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Abstract. This paper is concerned with transparent boundary conditions (TBCs) for
standard and wide angle “parabolic” equations (SPE, WAPE) in the application to un-
derwater acoustics (assuming cylindrical symmetry). Existing discretizations of these TBCs
have accuracy problems and render the overall Crank–Nicolson finite difference method only
conditionally stable. Here, a novel discrete TBC is derived from the discrete whole–space
problem that yields an unconditionally stable scheme. The superiority of the new discrete
TBC over existing discretizations is illustrated on several benchmark problems.

1. Introduction

This paper is concerned with a finite difference discretization of standard and wide angle

“parabolic” equations. These models appear as one–way approximations to the Helmholtz
equation in cylindrical coordinates with azimuthal symmetry. In particular we will discuss
the discretization of transparent boundary conditions.

In the past two decades “parabolic” equation (PE) models have been widely used for wave
propagation problems in underwater acoustics, where they have been introduced by Tappert
[31]. An account on the vast recent literature is given in the survey article [21].

In oceanography one wants to calculate the underwater acoustic pressure p(z, r) emerging
from a time–harmonic point source located in the water at (zs, 0). Here, r > 0 denotes the
radial range variable and 0 < z < zb the depth variable. The water surface is at z = 0, and
the sea bottom at z = zb. In our numerical tests of discrete transparent boundary conditions
(in §4) we will only deal with horizontal bottoms. However, irregular bottom surfaces and
sub–bottom layers can be included by simply extending the range of z. We denote the
local sound speed by c(z, r), the density by ρ(z, r), and the attenuation by α(z, r) ≥ 0.
n(z, r) = c0/c(z, r) is the refractive index, with a reference sound speed c0 (usually the
smallest sound speed in the model). Then the reference wave number is k0 = 2πf/c0, where
f denotes the (usually low) frequency of the emitted sound.

The pressure satisfies the Helmholtz equation
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N2p = 0, r > 0, (1.1)

with the complex refractive index

N (z, r) = n(z, r) + iα(z, r)/k0. (1.2)
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In the far field approximation (k0r�1) the (complex valued) outgoing acoustic field

ψ(z, r) =
√
k0r p(z, r) e

−ik0r (1.3)

satisfies the one–way Helmholtz equation:

ψr = ik0

(√
1 − L − 1

)
ψ, r > 0. (1.4)

Here,
√

1 − L is a pseudo–differential operator, and L the Schrödinger operator

L = −k−2
0
ρ ∂z(ρ

−1∂z) + V (z, r) (1.5)

with the complex valued “potential” V (z, r) = 1 − N 2(z, r).
The evolution equation (1.4) is much easier to solve numerically than the elliptic Helm-

holtz equation (1.1). Hence, (1.4) forms the basis for all standard linear models in underwater
acoustics (normal mode, ray representation, parabolic equation) [2, 31]. Strictly speaking,
(1.4) is only valid for horizontally stratified oceans, i.e. for range–independent parameters
c, ρ, and α. In practice, however, it is still used in situations with weak range dependence,
and backscatter is neglected.

“Parabolic” approximations of (1.4) consist in formally approximating the pseudo–differen-
tial operator

√
1 − L by rational functions of L, which yields a PDE that is easier to discretize

than the pseudo–differential equation (1.4). For a detailed description and motivation of this

procedure we refer to [11, 16, 17, 21, 31, 32]. The linear approximation of
√

1 − λ by 1 − λ
2

gives the narrow angle or standard “parabolic” equation (SPE) of Tappert [31]

ψr = − ik0

2
Lψ, r > 0. (1.6)

This Schrödinger equation is a reasonable description of waves with a propagation direction
within about 15◦ of the horizontal. Rational approximations of the form

(1 − λ)
1
2 ≈ f(λ) =

p0 − p1λ

1 − q1λ
(1.7)

with real p0, p1, q1 yield the wide angle “parabolic” equations (WAPE)

ψr = ik0

(
p0 − p1L

1 − q1L
− 1

)
ψ, r > 0. (1.8)

In the sequel we will repeatedly require the condition

f ′(0) = p0q1 − p1 < 0. (1.9)

With the choice p0 = 1, p1 = 3

4
, q1 = 1

4
((1,1)–Padé approximant of (1 − λ)

1

2 ) one obtains
the WAPE of Claerbout [10]. In [17] Greene determines these coefficients by minimizing the

approximation error of (1 − λ)
1

2 over suitable λ–intervals. These WAPE models furnish a
much better description of the wave propagation up to angles of about 40◦. Also, higher
order analogues of (1.7), (1.8) have been successfully used for acoustic problems [13, 18].
While our strategy to construct discrete transparent boundary conditions (see §3) could be
generalized to such cases, we will restrict ourselves here to the WAPE (1.8).

