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1 Introduction

In many applications in quantum mechanics one wants to calculate the evo-
lution of an ensemble of particles over long time. This computations include
the solution of the single particle Schrödinger equation obtained from a mean
field approximation using Coulomb potentials [16]. The transient Schrödinger–
Poisson problem describes the time evolution of the wave function ψ under
the force of the self–consistent potential V caused by the charged electrons. It
is an appropriate model for semiconductor heterostructures (cf. [16] and the
references therein). We note that Schrödinger–Poisson systems appear in dif-
ferent applications, e.g. electron confinement in quantum nanostructures [14]
or as a description for the helium ground state in astrophysical applications
[19].

1.1 The Schrödinger–Poisson system. The transient Schrödinger–Poisson
system (SPS) associated with a single particle system in vacuum reads for the
complex–valued wave function ψ(x, t) and the electrostatic potential V (x, t):

i~∂tψ = − ~2

2m
∆xψ + V ψ, x ∈ R

3, t > 0, (1a)

∆xV = −γ n, x ∈ R
3, t > 0, (1b)

where n = |ψ(x, t)|2 denotes the expected particle density for a pure quantum
state and γ > 0 (repulsive case) or γ < 0 (attractive case) depending on the
considered type of Coulomb force. Here ~ denotes the Planck constant and m
is the particle mass. Throughout this paper we are interested in the attractive
case where the Schrödinger–Poisson system describes the time evolution of an
electron in a polar crystal (a polaron) under the assumption that the phonon
cloud or lattice vibrations behave classically. Equations (1) are supplied with
some initial data ψ(x, 0) = ψI(x) and the decay conditions

lim
|x|→∞

ψ(x, t) = 0, lim
|x|→∞

V (x, t) = 0.

The self–consistent potential V created by the charged electrons is obtained
as solution to (1b), and can be written explicitly as

V (x, t) =
γ

4π

∫

R3

n(x′, t)

|x− x′| dx
′. (2)

We remark that the existence and uniqueness of solutions to the Schrödinger–
Poisson system were analyzed in [7], [12]. Recently, a transient Schrödinger–
Poisson system in dimension 2 or 3 with transparent boundaries was stud-
ied [5] (the one–dimensional case was already treated in [4]). Finally, we note
that the Schrödinger–Poisson system is sometimes called Schrödinger–Newton
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equations; the stationary spherical–symmetric case was investigated numeri-
cally in [18] and analytically in [23].

1.2 The spherically symmetric Schrödinger–Poisson system. Since we
want to keep the numerical effort to a minimum we only consider the case of
a spherically symmetric initial condition: ψ(x, 0) = ψI(r). It can be shown
that ψ(x, t) is invariant under rotations and therefore a radial function at any
time. For convenience we introduce the reduced wave function u(r, t) by

ψ(x, t) =
1√
4π

u(r, t)

r
, (3)

and define the effective charge φ(r, t) = rV (x, t) which becomes using (2)

φ(r, t) =
γ

4π

( ∫ r

0
|u(r′, t)|2 dr′ +

∫ ∞

r

r

r′
|u(r′, t)|2 dr′

)
. (4)

Differentiating (4) twice with respect to the radial coordinate r, the SPS
reduces then to

i~∂tu = − ~2

2m
∂2

ru+
φ

r
u, r > 0, t > 0, (5a)

∂2
rφ = − γ

4π

|u|2
r
, r > 0, t > 0, (5b)

together with the homogeneous Dirichlet conditions at the origin

u(0, t) = 0, φ(0, t) = 0,

and the decay conditions

lim
r→∞

u(r, t) = 0, lim
r→∞

φ(r, t) =
γ

4π
.

1.3 The conserved Quantities. The practically most important conserved
quantities usually are the mass of particles and the total energy. The mass of
particles is simply the L2–norm of u and therefore we can choose as normal-
ization condition ∫ ∞

0
|u(r, t)|2 dr = 1, t > 0. (6)

The conserved total energy is given by

E(t) = EKIN(t) + EINT(t) + EPOT(t), t > 0, (7)

where the kinetic, interaction and potential energies are

EKIN(t) =
~2

2m

∫ ∞

0
|∂ru(r, t)|2 dr, t > 0, (8a)
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EINT(t) =
∫ ∞

0

φ(r, t)

r
|u(r, t)|2 dr, t > 0, (8b)

EPOT(t) =
2π

γ

∫ ∞

0
∂rφ(r, t)2 dr, t > 0. (8c)

When solving the SPS numerically it is desirable that the discrete L2–norm
(mass of particles) and the discrete total energy are preserved exactly by the
numerical scheme because discretization errors in the conservation laws accu-
mulate. While it is easy to conserve the discrete L2–norm (yielding an unitary
evolution) it turns out that it is not so trivial to preserve simultaneously the
total energy

E(t) =
~

2

2m

∫ ∞

0
|∂ru(r, t)|2 dr +

1

2

∫ ∞

0

φ(r, t)

r
|u(r, t)|2 dr, t > 0. (9)

In this paper we consider the second order predictor–corrector scheme of
Ringhofer and Soler [20] where the discretization is based on the Crank–
Nicolson scheme. The conservation of mass and energy is achieved by intro-
ducing a phase modulation in the corrector step.

Remark 1 We remark that one can get an arbitrarily high (even) order mass–
conservative scheme for the Schrödinger equation by using the diagonal Padé
approximations to the exponential [3]. The Crank–Nicolson scheme corresponds
to second order, and the fourth order is known in the ODE literature as Ham-
mer and Hollingsworth method [11].

The outline of the paper is as follows. First we review briefly in §2 the ap-
proach of Ringhofer and Soler since their presentation in [20] is rather abstract
and details concerning a concrete implementation, e.g. appropriate boundary
conditions, are omitted. Afterwards in §3 we construct a so–called discrete
transparent boundary condition (DTBC) for a Schrödinger equation with a
Newton–type potential term, and discuss different approaches to obtain dis-
crete asymptotic solutions. We present in §4 an efficient implementation by
the sum–of–exponentials ansatz that reduces the computational effort for im-
plementing the DTBC significantly. Finally, we illustrate the results with a
numerical example comparing the different proposed versions of the DTBC.

2 The Numerical Schemes

In this section we first review the nonlinear Crank–Nicolson scheme from
[20] and show its conservation properties. Afterwards we turn to the linear
predictor–corrector scheme proposed by Ringhofer and Soler and analyze its
conservation properties, too. For simplicity of the presentation we will only
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deal with uniform grids: (for a nonuniform time discretization and a general
spatial discretization cf. [20]):

u
(n)
j ∼ u(rj, tn), φ

(n)
j ∼ φ(rj , tn), rj = j∆r, tn = n∆t,

with 0 ≤ j ≤ J , n ≥ 0.

2.1 The nonlinear Crank–Nicolson scheme. The discretized SPS reads

i~D+

t u
(n)
j = − ~2

2m
D2

ru
(n+ 1

2
)

j +
φ

(n+ 1
2
)

j

rj
u

(n+ 1
2
)

j , j ≥ 1, (10a)

D2

rφ
(n+1)
j = − γ

4π

∣∣∣u(n+1)
j

∣∣∣
2

rj
, j ≥ 1, (10b)

together with the discrete boundary conditions

u
(n)
0 = 0, lim

j→∞
u

(n)
j = 0, φ

(n)
0 = 0, φ

(n)
J =

γ

4π
. (10c)

A realization of the decay condition for u
(n)
j in the form of a (discrete) trans-

parent boundary condition will be the topic of §3. In (10) we have used the
standard abbreviations for the forward, and second order difference quotient:

D+

t u
(n)
j =

u
(n+1)
j − u

(n)
j

∆t
, D2

ru
(n)
j =

u
(n)
j+1 − 2u

(n)
j + u

(n)
j−1

(∆r)2
,

and the time averaging u
(n+ 1

2
)

j = (u
(n+1)
j + u

(n)
j )/2.

