TBC for the SPE (or

Schrödinger equation) was derived in [3, 13, 14]:

ψ(zb,r) =
−e

π
4

i

√
2πk0

ρb

ρw

∫ r

0

ψz(zb,r−τ)
eibτ

√
τ

dτ,

(6)

with b = k0(N2
b −1)/2.

The TBC at the bottom for the WAPE was de-

rived in [4] and reads:

ψ(zb,r) = −iη
ρb

ρw

ψz(zb,r)+βη
ρb

ρw

·

·
∫ r

0

ψz(zb,r−τ)ei(θ+β)τ
[

J0(βτ)+ iJ1(βτ)
]

dτ,

(7)

η =
1

k0

+

√

q1

δb

, β =
p0q1 − p1

2q1

k0

δb

, θ =
p1 −q1

q1

k0.

with δb = 1−q1(1−N2
b) and +

√
denotes the branch

of the square root with a nonnegative real part. This

is a slight generalization of the TBC derived in [14]

where p0 was equal to 1.

If the starting field ψI = ψ(z,0) is not supported

in 0 < z < zb. In [11] Levy derived the TBC

ψz(zb,r) =
ice−ibr

√
π

ρb

ρw

∫ r

0

ψr(zb,τ)√
r−τ

dτ

− ice−ibr

√
πr

ρb

ρw

∫ ∞

zb

ψI

z(z)e
ik0(z−zb)2

2r dz.

(8)

c = (1 + i)
√

k0. This TBC was derived by Levy in

[11] for the potential–free case.

In the case of a linear squared refractive index in

the bottom:

N2
b (z,r) = 1+β+µ(z− zb), (9)

with real parameters β and µ 6= 0 (i.e. no attenuation

in the bottom: αb = 0) the transparent BC at z = zb

(cf. [12]) reads:

ψz(zb,r) =

∫ r

0

ψr(zb,r′)g(r− r′)dr′. (10)



The integral kernel g in (10) is obtained by an in-

verse Laplace transformation:

g(r) = σ

{

Ai′(ξ0(zb))

Ai(ξ0(zb))
+

∞
∑

j=1

exp[(a j −ξ0(zb))r/τ]

a j −ξ0(zb)

}

,

(11)

where ξ0(zb) = σβ/µ and the a j are the zeros of the

Airy function Ai which are all located on the nega-

tive real axis. The parameter σ is chosen to be

σ =

{

(µk2
0 )

1/3e−iπ/3, µ > 0

(−µk2
0 )

1/3, µ < 0
. (12)

Here, µ > 0 corresponds to a downward-refracting

bottom (energy loss) and µ < 0 represents the

upward-refracting case, i.e. energy is returned from

the bottom. We remark that the TBC (10) was used

in [7] for underwater acoustics applications.

However, all these TBCs suffer from the fact

that they are of memory–type, i.e. their numerical

implementation requires to store the boundary data

ψ(zb, .) of all the past ranges. In the following we

will sketch our approach to remedy this situation.

First we present in §3 the discrete TBCs which will

be approximated by sum–of–exponential ansatz in
§4.

3. Discrete Transparent Boundary Conditions

With the uniform grid points z j = jh, rn = nk

(h = ∆z, k = ∆r) and the approximation ψn
j ∼

ψ(z j,rn) the Crank–Nicolson difference scheme for

the WAPE is:

[

1−q1V
n+ 1

2

j +q1k
−2
0 ρ jD

0
h
2

(ρ−1
j D0

h
2

)
]

D+

k ψn
j

= ik0

[

p0 −1− (p1 −q1)V
n+ 1

2

j

+(p1 −q1)k−2
0 ρ jD

0
h
2

(ρ−1
j D0

h
2

)
]

(ψn
j +ψn+1

j )/2,

(13)

with V
n+ 1

2

j := 1−N2(z j,rn+ 1
2
), D+

k ψn
j = (ψn+1

j −
ψn

j)/k, D0
h
2

ψn
j = (ψn

j+ 1
2

−ψn

j− 1
2

)/h. This scheme is

second order in h and k and unconditionally stable.