In this article we shall focus on boundary conditions (BC) for the SPE (1.6) and the
WAPE (1.8). At the water surface one usually employs a Dirichlet (“pressure release”) BC:
ψ(z = 0, r) = 0. At the sea bottom the wave propagation in water has to be coupled to
the wave propagation in the sediments of the bottom. The bottom will be modeled as the
homogeneous half–space region z > zb with constant parameters cb, ρb, and αb. Throughout
this paper we will use a fluid model for the bottom by assuming that (1.8) also holds for
z > zb.

In practical simulations one is only interested in the acoustic field ψ(z, r) in the water,
i.e. for 0 < z < zb. While the physical problem is posed on the unbounded z–interval (0,∞),
one wishes to restrict the computational domain in the z–direction by introducing an arti-
ficial boundary at or below the sea bottom. This artificial BC should of course change the
model as little as possible. Until recently, the standard strategy was to introduce rather
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thick absorbing layers below the sea bottom and then to limit the z–range by again impo-
sing a Dirichlet BC [11, 13, 22, 24, 32]. This, of course, artificially changes the model and
it increases the computational costs significantly. In [25] and [27] Papadakis derived impe-

dance BCs or transparent boundary conditions (TBC) for the SPE and the WAPE, which
completely solves the problem of restricting the z–domain without changing the physical
model: complementing the WAPE (1.8) with a TBC at zb allows to recover — on the finite
computational domain (0, zb) — the exact half–space solution on 0 < z < ∞. As the SPE is
a Schrödinger equation, similar strategies have been developed independently for quantum
mechanical applications [5, 7, 19].

Towards the end of this introduction we shall now turn to the main motivation of this
paper. While TBCs fully solve the problem of cutting off the z–domain for the analytical
equation, their numerical discretization is far from trivial. Indeed, all available discretiza-
tions suffer from reduced accuracy (in comparison to the discretized half–space problem)
and render the overall numerical scheme only conditionally stable [7, 23, 26, 33]. The ob-
ject of this paper is to construct discrete transparent boundary conditions (DTBC) for a
Crank–Nicolson finite difference discretization of the WAPE such that the overall scheme is
unconditionally stable and as accurate as the discretized half–space problem.

The paper is organized as follows: In §2 we review the TBCs for the SPE and the WAPE.
In §3 discrete TBCs are derived and analyzed; their superiority over existing discretizations
is illustrated in the numerical tests of §4.

2. Transparent Boundary Conditions and Model Coupling

In this Section we shall first address the well–posedness of the evolution problem for the
WAPE in the critical non–dissipative case, i.e. for α = 0:

ψr = ik0

[
f(L) − 1

]
ψ, z > 0, r > 0, (2.1)

subject to the BC ψ(0, r) = 0, and with the rational function f given in (1.7). For simplicity
of the analysis we only consider the range–independent situation; for the proof see [6].

Theorem 1. Assume that the refractive index n(z), the density ρ(z) > 0, and ρ−1(z) are

bounded for z > 0. Then, the WAPE has a unique solution for all initial data in the weighted

L2–space L2(IR+; ρ−1dz) if and only if the pole of f(λ) at λ̃ = q−1
1

is not an eigenvalue of

the operator L with Dirichlet BCs at z = 0.

In applications of underwater acoustics the sound speed c(z) is typically larger in the sea
bottom than in the water. Therefore V (z) forms a “potential well” in the water region 0 <
z < zb, which typically gives rise to bound states of L that represent the propagating modes
of (1.4) and (1.8). All of the corresponding eigenvalues satisfy 0 < λj < Vb = 1− c2

0
/c2b < 1,

if c0 = minz>0 c(z). As q1 is much smaller than 1 in all practical simulations ( 1

4
in the WAPE

of Claerbout; also cf. [17]), λ̃ usually lies in [Vb,∞), the continuous spectrum of L. Theorem
1 then guarantees the unique solvability of the evolution equation (2.1) for any initial data.
Let us compare the situation at hand (i.e. the WAPE on the original unbounded interval —
and later also the WAPE with a TBC) to the WAPE restricted to a finite z–interval with
absorbing layers: there, L has a pure eigenvalue spectrum which inhibits the solvability of
(2.1) in several cases of practical relevance [3].