Discrete conservation properties of the nonlinear scheme. First we
want to show the discrete conservation of the mass (cf. (6))

‖u(n)‖2
2 := ∆r

∞∑

j=0

∣∣∣u(n)
j

∣∣∣
2
. (11)

Here and in the sequel we will need a simple identity (“discrete product rule”)

D+

t (u(n)w(n)) = u(n+ 1
2
)D+

t (w(n)) + w(n+ 1
2
)D+

t (u(n)), (12)

i.e. with w(n) = ū(n) we get

D+

t

∣∣∣u(n)
∣∣∣
2

= 2Re{ū(n+ 1
2
)D+

t u
(n)}. (13)

To derive the discrete mass conservation property we consider the discretized

SPS (10) on the finite domain 1 ≤ j ≤ J−1 and multiply (10a) with −iū(n+ 1
2
)

j :

~ū
(n+ 1

2
)

j D+

t u
(n)
j =

i~2

2m
ū

(n+ 1
2
)

j D2

ru
(n+ 1

2
)

j − i
φ

(n+ 1
2
)

j

rj

∣∣∣∣u
(n+ 1

2
)

j

∣∣∣∣
2

. (14)
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Summing up (14) for 1 ≤ j ≤ J − 1 gives with summation by parts

J−1∑

j=1

ū
(n+ 1

2
)

j D+

t u
(n)
j = − i~

2m

J−1∑

j=0

∣∣∣∣D
+

r u
(n+ 1

2
)

j

∣∣∣∣
2

− i

~

J−1∑

j=1

φ
(n+ 1

2
)

j

rj

∣∣∣∣u
(n+ 1

2
)

j

∣∣∣∣
2

+
i~

2m∆r

(
ū

(n+ 1
2
)

J D−

r u
(n+ 1

2
)

J − ū
(n+ 1

2
)

0 D+

r u
(n+ 1

2
)

0

)
.

(15)

Taking the real part using (13) and the boundary condition at j = 0 yields:

D+

t ∆r
J−1∑

j=0

∣∣∣u(n)
j

∣∣∣
2

= − ~

m
Im

{
ū

(n+ 1
2
)

J D−

r u
(n+ 1

2
)

J

}
, (16)

i.e. for J → ∞ the conservation of the mass.

Similarly one can derive the conservation of the discrete total energy E (n) (cf.
(9)) which is defined at time step n by

E(n) =
~2∆r

2m

∞∑

j=0

∣∣∣D+

r u
(n)
j

∣∣∣
2
+

∆r

2

∞∑

j=1

φ
(n)
j

rj

∣∣∣u(n)
j

∣∣∣
2
, n ≥ 0. (17)

Multiplying (10a) with −D+
t ū

(n)
j one gets

−i~
∣∣∣D+

t u
(n)
j

∣∣∣
2

=
~2

2m
(D+

t ū
(n)
j )D2

ru
(n+ 1

2
)

j − φ
(n+ 1

2
)

j

rj
u

(n+ 1
2
)

j D+

t ū
(n)
j .

Summing it up for the finite domain 1 ≤ j ≤ J − 1 gives

−i~
J−1∑

j=1

∣∣∣D+

t u
(n)
j

∣∣∣
2

= − ~2

2m

J−1∑

j=1

(D+

t D
+

r ū
(n)
j )D+

r u
(n+ 1

2
)

j −
J−1∑

j=1

φ
(n+ 1

2
)

j

rj
u

(n+ 1
2
)

j D+

t ū
(n)
j

+
~2

2m∆r

(
(D+

t ū
(n)
J )D−

r u
(n+ 1

2
)

J − (D+

t ū
(n)
0 )D+

r u
(n+ 1

2
)

0

)
,

and taking the real part using again (13) and the boundary condition at j = 0:

~2

2m
D+

t

J−1∑

j=0

∣∣∣D+

r u
(n)
j

∣∣∣
2
+

J−1∑

j=1

φ
(n+ 1

2
)

j

rj
D+

t

∣∣∣u(n)
j

∣∣∣
2

=
~2

m∆r
Re

{
(D+

t ū
(n)
J )D−

r u
(n+ 1

2
)

J

}
.

(18)
Using (10b), the second term of (18) can be written in the following way

J−1∑

j=1

φ
(n+ 1

2
)

j

rj
D+

t

∣∣∣u(n)
j

∣∣∣
2

= −4π

γ

J−1∑

j=1

φ
(n+ 1

2
)

j D+

t D
2

rφ
(n)
j

=
2π

γ
D+

t

J−1∑

j=0

(D+

r φ
(n)
j )2 − 4π

γ∆r
φ

(n+ 1
2
)

J D+

t D
−

r φ
(n)
J .
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Now summation by parts yields

J−1∑

j=1

φ
(n+ 1

2
)

j

rj
D+

t

∣∣∣u(n)
j

∣∣∣
2

= −2π

γ
D+

t

J−1∑

j=1

φ
(n)
j D2

rφ
(n)
j − 4π

γ∆r
φ

(n+ 1
2
)

J D+

t D
−

r φ
(n)
J

+
2π

γ∆r
D+

t

(
φ

(n)
J D−

r φ
(n)
J − φ

(n)
0 D+

r φ
(n)
0

)

=
2π

γ∆r
D+

t (φ
(n)
J D−

r φ
(n)
J ) − 4π

γ∆r
φ

(n+ 1
2
)

J D+

t D
−

r φ
(n)
J

+
1

2
D+

t

J−1∑

j=1

φ
(n)
j

rj

∣∣∣u(n)
j

∣∣∣
2

= − 2π

γ∆r

(
φ

(n+ 1
2
)

J D+

t D
−

r φ
(n)
J − (D−

r φ
(n+ 1

2
)

J )D+

t φ
(n)
J

)

+
1

2
D+

t

J−1∑

j=1

φ
(n)
j

rj

∣∣∣u(n)
j

∣∣∣
2
,

i.e. (18) reads now

D+

t


~2∆r

2m

J−1∑

j=0

∣∣∣D+

r u
(n)
j

∣∣∣
2
+

∆r

2

J−1∑

j=1

φ
(n)
j

rj

∣∣∣u(n)
j

∣∣∣
2




=
2π

γ

(
φ

(n+ 1
2
)

J D+

t D
−

r φ
(n)
J − (D−

r φ
(n+ 1

2
)

J )D+

t φ
(n)
J

)
+

~2

m
Re

{
(D+

t ū
(n)
J )D−

r u
(n+ 1

2
)

J

}
.

(19)

Letting J → ∞ the boundary terms vanish and we obtain the discrete energy
conservation: D+

t E
(n) = 0.