[1].

In [16] Thomson and Mayfield used an ad–hoc

discretization of the analytic TBC (6) and Mayfield

[13] showed that this discretized TBC for the SPE

destroys the unconditional stability of the underly-

ing Crank–Nicolson scheme and induces numerical

reflections at the boundary, particularly when using
coarse grids.

Instead of using an ad–hoc discretization of the

analytic TBCs we constructed in [4] discrete TBCs

of the fully discretized half–space problem. This

strategy solves at no additional computational costs

both problems (stability and accuracy) of the dis-

cretized TBC.

For simplicity of the presentation we will neglect

the density jump at z = zb. The DTBC for the SPE

and the WAPE reads:

(1+ iq)ψn
J−1− s0 ψn

J

=

n−1
∑

m=1

sn−mψm
J − (1− iq)ψn−1

J−1, (14)

n ≥ 1, with the convolution coefficients sn explicitly

given in [4] and

q =
k

2

q1

p1 −q1

k−1
0 . (15)

For a discussion of the discrete treatment of the den-

sity jump we refer to [4].

The discrete version of the TBC (8) for the SPE
(q = 0) was derived in [8] :

ψn
J−1 − s0ψn

J

=

n−1
∑

m=0

sn−mψm
J −ψn−1

J−1 +

∞
∑

m=1

p
(n)
m ϕJ+m,

(16)

n ≥ 1. The inhomogeneity ϕ j is given by

ϕ j = ψ0

j+1 − (2− iRψ0

j +Rκb)ψ0

j +ψ0

j−1, j ≥ J −1,

(17)

R =
2k0

p1 −q1

h2

k
, (18)

κb =
k

2
k0

[

p0 −1− (p1−q1)(1−N2
b )

]

. (19)

The series (p
(n)
m ) is defined by

(p
(n)
m ) := Z

−1{νm
1 (z)}, (20)

where νm
1 (z) denotes the solution of

ν2 −2

[

1− iR

2

δb(z−1)− iκb(z+1)

z+1+ iq(z−1)

]

ν+1 = 0.

(21)

with |ν1(z)|< 1 and δb = 1−q1(1−N2
b ).



In practical situations the sum (over m) in (16) of

course has to be finite (e.g. up to an index m = M).
This means that the starting field is still compactly

supported, but possibly outside of the water region

(computational domain). The coefficients p
(n)
m , m =

1,2, . . .,M, can be calculated recursively by “contin-

ued convolution”, i.e.

p
(n)
1 = Z

−1{ν1(z)}, p
(n)
2 =

n
∑

k=0

p
(n−k)
1 p

(k)
1 ,

p
(n)
3 =

n
∑

k=0

p
(n−k)
2 p

(k)
1 , etc..

(22)

Alternatively, since this computation is rather costly,

the series (p
(n)
m ) can be calculated by an recursion

formula (cf. [8]).

The use of the formulas (14) for calculations per-

mits us to avoid any boundary reflections and it ren-

ders the fully discrete scheme unconditionally stable

(just like the underlying Crank-Nicolson scheme).

However, the (in r) increasing numerical effort to

evaluate the DTBCs can sharply raise the total com-

putational costs.

The considered DTBCs (14) include the discrete

convolution of the unknown function with a given

kernel sn. Our approach for fast evaluation of this

convolution consists of approximating the kernel by
a finite sum of exponentials that decay with respect

to range: this will permit us to use recurrence

formulas in range marching algorithms, Such kind

of trick has been proposed in [15] for the continuous

TBC in case of the 3D wave equation and developed

in [2] for various hyperbolic problems.