Now we turn to the matching conditions and later the TBCs at the water–bottom interface
(z = zb). As the density is typically discontinuous there, one requires continuity of the
pressure and the normal particle velocity:

ψ(zb−, r) = ψ(zb+, r), (2.2a)

ψz(zb−, r)

ρw
=
ψz(zb+, r)

ρb
, (2.2b)

where ρw = ρ(zb−, r) is the water density just above the bottom and ρb denotes the constant
density of the bottom.
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With these matching conditions one can easily derive an estimate for the L2–decay of
solutions to the WAPE (1.8), z > 0. We assume ρ = ρ(z) and apply the operator 1− q1L to
(1.8):

[
1 − q1V + q1k

−2
0
ρ ∂z(ρ−1∂z)

]
ψr

= ik0

[
p0 − 1 − (p1 − q1)V + (p1 − q1)k

−2
0
ρ ∂z(ρ−1∂z)

]
ψ. (2.3)

A standard procedure (multiplying (2.3) by ψ̄ρ−1, integrating by parts on 0 < z < zb, and
taking the real part, and an analogous procedure for (2.3) multiplied by ψ̄rρ

−1) eventually
gives

∂r‖ψ(., r)‖2 = −2C1

∫ ∞

0

α
c0
c

∣∣∣∂̃rψ
∣∣∣
2

ρ−1 dz, C1 =
2(p1 − q1)

2

p1 − p0q1

, (2.4)

for the weighted L2–norm

‖ψ(., r)‖2 =

∫ ∞

0

|ψ(z, r)|2 ρ−1(z) dz. (2.5)

In the dissipation–free case (α ≡ 0) ‖ψ(., r)‖ is conserved and for α > 0 and p0q1 − p1 < 0 it
decays. The discrete analogue of this “energy”–conservation (or –decay for α > 0) will be
the main ingredient for showing unconditional stability of the finite difference scheme in §3.

Now we shall review the transparent bottom boundary condition for the SPE and sketch
the derivation of the TBC for the WAPE. We assume that the initial data ψI = ψ(z, 0),
which models a point source located at (zs, 0), is supported in 0 < z < zb. Also, let the
bottom region be homogenous, i.e. all physical parameters be constant for z > zb. The
basic idea of the derivation is to explicitly solve the equation in the bottom region, which
is the exterior of the computational domain (0, zb). The TBC for the SPE (or Schrödinger
equation) was derived in [5, 7, 19, 23, 25, 27] for various application fields:

ψ(zb, r) = −(2πk0)
− 1

2 e
π
4

i ρb

ρw

∫ r

0

ψz(zb, r− τ ) eibττ−
1
2 dτ, (2.6)

with b = k0(N
2
b − 1)/2. This BC is nonlocal in the range variable r and involves a mildly

singular convolution kernel. Equivalently, it can be written as

ψz(zb, r) = −
(

2k0

π

) 1
2

e−
π
4

i eibr ρw

ρb

d

dr

∫ r

0

ψ(zb, τ ) e
−ibτ (r − τ )−

1
2 dτ. (2.7)

In order to derive the TBC for the WAPE we consider (2.3) in the bottom region:

(δb + q1k
−2
0
∂2

z )ψr = i
[
υb + (p1−q1)k

−1
0
∂2

z

]
ψ, z > zb, (2.8)

with

δb = 1 − q1(1−N 2
b ), υb = k0

[
p0 − 1 − (p1−q1)(1−N 2

b )
]
.