2.2 The Predictor–Corrector Scheme. We now proceed to present the pre-
dictor–corrector scheme approximating the nonlinear Crank–Nicolson scheme
(10). It only requires the solution of linear equations at each step and is of the
same order. One step of the predictor–corrector scheme will be of the form

(u
(n)
j , φ

(n)
j ) → u

(n,1)
j → φ

(n,1)
j → u

(n,2)
j → φ

(n,2)
j → (u

(n+1)
j , φ

(n+1)
j ),

where u
(n,1)
j , φ

(n,1)
j , u

(n,2)
j , φ

(n,2)
j denote some intermediate values. For brevity

we define the difference operators D+

t,ku
(n)
j = (u

(n,k)
j − u

(n)
j )/∆t, and the time

averaging St,ku
(n)
j = (u

(n,k)
j + u

(n)
j )/2, k = 1, 2.
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Given u
(n)
j , the predictor step to compute u

(n,1)
j , φ

(n,1)
j is then defined as

i~D+

t,1u
(n)
j = − ~2

2m
D2

rSt,1u
(n)
j +

φ
(n)
j

rj
St,1u

(n)
j , j ≥ 1, (20a)

D2

rφ
(n,1)
j = − γ

4π

∣∣∣u(n,1)
j

∣∣∣
2

rj
, j ≥ 1. (20b)

Note that this represents two decoupled linear equations for u
(n,1)
j and φ

(n,1)
j ,

since the term φ
(n+ 1

2
)

j in (10a) has been replaced by φ
(n)
j in (20a).

The standard corrector step for determining u
(n,2)
j , φ

(n,2)
j is given by

i~D+

t,2u
(n)
j = − ~2

2m
D2

rSt,2u
(n)
j +

St,1φ
(n)
j

rj

St,2u
(n)
j , j ≥ 1, (21a)

D2

rφ
(n,2)
j = − γ

4π

∣∣∣u(n,2)
j

∣∣∣
2

rj
, j ≥ 1. (21b)

Again, this represents two decoupled linear systems for u
(n,2)
j , φ

(n,2)
j . It is easily

verified that the scheme (20)–(21) is second order consistent in time.

The conservation properties of the predictor–corrector scheme. In
the following we want to study the conservation properties of the predictor–
corrector scheme (20)–(21) on the domain j ≥ 1. Note that an identity analo-
gous to (12) holds:D+

t,k(u
(n)w(n)) = St,ku

(n)D+

t,kw
(n)+St,kw

(n)D+

t,ku
(n), k = 1, 2.

As before, the discrete mass conservation is verified by computing as in (14):

multiplying (21a) with −iSt,2ū
(n)
j , summing for 1 ≤ j ≤ J − 1 and taking the

real part yields (as an analogy to (16)):

D+

t,2∆r
J−1∑

j=1

∣∣∣u(n)
j

∣∣∣
2

= − ~

m
Im

{
(St,2ū

(n)
J )D−

r St,2u
(n)
J

}
. (22)

Thus (letting J → ∞), this predictor–corrector approach preserves mass.

To investigate the energy conservation properties of (20)–(21) we multiply

(21a) by −D+

t,2ū
(n)
j and obtain

~2

2m
D+

t,2

J−1∑

j=0

∣∣∣D+

r u
(n)
j

∣∣∣
2
+

J−1∑

j=1

St,1φ
(n)
j

rj
D+

t,2

∣∣∣u(n)
j

∣∣∣
2

=
~2

m∆r
Re

{
(D+

t,2ū
(n)
J )D−

r St,2u
(n)
J

}
.

(23)
In order to get an equation analogue to (18) we can write this as a correction to

the nonlinear Crank–Nicolson scheme, i.e. we use St,1φ
(n)
j = St,2φ

(n)
j − (φ

(n,2)
j −

8



φ
(n,1)
j )/2 in (23):

~2

2m
D+

t,2

J−1∑

j=0

∣∣∣D+

r u
(n)
j

∣∣∣
2
+

J−1∑

j=1

St,2φ
(n)
j

rj
D+

t,2

∣∣∣u(n)
j

∣∣∣
2

=
1

2

J−1∑

j=1

φ
(n,2)
j − φ

(n,1)
j

rj
D+

t,2

∣∣∣u(n)
j

∣∣∣
2
+

~2

m∆r
Re

{
(D+

t,2ū
(n)
J )D−

r St,2u
(n)
J

}
.

(24)

2.3 The Modulation Strategy. Comparing (24) with (18) one notices that
the predictor–corrector approximation to the Crank–Nicolson scheme pre-
serves mass, but exhibits a spurious gain / loss of the total energy which
is of order ∆t3 at each time step. Ringhofer and Soler remedied this situation
by modulating the phase of the second stage u

(n,2)
j of the scheme by setting

u
(n+1)
j = u

(n,2)
j exp(i∆t3ωgj), φ

(n+1)
j = φ

(n,2)
j , j ≥ 1, (25)

where ω is a real parameter and gj = g(rj) denotes an appropriate chosen
real valued function bounded uniformly for j ∈ N. Obviously, the mass con-
servation property is retained by this phase correction. Also, adding an order
O(∆t3) correction at each step does not destroy the overall second order ac-
curacy of the method. With the modulation step (25) we have

|u(n+1)
j |2
rj

=
|u(n,2)

j |2
rj

= −4π

γ
D2

rφ
(n,2)
j = −4π

γ
D2

rφ
(n+1)
j , j ≥ 1, n ≥ 0,

and using this in (24) we can proceed analogously to the derivation of the
energy conservation of the nonlinear scheme and obtain

D+

t,2


~2∆r

2m

J−1∑

j=0

∣∣∣D+

r u
(n)
j

∣∣∣
2
+

∆r

2

J−1∑

j=1

φ
(n)
j

rj

∣∣∣u(n)
j

∣∣∣
2




=
∆r

2

J−1∑

j=1

φ
(n,2)
j − φ

(n,1)
j

rj
D+

t,2

∣∣∣u(n)
j

∣∣∣
2
+

~2

m
Re

{
(D+

t,2ū
(n)
J )D−

r St,2u
(n)
J

}

+
2π

γ

(
(St,2φ

(n)
J )D+

t,2D
−

r φ
(n)
J − (D−

r St,2φ
(n)
J )D+

t,2φ
(n)
J

)
.

(26)

Next we want to discuss the choice of the modulation parameter ω ∈ R and
the modulation function gj = g(rj) ∈ R in (25). From (26) we conclude (by

9



letting J → ∞) the temporal evolution of the discrete total energy E (n) as

D+

t,2


~2∆r

2m

∑

j∈N0

∣∣∣D+

r u
(n)
j

∣∣∣
2
+

∆r

2

∑

j∈N

φ
(n)
j

rj

∣∣∣u(n)
j

∣∣∣
2




︸ ︷︷ ︸
=:E(n)

=

∆r

2

∑

j∈N

φ
(n,2)
j − φ

(n,1)
j

rj
D+

t,2

∣∣∣u(n)
j

∣∣∣
2
.

With the modulation step (25) we obtain for the residual R(n) := E(n+1)−E(n)

R(n) = E(n+1) − E(n,2) + ∆tD+

t,2E
(n)

=
~2∆r

2m

∑

j∈N0

(∣∣∣D+

r u
(n+1)
j

∣∣∣
2−

∣∣∣D+

r u
(n,2)
j

∣∣∣
2
)

+
∆t

2

∑

j∈N

φ
(n,2)
j − φ

(n,1)
j

j
D+

t,2

∣∣∣u(n)
j

∣∣∣
2
.

