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In this review we discuss techniques to solve numericaléyttme—dependent linear Sddinger equation on unbounded
domains. We present some recent approaches and desceilvatile ideas pointing out the relations between thes&swor
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1 Introduction

The equation under consideration is the 1D $dimger equation given on the unbounded donfaia {(z,t) € R x R*}:

i0pu = —02u+V(z,t\u, x€R t>0,
u(z,0) = ul(z), ‘ lim wu(z,t) =0, (1)

x|

whereV denotes a given real potential. We assume that the initial idacompactly supported, i.eupp(u!) C [z;, z,].
Furthermore, we assume tHatis constant outside an intenval;, x|, i.e.V(z) = V; for z < z;, V(z) = V, for x > x,.

Equation (1) is one of the basic equations of quantum mechamid it arises in many areas of physical and technological
interest, e.g. in quantum semiconductors, in electromagn@ve propagation, and in seismic migration. The Sdmger
equation is the lowest order one-way approximatigaréxial wave equation) to the Helmholtz equation and is callEcesnel
equation in optics , orstandard parabolic equation in underwater acoustics.

If one wants to solve such a whole space evolution problemenigally, one has to restrict the computational (interior)
domainQ;,; = {(z,t) €]z, z.[xRT} by introducing artificial boundary conditions or absorblagers. Artificial boundary
conditions are constructed with the objective to approxéntiae exact solution of the whole—space problem, restrict€;,,, .
Such BCs are calleabsorbing boundary conditions (ABCS) if they yield a well-posed initial boundary value ptem (IBVP),
where some ‘energy functional’ is absorbed at the boundétlyis approximate solution actually coincides Qg ; with the
exact solution of the whole—space problem, one refers &etB&€s asransparent boundary conditions (TBCs). While TBCs
for the Schédinger equation are nonlocal in time (and space for mirtieshsional cases), it is often desirable to construct
ABCs that ardocal in space and/or time to allow for an efficient numerical inmpémtation.

2 Transparent boundary conditions for the Schibdinger equation

Here we sketch the different ways of deriving transparennidary conditions (TBCs). We start with the classical deion
of theanalytic TBC for the IBVP (1). Secondly, we shall mimic this procedtoethe time—discrete Scdinger equation to
derive temporally discrete TBCs. Note that the $climger equation discretized in time is also the startingtpor TBCs
based on theerfectly matched layer method and thepole condition. Finally, we shall considefully discrete TBCs.

2.1 Analytic TBCs

Analytic TBCs for the Schidinger equation (1) were independently derived by sewrtlors from various application fields
They are non—local inand connecd,v(z; -, t) with v(x, ., t). As a Dirichlet-to-Neumann (DtN) map they read

e it o, d /t v(x, 7)eVirT
et — [
ﬁ dt 0 Vi—T

wheren denotes the outwardly unit normal vectorat ..

Onv(z,t) = —

dr atx = x,x,, )
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These TBCs may be derived by the followiggneral procedure. First, split original problem into coupled equations,
interior and exterior problems. Secondly, apply a Laplaaedformation in time and solve the resulting ordinary differential
equations inz. Allow only ‘outgoing’ waves by selecting the decaying g@n asxz — +oo. Finally, match Dirichlet and
Neumann values at = x;, z = z,.. and apply the inverse Laplace transformation to obtaiTBEs (2) .

2.2 Temporally discrete TBCs
We consider the problem (1) discretized uniformly in timeéhithe step sizé\t by thetrapezoidal rule

n+l _ ,n n+1 n n+1 n+1 n n
Uty At Y (@™ +VA@W" R ovne N,
At 2 2 (3)
u’ =ul(z) givenforz € R, lim u"(x) =0, Vn € Ny,

|z|—o00

Instead of a Laplace transformation w.t.to (1), we apply aZ-transformationz (uv") = a(z) := Y > ju" 2", z € C and
obtain by the above described procedure:

v”“ o Un+1 + i Vn-‘rl(x)vn+1 + 1Vl (x),UTL
- = _p? Q,Vn e N
i N - 5 5 s x e i), vn € Ny,
Uo(x) = ’u,I(:L‘)7 xr € Q, (4)
n+1

l, _
O™t = E ;[;,(g’r)v"Jrl kooatx =, x,
k=0

where the weightsznl"’") are given (in case of a vanishing potential) by
i V2
VAL

2.3 Fully discrete TBCs
Fully discrete TBCs are obtained if we discretize (3) additilly in space, e.g. using the uniform gtigl = z; + jAz, j € Z:

.4792.47

N | —

Y = —e
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(_1)1%5147’ k S NO) (/&0’1;1)7;2)7;371/;471/;57' . ) = (15 17 %7 7ﬁ Q . ) - (5)

ur_erl —um” uﬂ“ +u V_71+1u'r_1+1 + Vg
- J 277 J J J J ) .
io_— % __p . jE€Z, neN,
At T 2 J 0
|'1|im uj =0, n € Ny, (6)
jl—o0

u? =u'(jAz), jEZ,

whereD? denotes the standard second order difference quotientiidtiteartificial boundary is located at; = x; + JAz =
z, and the left boundary aty = x;. The right discrete TBC is obtained analogously and readstéw as DtN map):

up—uy_q :—an,ku’}—i—uﬁj, n € N, (7)
k=1
with the explicitly calculated convolution weights:
o Pr(p) — Py 2R 1
$n = (ZIR+0) b+ (L4 iR +0) by ye7™ (M)zn o 0,y — anctan R—(Zij—zf 8
R? 4 20 + o2 (8)

o =A2V,, y=iV/(R2+0?) (R2+ (0 +2)%) €, N:\/(R2—|—02)(R2+(U+2)2)'

P, denotes the Legendre polynomial2 ( = P_, = 0), §* is the Kronecker symbol anit = Az?/At is the mesh ratio.

3 Further Reading

For a much more detailed description of the previous deomatand a concise discussion of the situation for multidisi@nal
and nonlinear (cubic) Scbdinger equations, efficient approximations and numeggaimples we refer the reader to [1].
Moreover, there exists supplementary MATLAB software vatgraphical user interface to compare the different aphesc
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