After a Laplace transformation of (2.8) in r we get
[
q1s − i(p1−q1)k0

]
ψ̂zz(z, s) = k2

0
(iυb − δbs)ψ̂(z, s). (2.9)

Since its solution has to decay as z → ∞ we obtain

ψ̂(z, s) = ψ̂(zb+, s) exp

{
−k0

+

√
iυb − δbs

q1s − i(p1−q1)k0

(z − zb)

}
, z > zb, (2.10)

and with the matching conditions (2.2) this gives

ψ̂z(zb−, s) = −k0

ρw

ρb

+

√
iυb − δbs

q1s − i(p1−q1)k0

ψ̂(zb−, s). (2.11)
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Here, +
√

denotes the branch of the square root with nonnegative real part. An inverse
Laplace transformation [8] yields the TBC at the bottom for the WAPE :

ψ(zb, r) = −iη ρb

ρw
ψz(zb, r)

+ β η
ρb

ρw

∫ r

0

ψz(zb, r − τ ) eiθτ eiβτ
[
J0(βτ ) + iJ1(βτ )

]
dτ, (2.12)

η =
1

k0

+

√
q1

δb
, β = − p1 − p0q1

2 q1

k0

δb
, θ =

p1 − q1

q1

k0,

where J0, J1 denote the Bessel functions of order 0 and 1, respectively. This is a slight
generalization of the TBC derived in [27] where p0 was equal to 1. Equivalently, (2.12) can
be written as

ψz(zb, r) = iη−1 ρw

ρb
ψ(zb, r)

+ β η−1ρw

ρb

∫ r

0

ψ(zb, r − τ ) eiθτ eiβτ
[
J0(βτ ) − iJ1(βτ )

]
dτ. (2.13)

Both TBCs are non–local in r; in range marching algorithms they thus require to store the
bottom boundary data of all previous range levels.

We remark that the asymptotic behaviour (for r → ∞) of the convolution kernel in the

TBC (2.7) is O
(
r−3/2

)
, which can be seen after an integration by parts. Using the asymptotic

behaviour of the Bessel functions (see (3.5)) one finds that the convolution kernel of (2.13)
also decays like O

(
r−3/2

)
.

3. Discrete Transparent Boundary Conditions

In this Section we shall discuss how to discretize the TBCs (2.6), (2.12) in conjunction
with a Crank–Nicolson finite difference scheme for the SPE and the WAPE.

With the uniform grid points zj = jh, rn = nk (h = ∆z, k = ∆r) and the approximation
ψn

j ∼ ψ(zj , rn) the discretized WAPE (2.3) reads:

[
1 − q1V

n+ 1
2

j + q1k
−2
0
ρjD

0
h
2

(ρ−1
j D0

h
2

)
]
D+

kψ
n
j

= ik0

[
p0 − 1− (p1 − q1)V

n+ 1
2

j + (p1 − q1)k
−2
0
ρjD

0
h
2

(ρ−1
j D0

h
2

)
] ψn

j + ψn+1
j

2
, (3.1)

with V
n+ 1

2

j := V (zj , rn+1
2
) and the usual difference operators

D+

kψ
n
j =

ψn+1
j − ψn

j

k
, D0

h
2

ψn
j =

ψn
j+ 1

2

− ψn
j−1

2

h
.

It is well known that this scheme is second order in h and k and unconditionally stable
[3]. Proceeding similarly to the derivation of (2.4) one can show

D+

k

∑

j∈ZZ

∣∣ψn
j

∣∣2

ρj
= −C1k

−1
0

∑

j∈ZZ

Im
{
V

n+ 1
2

j

} ∣∣∣∣ψ
n+ 1

2

j +
iq1

p1 − q1

k−1
0
D+

kψ
n
j

∣∣∣∣
2

1

ρj
, (3.2)

with C1 = 2(p1 − q1)
2/(p1 − p0q1). Hence, the scheme (3.1) preserves the discrete weighted

L2–norm in the dissipation–free case (V real). This also holds when using a homogeneous
Dirichlet BC at j = 0.

We shall now compare two strategies to discretize TBCs. First we review a known dis-
cretization from the literature, where the analytic TBC (2.6) at zb = Jh was discretized in
an ad–hoc fashion. In [33] Thomson and Mayfield used the following discretized TBC for
the SPE:

ψn
J − ψn

J−1 =
h

2Bk
1
2

ψn
J − B′

n−1∑

m=1

(
ψn−m

J − ψn−m
J−1

)
ˆ̀
m, (3.3)
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with

B = −(2πk0)
− 1

2 e
π
4

i ρb

ρw
, B′ = e

i
2
bk sin(1

2
bk)

1

2
bk

, ˆ̀
m =

eibmk

2
√
m+ 1

2

.