(27)

The parameter ω is now chosen such that the residual R(n) = R(n)(ω) in
(27) vanishes identically. This involves the solution of a single scalar nonlinear
equation for ω. A simple direct calculation now gives:

∣∣∣D+

r u
(n+1)
j

∣∣∣
2 −

∣∣∣D+

r u
(n,2)
j

∣∣∣
2

=
2

∆r2
Re

{
ū

(n,2)
j u

(n,2)
j+1 − ū

(n+1)
j u

(n+1)
j+1

}

=
2

∆r2
Re

{
ū

(n,2)
j u

(n,2)
j+1

[
1 − exp

(
i∆t3ω(gj+1 − gj)

)]}

= −2∆t3ω

∆r
(D+

r gj)Re
{
iū

(n,2)
j u

(n,2)
j+1

}
+ O(∆t6)

= −2∆t3ω(D+

r gj)Re
{
iū

(n,2)
j D+

r u
(n,2)
j

}
+ O(∆t6),

i.e. in leading order in ∆t the parameter ω is given by

ω =

m
∑
j∈N

φ
(n,2)
j

−φ
(n,1)
j

rj
D+

t,2

∣∣∣u(n)
j

∣∣∣
2

2~2∆t2
∑

j∈N0

Fj(D+
r gj)

+ O(∆t), (28)

with Fj (the flux) given by

Fj = Re
{
iū

(n,2)
j D+

r u
(n,2)
j

}
, j ∈ N0. (29)

Equation (28) can be used as an initial guess for a (scalar) Newton iteration
to determine ω by solving (27) with R(n)(ω) = 0.

We note, that the modulation function g should be chosen such that (D+
r gj)

is not orthogonal to Fj everywhere (this does not work for Fj ≡ 0 when the

reduced wave function u
(n,2)
j is purely real or purely imaginary. A simple first

10



idea would be to choose g as some bounded function like a trigonometric
function or e.g. g(r) = 1/(1 + r).

For a second approach [21] we write the wave function in amplitude and phase
representation as

u
(n,2)
j = aj exp(ibj), j ∈ N0, (30)

and obtain for the flux

Fj = Re {iaj aj+1 exp(iD+

r bj)} = −aj aj+1 sin(D+

r bj), j ∈ N0, (31)

which suggests the choice gj = bj = arg u
(n,2)
j for the modulation function.

Finally, as a third idea we apply the summation by parts rule to the denomi-
nator in (28):

∑

j∈N0

Fj(D
+

r gj) = −
∑

j∈N

gj(D
−

r Fj) = −
∑

j∈N

gj Re
{
iD−

r (ū
(n,2)
j u

(n,2)
j+1 )

}
, (32)

i.e. one obvious possible choice of gj would be

gj = −Re
{
iD−

r (ū
(n,2)
j u

(n,2)
j+1 )

}
= Im

{
D+

r (ū
(n,2)
j−1 u

(n,2)
j )

}
, (33)

such that one would sum up square numbers in the denominator. Thus the
denominator in (28) can always be made non–zero if u is neither purely real
nor purely imaginary.

Remark 2 In the (rather rare) time steps for which either the real or the
imaginary part of u becomes too small and the modulation strategy breaks
down one has to solve the full nonlinear Crank–Nicolson scheme (10) which
incidentally is an acceptable computational cost.

Since the problem (5a) is posed on an unbounded domain we have to introduce
an artificial boundary at j = J for the numerical solution. Here we use the
approach of a discrete transparent boundary condition (DTBC) from [1] which
was derived for the linear Schrödinger equation under the assumption that
the potential term V

(n)
j = φ

(n)
j /rj = const for j ≥ J (exterior domain). In

the following section we will review this approach to clarify the basic ideas
and then extend these calculations to the case of a Newton–type potential,
i.e. φ

(n)
j /rj ∼ const /rj, j → ∞. It will turn out out that the DTBC for zero

potential is the lowest order approximation to the DTBC for the Newton–type
potential. Both approaches for the DTBC are used in the example of §5.

11



3 The Discrete Transparent Boundary Conditions

To derive the DTBC for (5a) we make the basic assumption that the initial
data uI = u(r, 0) is supported in the computational domain r < R. A strategy
to overcome this restriction could be found in [9].

3.1 Case of a constant potential term outside the computational
domain. We start with assuming that V (r, t) = φ(r, t)/r = VR for r ≥ R.

The transparent boundary condition. The first step is to cut the original
problem (5a) into two subproblems, the interior problem on r < R, and an ex-
terior problem. They are coupled by the assumption that u, ur are continuous
across the artificial boundary at r = R. The interior problem reads

i~∂tu(r, t) = − ~2

2m
∂2

ru(r, t) +
φ(r, t)

r
u(r, t), 0 < r < R, t > 0,

u(r, 0) = uI(r), 0 < r < R,

ur(R, t) = (TRu)(R, t).

(34)

TR denote the Dirichlet–to–Neumann map at the boundary, which is obtained
by solving the exterior problem:

i~∂tv = − ~2

2m
∂2

rv + VRv, r > R, t > 0,

v(r, 0) = 0, r > R,

v(R, t) = Φ(t), t > 0, Φ(0) = 0,

lim
r→∞

v(r, t) = 0,

(TRΦ)(t) = vr(R, t).

(35)

Since the potential VR = φ∞/R is constant in the exterior problem, we can
obtain the boundary operator TR needed in (34) by solving it explicitly by the
Laplace transformation:

v̂(r, s) =
∫ ∞

0
v(r, t)e−st dt,

where we set s = η + iξ, ξ ∈ R, and η > 0 is fixed, with the idea to later
perform the limit η → 0. Now the exterior problem (35) is transformed to

∂2
r v̂ + i

2m

~

(
s+ i

VR

~

)
v̂ = 0, r > R,

v̂(R, s) = Φ̂(s).
(36)

Since its solutions have to decrease as r → ∞, we obtain

v̂(r, s) = e
−

+

√
−i 2m

h
(s+i

VR
~

)(r−R)
Φ̂(s). (37)

12



Hence the Laplace–transformed Dirichlet–to–Neumann operator TR reads

T̂RΦ(s) = ∂rv̂(R, s) = −
√

2m

~
e−i π

4
+

√

s+ i
VR

~
Φ̂(s). (38)

Here, +
√

denotes the branch of the square root with nonnegative real part.
Finally, an inverse Laplace transformation yields the TBC at r = R:

ur(R, t) = −
√

2m

~π
e−i π

4 e−i
VR
~

t d

dt

∫ t

0

u(R, τ ) ei
VR
~

τ

√
t− τ

dτ, (39)

This boundary condition is non–local in t (of memory–type), thus requiring
the storage of all previous time levels at r = R in a numerical discretization.

The discrete TBC. Now we describe how to incorporate the TBC (39) into
the Crank–Nicolson finite difference scheme (10a). Instead of using an ad–hoc
discretization of the analytic TBC with its mildly singular convolution kernel
(discretized TBC ) which is on the discrete level not perfectly transparent
any more and may also yield an unstable numerical scheme we will construct
a discrete TBC of the fully discretized problem. Our strategy solves both
problems of the discretized TBC at no additional computational costs. With
our DTBC the numerical solution on the computational domain 0 ≤ j ≤ J
equals the discrete solution on j ∈ N restricted to the domain 0 ≤ j ≤ J .
Therefore, our overall scheme avoids any numerical reflections at the boundary
and inherits the unconditional stability of the Crank–Nicolson scheme.