4. Approximation by Sums of Exponentials

In order to derive a fast numerical method to cal-

culate the discrete convolutions in (14) we will ap-

proximate the coefficients sn by the following ansatz

(sum of exponentials):

sn ≈ s̃n :=











sn, n = 0
L

∑

l=1

bl q−n
l , n = 1,2, . . . ,

(23)

where L ∈ IN is a fixed number. Evidently, the ap-

proximation properties of s̃n depend on L, and the

corresponding set {bl ,ql}. Below we propose a de-

terministic method of finding {bl,ql} for fixed L.

Let us fix L and consider the formal power series:

g(x) := s1 + s2x+ s3x2 + . . . , |x| ≤ 1. (24)

If there exists the [L−1|L] Padé approximation

g̃(x) :=
PL−1(x)

QL(x)
(25)

of (24), then its Taylor series

g̃(x) = s̃1 + s̃2x+ s̃3x2 + . . . (26)

satisfies the conditions

s̃n = sn, n = 1,2, . . .,2L, (27)

due to the definition of the Padé approximation rule.

Theorem 1 ([5]) Let QL(x) have L simple roots ql

with |ql| > 1, l = 1, . . .,L. Then

s̃n =

L
∑

l=1

blq
−n
l , n = 1,2, . . . , (28)

where

bl := −PL−1(ql)

Q′
L(ql)

6= 0, l = 1, . . .,L. (29)

It follows from (27) and (28) that the set {bl,ql}
defined in Theorem 1 can be used in (23) at least

for n = 1,2, ..,2L. The main question now is: is it

possible to use these {bl ,ql} also for n > 2L? In

other words, what quality of approximation

s̃n ≈ sn, n > 2L (30)

can we expect?

The above analysis permits us to give the follow-

ing description of the approximation to the convo-

lution coefficients sn by the representation (23) if

we use a [L − 1|L] Padé approximant to (24): the

first 2L coefficients are reproduced exactly, see (27);

however, the asymptotic behaviour of sn and s̃n (as

n → ∞) differs strongly (algebraic versus exponen-

tial decay).

5. Fast Evaluation of the Discrete Convolution

Let us consider the approximation (23) of the

discrete convolution kernel appearing in the DTBC

(14). With these “exponential” coefficients the con-

volution

C(n) :=

n−1
∑

k=1

uks̃n−k, s̃n =

L
∑

l=1

bl q−n
l , (31)



|ql| > 1, of a discrete function uk, k = 1,2, . . ., with

the kernel coefficients s̃n can be calculated by recur-
rence formulas. And this will reduce the numerical

effort drastically.

A straightforward calculation ([5]) yields: The

value C(n) from (31) for n ≥ 2 is represented by

C(n) =

L
∑

l=1

C
(n)
l , (32)

where

C
(1)
l

≡ 0,

C
(n)
l

= q−1
l

C
(n−1)
l

+bl q−1
l

un−1, (33)

n = 2,3, . . . l = 1, . . .,L.

Finally we summarize the approach by the fol-

lowing algorithm:

1. calculation of s
(N)
n ,n = 0, . . .,N − 1 via ex-

plicit representation or numerical inverse Z-

transformation

2. calculation of s̃n via Padé–algorithm

3. the corresponding coefficients bl , ql are used
for the calculation of the discrete convolutions

Conclusions and Outlook

We have constructed new approximate TBCs

with a kernel having the form of a finite sum–

of–exponentials, which can be evaluated very effi-

ciently by a simple recursion. This approach will

reduce the numerical effort drastically especially for

large–range computations.

Since [5] is concerned with the numerical treat-

ment of DTBCs for a finite–difference scheme of the

time-dependent 2D–Schrödinger equation (which
corresponds to a 3D parabolic equation) we will ap-

ply this approach to a 3D SPE/WAPE. Also the dis-

crete version of the TBC (10) is currently under in-

vestigation, cf. [9].

A much more detailed version of this article

(including stability proofs, errors estimates and

numerical results) will be published elsewhere.
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