To illustrate the problems of this discretization strategy numerically, we shall also use an
analogous discretization of the TBC (2.12) for the WAPE:

∫ r

0

ψz(zb, rn − τ ) eiθτeiβτ
[
J0(βτ ) + iJ1(βτ )

]
dτ

=

n−1∑

m=0

∫ rm+1

rm

ψz(zb, rn − τ ) eiθτ
[
J̃0(βτ ) + iJ̃1(βτ )

]
dτ

≈
n−1∑

m=0

ψn−m
J − ψn−m

J−1

h

[
J̃0(βrm+ 1

2
) + iJ̃1(βrm+ 1

2
)
] ∫ rm+1

rm

eiθτ dτ,

with the damped Bessel functions J̃ν(z) := eizJν(z), z ∈ IC. This yields the following
discretized TBC:

ψn
J − ψn

J−1 =
ih

η

ρw

ρb
ψn

J −B′
n−1∑

m=0

(
ψn−m

J − ψn−m
J−1

)
˜̀
m, (3.4)

with

B′ = iβ e
i
2
θk sin(1

2
θk)

1

2
θ

, ˜̀
m = eiθmk

[
J̃0(βrm+ 1

2
) + iJ̃1(βrm+ 1

2
)
]
.

In far field simulations one has to evaluate Jν(z) for large complex z, when numerically

calculating these convolution coefficients ˜̀
n. This, however, is a rather delicate problem,

and many standard software routines are not able to evaluate Jν(z) for large complex z.
This is due to the exponential growth of the Bessel functions for fixed ν and |z| → ∞ (see
[1]):

Jν(z) =

(
2

πz

) 1
2 {

cos
(
z − ν

π

2
− π

4

)
+ e|Im z| O

(
|z|−1

)}
, −π < arg z < π. (3.5)

For this reason we used a subroutine of Amos [4] to evaluate the damped Bessel functions

J̃ν(z), Im z ≥ 0 (note that Im β ≥ 0 for the standard parameter choices in (1.7): p1−p0q1 > 0
and q1 > 0).

In [23] Mayfield showed that the discretized TBC for the SPE (3.3) destroys the uncon-
ditional stability of the underlying Crank–Nicolson scheme and one can expect a similar
behaviour for the WAPE. Another problem of these existing discretizations is that they in-
duce numerical reflections at the boundary, particularly when using coarse grids. Hence, the
existing discretized TBC suffers from both stability problems and reduced accuracy, which
therefore requires the usage of unnecessarily fine grids.

Instead of using an ad–hoc discretization of the analytic TBCs like (3.3) or (3.4) we will
construct discrete TBCs of the fully discretized half–space problem. Our new strategy solves
both problems of the discretized TBC at no additional computational costs. The resulting
DTBC is a generalization of the DTBC for the Schrödinger equation in [5]. The same
strategy was used in [15] for advection diffusion equations and in [14] for the wave equation in
the frequency domain. With our DTBC the numerical solution on the computational domain
0 ≤ j ≤ J exactly equals the discrete half–space solution (on j ∈ IN0) restricted to the
computational domain 0 ≤ j ≤ J . Therefore, our overall scheme inherits the unconditional
stability of the half–space solution that is implied by the discrete L2–estimate (3.2).

To derive the DTBC we will now mimic the derivation of the analytic TBCs from §2 on
a discrete level. For the initial data we assume ψ0

j = 0, j ≥ J − 1 and solve the discrete
6



exterior problem in the bottom region, i.e. the Crank–Nicolson finite difference scheme (3.1)
for j ≥ J :

[
Rδb + q∆2

h

]
(ψn+1

j − ψn
j ) = i

[
Rκb + ∆2

h

]
(ψn+1

j + ψn
j ), (3.6)

with

δb = 1 − q1(1 − N 2
b ), R =

2k0

p1 − q1

h2

k
, q =

k

2

q1

p1 − q1

k−1
0
,

κb =
k

2
k0

[
p0 − 1 − (p1−q1)(1−N 2

b )
]
,

where ∆2

hψ
n
j = ψn

j+1 − 2ψn
j + ψn

j−1, and R is proportional to the parabolic mesh ratio. By
using the Z–transform:

Z{ψn
j } = ψ̂j(z) :=

∞∑

n=0

ψn
j z

−n, z ∈ IC, |z| > 1, (3.7)

(3.6) is transformed to
[
z + 1 + iq(z − 1)

]
∆2

hψ̂j(z) = −iR
[
δb(z − 1) − iκb(z + 1)

]
ψ̂j(z). (3.8)