We rewrite the scheme (10a) in the form:

−iρ(u(n+1)
j − u

(n)
j ) = ∆2(u

(n+1)
j + u

(n)
j ) + w

φ
(n+ 1

2
)

j

rj
(u

(n+1)
j + u

(n)
j ), (40)

with the second order difference operator ∆2u
(n)
j = ∆r2D2

ru
(n)
j and the ratios

ρ =
4m

~

∆r2

∆t
, w = −2m

~2
∆r2.

To derive the discrete TBC we will now mimic the derivation of the analytic
TBC on a discrete level. In analogy to the continuous problem we assume:

φ
(n+ 1

2
)

j /rj = VR = const, u0
j = 0, j ≥ J − 1, and solve the discrete exterior

problem by using the Z–transformation:

Z{u(n)
j } = ûj(z) :=

∞∑

n=0

u
(n)
j z−n, z ∈ C, |z| > 1.

13



Hence, the Z–transformed finite difference scheme (40) for j ≥ J reads

(z + 1)∆2ûj(z) = −iρ
[
z − 1 + iκ(z + 1)

]
ûj(z), κ =

∆t

2

VR

~
. (41)

The two linearly independent solutions of this second order difference equation
(41) take the form ûj(z) = νj

1,2(z), j ≥ J , where ν1,2(z) solve

ν2 − 2
[
1 − iρ

2

(
z − 1

z + 1
+ iκ

)]
ν + 1 = 0. (42)

For the decreasing mode (as j → ∞) we have to require |ν1(z)| < 1 and obtain
the Z–transformed DTBC as

ûJ−1(z) = ν−1
1 (z) ûJ (z). (43)

It only remains to inverse transform (43) and in a tedious calculation this can
be achieved explicitly [1]. However, since the magnitude of `(n) := Z−1{ν−1

1 (z)}
does not decay as n → ∞ (Im `(n) behaves like const ·(−1)n for large n), it is
more convenient to use a modified formulation of the DTBC (cf. [9]). Therefore
we introduce the summed coefficients

s(n) = Z−1{ŝ(z)}, with ŝ(z) :=
z + 1

z
ˆ̀(z), (44)

which satisfy
s(0) = `(0), s(n) = `(n) + `(n−1), n ≥ 1.

The discrete TBC (at j = J) for the discretization (40) now reads (cf. [1]):

u
(n)
J−1 − s

(0)
u

(n)
J =

n−1∑

k=1

s
(n−k)

u
(k)
J − un−1

J−1, n ≥ 1, (45)

with

s(n) =
[
1 − i

ρ

2
+
σ

2

]
δ0

n +
[
1 + i

ρ

2
+
σ

2

]
δ1

n + α e−inϕ Pn(µ) − Pn−2(µ)

2n − 1
,

ϕ = arctan
2ρ(σ + 2)

ρ2 − 4σ − σ2
, µ =

ρ2 + 4σ + σ2

√
(ρ2 + σ2)(ρ2 + [σ + 4]2)

, (46)

σ = −wVR, α =
i

2
4
√

(ρ2 + σ2)(ρ2 + [σ + 4]2) eiϕ/2.

Pn denotes the Legendre polynomials (P−1 ≡ P−2 ≡ 0) and δj
n the Kronecker

symbol. The Pn only have to be evaluated at one value µ ∈ R, and hence
the numerically stable recursion formula for the Legendre polynomials can
be used. Using asymptotic properties of the Legendre polynomials one finds
s(n) = O(n−3/2), which agrees with the decay of the convolution kernel in the
differential TBC (39) (after an integration by parts).
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3.2 Case of a Coulomb–like potential term outside the computational
domain. We now assume that V (r, t) = φ∞/r for r ≥ R with φ∞ = γ

4π
.

The transparent boundary condition. We briefly repeat the analogous
steps for this case. The transformed exterior problem now reads

∂2
r v̂ + i

2m

~

(
s+ i

φ∞

~r

)
v̂ = 0, r > R,

v̂(R, s) = Φ̂(s).
(47)

The solution of this second order ODE that decreases as r → ∞ is given by
Whittaker’s second function [15]:

v̂(r, s) =
Wµ, 1

2
(α(s)r)

Wµ, 1
2
(α(s)R)

Φ̂(s), (48)

with

α(s) = 2

√
2m

~
e−i π

4 +
√
s, µ(s) =

φ∞

i4~s
α(s) = −

√
m

2~

ei π
4 φ∞

~ +
√
s
.

Hence the Laplace–transformed Dirichlet–to–Neumann operator TR reads

T̂RΦ(s) = ∂rv̂(R, s) = α(s)
W ′

µ, 1
2

(α(s)R)

Wµ, 1
2
(α(s)R)

Φ̂(s). (49)

For applying the inverse Laplace transformation we have to use an asymptotic
expansion for µ fixed, r → ∞ [15]:

Wµ, 1
2
(z) ≈ e−

z
2 zµ

2F0(1 − µ,−u; ;−1

z
), −3π

2
< arg z <

3π

2
. (50)

The hypergeometric function 2F0 in (50) is given by:

2F0(1 − µ,−u; ;−1

z
) =

∞∑

k=0

(1 − µ)k(−µ)k

k!
(−1)kz−k, |z| > 1, (51)

with the Pochhammer notation

(µ)0 = 1, (µ)k = µ(µ + 1) · · · · · (µ+ k − 1) =
Γ(µ + k)

Γ(µ)
.

If we use e.g. the lowest order approximation Wµ, 1
2
(z) ≈ e−

z
2 zµ we obtain

T̂RΦ(s) = ∂rv̂(R, s) =
(
−α(s)

2
+
µ(s)

R

)
Φ̂(s). (52)
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Finally, an inverse Laplace transformation yields the TBC at r = R:

ur(R, t) = −
√

2m

~π
e−i π

4

∫ t

0

ut(R, τ ) + i
2

φ∞

~R
u(R, τ )√

t− τ
dτ. (53)

Again, like (39), the condition (53) is non–local in time with a mildly singular
kernel and we prefer to derive a discrete TBC directly on the discrete level.

The discrete TBC. We now proceed deriving a discrete version of the TBC
(53). In analogy to the continuous problem we assume: φ

(n)
j = φ

(n,1)
j = φ

(n,2)
j =

φ∞, u0
j = 0, j ≥ J−1, and write the discrete Z–transformed exterior problem

(40) as

ûj+1(z) + ûj−1(z) = 2
[
1 − iρ

z − 1

z + 1
+
m∆r

~2

φ∞

j

]
ûj(z), j ≥ J. (54)

Motivated by (43), we want to obtain the transformed DTBC in the form:

ûJ−1(z) = ˆ̀(z) ûJ (z). (55)

Unfortunately, the exact solution to (54) is not known explicitly In the se-
quel we will construct some expressions for ˆ̀(z) by determining asymptotic
solutions to (54) through different approaches.

First of all, following the approach of Mickens [17], the asymptotic solution of

ûj+1(z) + ûj−1(z) = 2
[
A0 +

A1

j

]
ûj(z), j ≥ J, (56)

takes the form

ûj(z) ∼ jθeB0j
[
1 +

∞∑

k=1

Bk

jk

]
, (57)

where the parameters θ and Bk are expressible in terms of A0 = A0(z), A1.
The parameters θ, B0, B1 can be obtained by

cosh(B0) = A0, i.e. B0 = ln
(
A0 ±

√
A2

0 − 1
)
, (58a)

θ =
A1

sinh(B0)
, (58b)

B1 =
θ(θ − 1)

2
coth(B0). (58c)

In our case we obtain

eB0 = ν1(z), (59a)

θ =
2m∆r

~2

φ∞

ν1(z) − ν−1
1

(z)
, (59b)

B1 =
θ(θ − 1)

2

ν1(z) + ν−1
1 (z)

ν1(z) − ν−1
1

(z)
, (59c)
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where ν1(z) is the solution to (42) for the Schrödinger equation with zero
potential (i.e. κ = 0) with |ν1(z)| < 1.

Secondly, one can use the approach of Wong and Li [24] to obtain a formula
for the asymptotic behaviour of the solutions to this second order difference
equation. This is possible since equation (54) is of Poincaré type, i.e. the
coefficients in (54) have finite limits for j → ∞. To do so, we rewrite (54) in
the form

ûj+2 + a(j) ûj+1 + ûj = 0, j ≥ J, (60)

with a(j) = −2[A0 +A1/(j+1)]. Now a(j) has a power expansion of the form

a(j) =
∞∑

k=0

ak

jk
,

with coefficients:

a0 = −2A0, ak = 2A1(−1)k, k ≥ 1.

Then the decaying asymptotic solution (cf. [24]) is of the form

ûj ∼ ν1(z)
jjα

∞∑

k=0

ck
jk
, j → ∞, (61)

where α can be calculated as

α =
a1ν1(z)

a0ν1(z) + 2
=

A1ν1(z)

A0ν1(z) − 1
=

2A1

ν1(z) − ν−1
1

(z)
. (62)

Without loss of generality, we assume that c0 = 1 and determine the values
of the coefficients c1, c2, . . . by formula (2.3) in [24] or more illustrative by
substituting the solution (61) in (60):

ν2
1

(
1 +

2

j

)α ∞∑

k=0

ck
(j + 2)k

+ a(j)ν1

(
1 +

1

j

)α ∞∑

k=0

ck
(j + 1)k

+
∞∑

k=0

ck
jk

= 0.

We now obtain after a Taylor expansion in 1/j and setting all the linearly
independent terms equal to zero, by a lengthy but elementary calculation

c1 =
α2 +A0A1α − α−A1ν +A2

1

2(A0ν − 1)
, (63a)

c2 =
c21
2

+
A0ν − α

2(A0ν − 1)
c1 +

1 −A1ν −A0A1 −A2
0

3(A0ν − 1)
c1 (63b)

+
(A3

0c1 + ν −A0)A1

6(A0ν − 1)
+

(A2
0 −A1ν +A1A0 − 3)A2

1

12(A0ν − 1)
,

etc..
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This result can be checked easily with a symbolic package like MAPLE. We
note that after some basic manipulations one observes that these two ap-
proaches lead to the same asymptotic solution of the difference equation (54).

Finally, for a third approach to construct an approximation to the DTBC, we
use a formulation as a continued fraction. One can deduce such expression for
the quotient ˆ̀(z) = ûJ−1(z)/ûJ(z) as a continued fraction directly from the
difference scheme (54). This approach is often better than evaluating the quo-
tient of two asymptotic solutions (obtained by any of the previous approaches)
at two neighboured grid points. If we rewrite (54) as

ûJ−1(z)

ûJ(z)
= 2

[
A0 +

A1

j

]
− 1

ûJ (z)
ûJ+1(z)

,

it is obvious that

ûJ−1(z)

ûJ(z)
= 2

[
A0 +

A1

J

]
− 1

2[A0 + A1

J+1
] − ... −

1

2[A0 + A1

J+M
] −
ûJ+M+1(z)

ûJ+M (z)
.

For decreasing solutions the last quotient may be neglected when M → ∞,
i.e. we obtain the expansion

ˆ̀(z) = 2
[
A0 +

A1

J

]
− 1

2[A0 + A1

J+1
] −

1

2[A0 + A1

J+2
] − ...

. (64)

This continued fractions formula (64) offers another way to evaluate the quo-
tient ˆ̀(z) needed in the transformed discrete TBC (43). For the numerical
implementation we use the modified Lentz’s method [13] which is an efficient
general method for evaluating continued fractions. We remark that this ap-
proach is suitable for general second order difference equations.

Remark 3 Our practical calculations in §5 showed that the evaluation of the
continued fraction (64) is stable for all considered values of A0 and A1 although
we cannot prove this yet.

We finish this section with a short note about the implementation of the
discrete TBC using the above approaches. As in the case for the constant
potential in the exterior domain (cf. (44)) it is favourable to use

ŝ(z) :=
z + 1

z
ˆ̀(z). (65)

An inverse Z–transformation yields finally the discrete TBC

u
(n)
J−1 − s

(0)
u

(n)
J =

n−1∑

k=1

s
(n−k)

u
(k)
J − u

(n−1)
J−1 , n ≥ 1. (66)
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with

s(n) = Z−1{ŝ(z)} =
τn

2π

2π∫

0

ŝ(τeiϕ)einϕ dϕ, n ∈ Z0, τ > 0. (67)

Since this inverse Z–transformation cannot be done explicitly, we use a nu-
merical inversion technique based on FFT (cf. [9]); for details of this routine
we refer the reader to [8].

Remark 4 As noted before, this DTBC (66) can also used for both the pre-
dictor (20a) and the corrector step (21a) for the Schrödinger equation. In the
exterior domain they are

i~D+

t,ku
(n)
j = − ~2

2m
D2

rSt,ku
(n)
j +

φ∞

rj

St,ku
(n)
j , j ≥ J, (68)

k = 1, 2, i.e. after a (slightly modified) Z–transformation they are of the form
(54) and a DTBC analogue to (66) can be applied.

4 Approximation by Sums of Exponentials

An ad–hoc implementation of the discrete convolution (66) with convolution
coefficients s(n) (obtained by any of the above approaches) has still one disad-
vantage. The boundary condition is non–local and therefore computationally
expensive especially for long–time calculations. In fact, evaluating the con-
volution appearing in the exact discrete TBC (66) (or (45)), becomes with
increasing time more expensive than solving the whole interior scheme. As a
remedy, we proposed in [2] the sum–of–exponentials ansatz. While the com-
putational effort for the discrete TBC is quadratic in time, the effort for the
approximated discrete TBC only increases linearly. In the sequel we will briefly
review this approach.

4.1 The Sum–of–Exponentials Ansatz. In order to derive a fast numeri-
cal method to calculate the discrete convolution in (66), we approximate the
coefficients s(n) by the following (sum of exponentials):

s(n) ≈ s̃(n) :=





s(n), n = 0, 1
L∑

l=1

bl q
−n
l , n = 2, 3, . . . ,

(69)

where L ∈ N is a fixed number (e.g. L = 20). Evidently, the approximation
properties of s̃(n) depend on L, and the corresponding set {bl, ql}. We remark
that the computational effort does not change considerably for different values
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of L since the evaluation of the sum-of-exponential convolutions has a neg-
ligible effort compared to solving the PDE in the interior domain. Below we
propose a deterministic method of finding {bl, ql} for fixed L.

Let us fix L and consider the formal power series:

g(x) := s(2) + s(3)x+ s(4)x2 + . . . , |x| ≤ 1. (70)

If there exists the [L − 1|L] Padé approximation g̃(x) := PL−1(x)/QL(x) of
(70), then its Taylor series

g̃(x) = s̃(2) + s̃(3)x+ s̃(4)x2 + . . .

satisfies the conditions

s̃(n) = s(n), n = 2, 3, . . . , 2L + 1, (71)

due to the definition of the Padé approximation rule.