The solution of the resulting second order difference equation takes the form ψ̂j(z) = νj
1 (z),

j ≥ J , where ν1(z) solves

ν2 − 2

[
1 − iR

2

δb(z − 1) − iκb(z + 1)

z + 1 + iq(z − 1)

]
ν + 1 = 0. (3.9)

For the decreasing mode (as j → ∞) we require |ν1(z)| < 1. We obtain the Z–transformed
DTBC as

ψ̂J−1(z) = ν−1
1

(z) ψ̂J (z), (3.10)

and in a tedious calculation this can be inverse transformed explicitly. The DTBC for the
SPE and the WAPE then reads:

(1 + iq)ψn
J−1 = ψn

J ∗ `n =

n∑

m=1

ψm
J `n−m, n ≥ 1, (3.11)

with the convolution coefficients `n := (1 + iq)Z−1{ν−1
1

(z)} given by

`n =
[
1 + iq +

i

2
(γ − iσ)e−iξ

]
δ0

n − i

2
H(−1)neinξ

− ζ
{
Qn(µ) + e−iξλ−2Qn−1(µ) + ωe−iϕ

n−1∑

m=0

(−eiξ)n−mQm(µ)
}
,

(3.12)

γ = Rδb, σ = −Rκb, λ =
+

√
E

G
, µ =

F
+
√
EG

, ω =
H2

|E| ,

ξ = arg
1 − iq

1 + iq
, ϕ = argE, ζ =

i

2
|E|

1
2 ei ϕ

2 ,

E = (γ + iσ)
[
γ − 4q + i(σ + 4)

]
, F = γ(γ − 4q) + σ(σ + 4),

G = (γ − iσ)
[
γ − 4q − i(σ + 4)

]
, H = γ + iσ + (γ − iσ)e−iξ .

In (3.12) δ0

n denotes the Kronecker symbol and Qn(µ) := λ−nPn(µ) the damped Legendre

polynomials (Q0 ≡ 1, Q−1 ≡ 0). In the non–dissipative case (αb = 0) we have |λ| = 1,
µ ∈ [−1, 1], and hence |Pn(µ)| ≤ 1. In the dissipative case αb > 0 we have |λ| > 1, µ becomes
complex and |Pn(µ)| typically grows with n. In order to evaluate `n in a numerically stable
fashion it is therefore necessary to use the damped polynomials Qn(µ) in (3.12).

The convolution coefficients (3.12) behave asymptotically as

`n ∼= −iH(−1)neinξ, n→ ∞, (3.13)
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which may lead to subtractive cancellation in (3.11) (note that ψm
J ≈ ψm+1

J in a reasonable
discretization). Therefore we use the following numerically more stable fashion of the DTBC
in the implementation:

(1 + iq)ψn
J−1 − `0 ψ

n
J = (1 − iq)ψn−1

J−1
+

n−1∑

m=1

ψm
J sn−m, (3.14)

with sn := `n + eiξ`n−1, n ≥ 1. The coefficients sn are calculated as

sn =
[
(1 + iq)eiξ +

i

2
(γ − iσ)

]
δ1

n + ζ
Qn(µ) − λ−2Qn−2(µ)

2n− 1
. (3.15)

Alternatively, they can be calculated directly with the recurrence formula

sn =
2n− 3

n
µλ−1sn−1 −

n− 3

n
λ−2sn−2, n ≥ 4, (3.16)

once s1, s2, s3 are computed from (3.15). Using asymptotic properties of the Legendre

polynomials [30] one finds sn = O(n−3/2), n → ∞ which agrees with the decay of the
convolution kernel in the differential TBCs (2.6), (2.12).

This decay of the sn motivates to consider also a simplified version of the DTBC (3.14)
with the convolution coefficients being cut off beyond an index M , i.e. to only consider the
“recent past” in the convolution in (3.14).

So far we did not consider the (typical) density jump at the sea bottom in the DTBC
(3.11). In the following we review two possible discretizations of the water–bottom interface.
For the usual grid zj , j ∈ IN0 with Jh = zb the discontinuity of ρ is located at the grid point
zJ . In this case it is a standard practice [3, 24] to use (3.1) with

ρj =






ρw , j < J,
2ρbρw

ρb+ρw
, j = J,

ρb, j > J.