Theorem 5 ([2]) Let QL(x) have L simple roots ql with |ql| > 1, l =
1, . . . , L. Then

s̃(n) =
L∑

l=1

bl q
−n
l , n = 2, 3, . . . , (72)

where

bl := −PL−1(ql)

Q′
L(ql)

ql 6= 0, l = 1, . . . , L.

It follows from (71) and (72) that the set {bl, ql} defined in Theorem 5 can be
used in (69) at least for n = 2, 3, .., 2L + 1. The main question now is: Is it
possible to use these {bl, ql} also for n > 2L+1? In other words, what quality
of approximation

s̃(n) ≈ s(n), n > 2L + 1

can we expect?

The above analysis permits us to give the following description of the approx-
imation to the convolution coefficients s(n) by the representation (69) if we
use a [L− 1|L] Padé approximant to (70): the first 2L coefficients are repro-
duced exactly, see (71); however, the asymptotic behaviour of s(n) and s̃(n) (as
n→ ∞) differs strongly (algebraic versus exponential decay). A typical graph
of |s(n) − s̃(n)| versus n for the DTBC of §3.2 and L = 30 is shown in Fig. 3 in
Section 5.

4.2 Fast Evaluation of the Discrete Convolution. Let us consider the
approximation (69) of the discrete convolution kernel appearing in the DTBC
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(66). With these “exponential” coefficients the convolution

C(n) :=
n−1∑

k=1

s̃(n−k)u
(k)
J , s̃(n) =

L∑

l=1

bl q
−n
l , (73)

|ql| > 1, of a discrete function u
(k)
J , k = 1, 2, . . . , with the kernel coefficients

s̃(n), can be calculated by recurrence formulas, and this will reduce the numer-
ical effort significantly.

A straightforward calculation (cf. [2]) yields: The value C (n) from (73) for
n ≥ 2 is represented by

C(n) =
L∑

l=1

C
(n)
l ,

where C
(1)
l ≡ 0 and

C
(n)
l = q−1

l C
(n−1)
l + bl q

−2
l u

(n−2)
J , n = 2, 3, . . . .

Finally, we summarize the approach by the following algorithm:

1. calculate s(n), n = 0, . . . , N − 1, via numerical inverse Z–transformation;
2. calculate s̃(n) via Padé–algorithm;
3. the corresponding coefficients bl, ql are used for the efficient calculation

of the discrete convolution.

Remark 6 We note that the Padé approximation must be performed with high
precision (2L − 1 digits mantissa length) to avoid a ‘nearly breakdown’ by ill
conditioned steps in the Lanczos algorithm (cf. [6]). If such problems still occur
or if one root of the denominator is smaller than 1 in absolute value, the orders
of the numerator and denominator polynomials are successively reduced.

5 Numerical Examples

In this section we want to present the results for the numerical integration of
the time–dependent Schrödinger–Poisson system (5) in the attractive case (i.e.
the coupling constant γ is negative) with negative energy. The existence of an
analytical breathing mode solution for this case was proven in [22, Section 8]
and our long–term objective using the derived DTBCs will be to find discrete
breathers. We will compare the results using two different schemes and con-
sider the different proposed strategies for implementing a discrete TBC for the
SPS. First we use a linear Crank–Nicolson scheme, which is obtained from the
nonlinear Crank–Nicolson scheme (10) by using an extrapolation in time for
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the potential term (which retains the second order accuracy of the scheme):

i~D+

t u
(n)
j = − ~2

2m
D2

ru
(n+ 1

2
)

j +
φ̃

(n+ 1
2
)

j

rj
u

(n+ 1
2
)

j , j ≥ 1, (74a)

D2

rφ
(n+1)
j = − γ

4π

∣∣∣u(n+1)
j

∣∣∣
2

rj
, j ≥ 1, (74b)

with φ̃
(n+ 1

2
)

j =
3

2
φ

(n)
j − 1

2
φ

(n−1)
j . (74c)

For this scheme we use the discrete TBC of Section 3.1 and compare it with the
results obtained by the predictor–corrector method (20)–(21) together with
the new discrete TBC of Section 3.2 combined with the sum–of–exponentials
ansatz (69).

5.1 The discrete Conservation of the Mass and the Energy. The con-
servation of the mass (11) and the total energy (17) (on j ≥ 0) provides a
useful check of our numerical procedure. We need to clarify how to calculate
numerically these conserved quantities which are defined originally on an un-
bounded domain. We start with the nonlinear Crank–Nicolson scheme (10).
For the discrete mass we obtain on the exterior domain j ≥ J similar to (15):

D+

t ∆r
∞∑

j=J

∣∣∣u(n)
j

∣∣∣
2

=
~

m
Im

{
ū

(n+ 1
2
)

J D−

r u
(n+ 1

2
)

J

}
, (75)

and summing up in time for k = 0, 1 . . . , n− 1 yields

‖u(n)‖2
2 = ∆r

J−1∑

j=1

∣∣∣u(n)
j

∣∣∣
2
+

~∆t

m
Im

n−1∑

k=0

ū
(k+ 1

2
)

J D−

r u
(k+ 1

2
)

J . (76)

For calculating the energy we obtain an equation similar to (19):

D+

t


~2∆r

2m

∞∑

j=J

∣∣∣D+

r u
(n)
j
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∆r

2
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j=J

φ
(n)
j

rj

∣∣∣u(n)
j

∣∣∣
2




=
2π

γ

(
(D−

r φ
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2
)

J )D+

t φ
(n)
J − φ

(n+ 1
2
)

J D+

t D
−

r φ
(n)
J

)
− ~2

m
Re

{
(D+

t ū
(n)
J )D−

r u
(n+ 1

2
)

J

}
.

Again, summing up with respect to time gives for the discrete total energy

E(n) =
~2∆r

2m

J−1∑

j=0

∣∣∣D+

r u
(n)
j

∣∣∣
2
+

J−1∑

j=1

φ
(n)
j

2j

∣∣∣u(n)
j

∣∣∣
2 − ~2∆t

m
Re
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k=0

(D+

t ū
(k)
J )D−

r u
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2
)

J

+
2π∆t

γ
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(
(D−

r φ
(k+ 1

2
)

J )D+

t φ
(k)
J − φ

(k+ 1
2
)

J D+

t D
−

r φ
(k)
J

)
.

(77)
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Note that the last boundary term can be simplified:

(D−

r φ
(k+ 1

2
)

J )D+

t φ
(k)
J − φ

(k+ 1
2
)

J D+

t D
−

r φ
(k)
J =

φ
(k+1)
J−1 φ

(k)
J − φ

(k)
J−1φ

(k+1)
J

∆t∆r
.

Formulas (76), (77) are used without changes for the linear scheme (74).

For the predictor–corrector scheme (20)–(21) (i.e. without the modulation step
(25)) we obtain analogously for the calculation of the mass

‖u(n)‖2
2 = ∆r

J−1∑

j=1

∣∣∣u(n)
j

∣∣∣
2
+

~∆t

m
Im

n−1∑

k=0

(St,2ū
(k)
J )D−

r St,2u
(k)
J . (78)

Analogously to (77) the discrete total energy is calculated by

E(n) =
~2∆r

2m

J−1∑

j=0

∣∣∣D+

r u
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j
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φ
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∣∣∣u(n)
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Re
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(D+

t,2ū
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r St,2u
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J

+
2π

γ∆r

n−1∑

k=0

(
φ

(k,2)
J−1 φ

(k)
J − φ

(k)
J−1φ

(k,2)
J

)
.

5.2 Examples. Here we want to present some numerical results to illustrate
the findings of the preceeding sections. The main program is written in MAT-
LAB and the convolution coefficients s(n) are computed by a MAPLE routine
(due to the possibility of a simple adaption of the mantissa length, cf. Re-
mark 6 in §4). For simplicity we set ~ = 1 and m = 1.

Example 1. First we want to study the convolution coefficients appearing in
the different discrete TBCs. We use for the discretization 2000 grid points in
radial direction in the computational domain r < 50 (i.e. ∆r = 1/40) and a
time step ∆t = 1/4000. The coupling constant is set to γ = −64π/5 (cf. [22]).

For these discretization parameters (especially J = 2000) it turns out that
using the asymptotic solutions (57), (61) is not advisable since for large J we
have ˆ̀(z) ∼ 2(A0(z) + A1/J) which is only the first term in the continued
fraction expansion (64). Therefore, we decided to calculate the transformed
boundary kernel ˆ̀(z) in (55) by the continued fraction formula (64) together
with the sum–of–exponentials ansatz (69).

We computed the first 1000 terms in the expansion (64) and used a radius
τ = 1.01 with 210 sampling points for the numerical inverse Z–transformation
(67). Note that the choice of an appropriate radius τ is a delicate problem: it
must not be too close to the convergence radius of (64) due to the approxi-
mation error but a too large τ raises big rounding errors during the rescaling
process. These problems do not exist when using the sum–of–exponentials
approximation (since only the first 2L + 1 exact convolution coefficients are
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needed). For a detailed discussion of the choice of a suitable radius τ we refer
the reader to [2, Section 2] and [25].

First we examine the exact convolution coefficients of the two different DTBCs
presented in §3.1 and §3.2. Fig. 1 shows a comparison of the coefficients s(n)

from the discrete TBC (45) (constant potential) with the coefficients s(n) from
the discrete TBC (66) (Newton–type potential). This illustrates the effect
of the potential, when we regard its 1/r–decay in the exterior domain. The
difference of these two sequences of convolution coefficients is shown in Fig. 2.
In Fig. 3 we plot both the exact convolution coefficients s(n) and the error
|s(n) − s̃(n)| versus n for L = 30 (observe the different scales!).
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Fig. 1. Comparison of the convolution coefficients s(n) of the discrete TBC (45)

(left) and (66) (right).
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Fig. 2. Deviation of the convolution coefficients s(n) obtained from the two ap-
proaches of §3.1 and §3.2.
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Fig. 3. Convolution coefficients s(n) (left axis, dashed line) and error |s(n) − s̃(n)| of

the convolution coefficients (right axis); (L = 30).

Example 2. In the second example we want to investigate numerically the
conservation properties. We consider the Crank–Nicolson scheme (74) with the
discrete TBC (45) and the predictor–corrector method (20)–(21) (i.e. without
the modulation step (25)) with the new discrete TBC (66). We choose ∆r =
1/20, ∆t = 1/100 and a computational domain r < 6. For a fair comparison
we use a time step ∆t/2 for the Crank–Nicolson scheme (74).

Without loss of generality we choose the initial data to be real:

uI(r) =




r exp

(
−β2/(β2 − r2)

)
, r < β

0, else
, (79)

with the parameter β = 5.5 and then normalize uI such that ‖uI‖2 = 1. We
remark that after one predictor–corrector step u is not purely real any more
and the initial value of the modulation parameter ω (28) is well–defined. Fig. 4
shows the time evolution of the solution u up to T = 40 (i.e. 4000 time steps).
One observes the typical oscillating (‘breathing’ ) behaviour of the solution u.

The discrete L2–norm computed by (76), (78) was conserved up to the com-
putational accuracy by both schemes. However, as explained before, there is
a spurious gain/loss of the discrete total energy. In Fig. 5 we plotted the total
energy for the Crank–Nicolson scheme and the predictor–corrector method. In
contrast, the predictor–corrector scheme with the modulation strategy (here
we used the third idea (33)) conserves the total energy (up to round–off er-
rors). Note that we have to compute the total energy of the predictor–corrector
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Fig. 4. Time evolution of the solution u up to T = 40.

method with modulation strategy on a sufficiently large domain since the for-
mulas of §5.1 with the boundary terms do not hold.
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Fig. 5. Time evolution of the discrete total energy up to T = 40.

We use the different proposed modulation functions gj for the phase correc-
tion step (25). The initial value ω0 for the Newton iteration to determine the
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parameter ω is computed (cf. (28)) by

ω0 = − ∆r

2∆t3

J∑
j=1

φ
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j −φ

(n,1)
j

j

(∣∣∣u(n,2)
j

∣∣∣
2 −

∣∣∣u(n)
j

∣∣∣
2)

J−1∑
j=0

Im
{
ū

(n,2)
j u

(n,2)
j+1

} (
gj+1 − gj

) .

However, in our numerical calculations this initial guess was already quite
good (R(n)(ω0) ≈ 10−7 – 10−9) and therefore we used these values throughout
our example and worked without the Newton iteration. It turned out that the
choice of gj has a negligible effect on the value of R(n)(ω0).

Finally, we want to investigate the induced error from using the different pro-
posed boundary conditions. Again we use the linear Crank-Nicolson scheme
and the predictor–corrector scheme with the modulation strategy (using g(r) =
1/(1 + r)) on the computational interval [0, 10]. We computed a reference so-

lution u
(n)
ref on the enlarged domain [0, 20] by the predictor–corrector method

with the approximated new TBC (L = 30). In Fig. 6 and Fig. 7 we com-

pare the relative L2-norm of the error (‖u(n) − u
(n)
ref‖2/‖uI‖2) for the different

(approximated) discrete TBCs for the range from 0 to T = 10 (i.e. 1000
time steps). It turned out that the error for the predictor–corrector method
is smaller than for the Crank–Nicolson scheme. Moreover, the error for the
approximated DTBC with L = 30 is quite close to the one for the exact new
DTBC (66). The error curves using the DTBC of §3.1 are identical for both
schemes.

Conclusions

We have proposed a variety of strategies to derive an approximation to the dis-
crete TBC for an energy and mass conserving discretization of the Schrödinger
equation with a Newton–type potential term in the exterior domain. Espe-
cially when investigating the existence of so–called breathing mode solutions
(changing size oscillatory wave functions) it is of great importance to obtain
an energy preserving method [22] (since the existence of these periodic solu-
tions is a consequence of a minimizing variational principle with constraints,
involving the energy). Therefore we will analyze in a forthcoming paper [10]
the existence of so–called discrete breathers solutions. However, the last results
in Fig. 6 and Fig. 7 indicates that the discrete TBCs shall be improved in a
future work to take into account the coupling of the predictor and corrector
step and the nonlinear modulation step. It seems to be necessary to take into
account the asymptotic behaviour of the potential φ(r, t) for r → ∞ when
constructing the DTBC for u and the boundary condition at r = R for φ.
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Fig. 6. Relative L2-norm of the error in u(r, t) for the linear Crank–Nicolson scheme.
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