(3.17)

As an alternative one may use an offset grid, i.e. z̃j = (j+ 1

2
)h, ψ̃n

j ∼ ψ(z̃j , rn), j = −1(1)J ,
where the water–bottom interface with the density jump lies between the grid points j = J−1
and J . For discretizing the matching conditions in this case one wants to find suitable
approximations for ψ and ρ at the interface zb, Ψ ∼ ψ(zb) and ρeff = ρ(zb), such that both
sides of the discretized second matching condition (2.2b)

1

ρw

ψ̃n
J − Ψ

h/2
=

1

ρb

Ψ − ψ̃n
J−1

h/2
are equal to

1

ρeff

ψ̃n
J − ψ̃n

J−1

h
. (3.18)

This approach results in an effective density ρeff = (ρw + ρb)/2 (based on a different
derivation this was also used in [12]). In numerical tests we found that the offset grid with
the above choice of ρeff produces slightly better results that have less Gibbs’ oscillations
at the discontinuity of ψz at zb. This may be understood by the fact that (3.17) requires a
higher order derivation (using the evolution equation) than our derivation (3.18) (see also
[12, 22, 24]). Because of the discontinuity of ψz the higher order derivation yields (slightly)
poorer results. Therefore we choose the offset grid for the implementation of the DTBC. At
the surface we use instead of ψn

0 = 0 the offset BC ψ̃n
0 = −ψ̃n

−1.
Finally it remains to reformulate the DTBC (3.11) such that the density jump is taken

into account. We rewrite the discretization of the second depth derivative at j = J from
(3.1):

h2
[
ρJ D0

h
2

(
ρ−1

J D0
h
2

ψ̃n
J

)]
= ∆2

hψ̃
n
J +

(
1 − ρb

ρeff

)(
ψ̃n

J − ψ̃n
J−1

)
. (3.19)

Comparing the r.h.s. of (3.19) to (3.6) we observe that only one additional term appears,
and instead of (3.8) we get

ˆ̃
ψJ+1(z) −

[
1 − iR

δb(z − 1) − iκb(z + 1)

z + 1 + iq(z − 1)

]
ˆ̃
ψJ (z) =

ρb

ρeff

( ˆ̃
ψJ (z) − ˆ̃

ψJ−1(z)
)
. (3.20)
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Using
ˆ̃
ψJ+1(z) = ν1(z)

ˆ̃
ψJ (z), where ν1(z) denotes the solution of (3.9), and considering the

fact that ν1(z) + ν−1
1

(z) is equal to the term in the squared brackets in (3.20) we obtain the
Z–transformed DTBC:

ˆ̃
ψJ (z) − ˆ̃

ψJ−1(z) =
ρeff

ρb

ˆ̃
ψJ (z) − ρeff

ρb
ν−1

1
(z)

ˆ̃
ψJ (z). (3.21)

Hence, the DTBC including the density jump reads

(1 + iq)
ρb

ρeff
ψ̃n

J−1 +
[
(1 + iq)

(
1 − ρb

ρeff

)
− `0

]
ψ̃n

J

= −(1 − iq)
ρb

ρeff
ψ̃n−1

J−1
− (1 − iq)

(
1 − ρb

ρeff

)
ψ̃n−1

J +

n−1∑

m=1

ψ̃m
J sn−m, (3.22)

with the convolution coefficients sn given by (3.15).

4. Numerical Examples

In the following examples of this Section we shall compare the numerical result from using
our new discrete TBC to the solution using the discretized TBC of Thomson and Mayfield
[33] for both the SPE and the WAPE. Due to its construction, our DTBC yields exactly
(up to round–off errors) the numerical half–space solution restricted to the computational
interval [0, zb]. The simulation with discretized TBCs requires the same numerical effort.
However, their solution may (on coarse grids) strongly deviate from the half–space solution.

In each example we used the Gaussian beam from [21] as initial data. Below we present

the transmission loss −10 log10 |p|2, where the acoustic pressure p is calculated from (1.3).

Example 1. This is a well–known benchmark problem from the literature [21, 27, 33]. In
this example the ocean region (0 < z < 240 m) with the uniform density ρw = 1.0 gcm−3

is modeled by the SPE (1.6). It contains no attenuation and a large density jump (ρb =
2.1 gcm−3) at the water–bottom interface. Hence, this problem provides a test of the treat-
ment of the density jump in the TBCs applied along zb = 240 m.

The source of f = 100 Hz is located at a water depth zs = 30 m and the receiver depth is
at zr = 90 m. The sound speed profile in water is given by c(z) = 1498+ |120− z|/60 ms−1,
and the sound speed in the bottom is cb = 1505 ms−1. For our calculations up to a maximum
range of 20 km we used a reference sound speed c0 = 1500 ms−1 and a computational grid
with depth step ∆z = 2 m and range step ∆r = 5 m (the same step sizes were used in [33]).

In Figure 1 the solid line is the solution with our new discrete TBC (3.22) and the dotted
line is obtained with the discretized TBC (3.3). The discretized TBC clearly introduces a
systematic phase–shift error, which is roughly proportional to ∆z. The discretized TBC
also produces artificial oscillations (cf. the zoomed region), while our new DTBC yields the
smooth solution with the same numerical effort.

Figure 2 shows the poor agreement of the solution using the discretized TBC with the
computed half–space solution, which coincides with the solution using our new DTBC.

Example 2. This example appeared as the NORDA test case 3B in the PE Workshop I
[20, 21, 27, 33]. The environment for this example consists of an isovelocity water column
(c(z) = 1500 ms−1) over an isovelocity half–space bottom (cb = 1590 ms−1). The density
changes at zb = 100 m from ρw = 1.0 gcm−3 in the water to ρb = 1.2 gcm−3 in the bottom.
The source and the receiver are located at the same depth near the bottom: zs = zr = 99.5 m.
The source frequency is f = 250 Hz. The attenuation in the water is zero, and the bottom
attenuation is αb = 0.5 dB/λb, where λb = cb/f denotes the wavelength of sound in the
bottom. Here, the steepest angle of propagation (which is the equivalent ray–angle of the
highest of the 11 propagating modes) is approximately 20◦ (cf. [20, 33]). Since the source
is located near the bottom, the higher modes are significantly excited. Therefore the wide
angle capability is important here and we use the WAPE (1.8) (with the coefficients of
Claerbout) to solve this benchmark problem.
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Figure 1. Transmission loss at zr = 90 m for Example 1: the solution
with the new discrete TBC (—) coincides with the half–space solution, while
the solution with the discretized TBC (· · · ) introduces a phase–shift and
artificial oscillations.

new discrete TBC
discretized TBC 

0 60 120 180 240
0

0.01

0.02

0.03

0.04

depth   [m]

|p
si

|

Example 1

Figure 2. Vertical cut of the solution at r = 19 km for Example 1: |ψ(z, r = 19 km)|
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The maximum range of interest is 10 km and the reference sound speed is chosen as
c0 = 1500 ms−1. The calculations were carried out using the depth step ∆z = 0.25 m and
the range step ∆r = 2.5 m. Since the source is placed close to the bottom, the TBC was
applied 10 m below the ocean–bottom interface (the same was done in [33]).
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Figure 3. Transmission loss at zr = 99.5 m for Example 2: the solution
with the new discrete TBC coincides with the half–space solution, while the
solution with the discretized TBC still deviates significantly from it for the
chosen discretization.
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Figure 4. Vertical cut of the solution at r = 7 km for Example 2: |ψ(z, r = 7 km)|

The typical feature of this problem is the large destructive interference null at a range of
7 km. Figure 3 displays the transmission loss results from 5 to 10 km.

Figure 4 shows the deviation of the solution with the discretized TBC compared to the
computed half–space solution, which coincides with the solution using our new discrete TBC.
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5. Conclusions

We have derived a new discretization (discrete TBC ) of the TBC for the WAPE of
acoustics. It is of discrete convolution form involving the boundary data from the whole “past
range”. The convolution coefficients sn are calculated via a simple three–term recurrence
relation and they decay like O(n−3/2). Since our new DTBC has the same convolution
structure as existing discretizations, it requires the same computational effort but improves
two shortcomings: DTBCs are more accurate (in fact, as accurate as the discrete half–space
problem) and they yield an unconditionally stable scheme.

We point out that the superiority of DTBCs over other discretizations of TBCs is not
restricted to the WAPE or to our particular interior discretization scheme (see e.g. [5, 14,
15]). Their applicability to other models only depends on the possibility to derive them
explicitly; in our case the crucial point was to find the inverse Z–transformation of (3.10)
explicitly. As a general philosophy, DTBCs should be used (if derivable) whenever highly
accurate solutions are important.
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