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Abstract. This chapter is a review of the research of the authors frenett decade and focuses
on the mathematical analysis of the Schrodinger model foonscale semiconductor devices. We
discusgransparent boundary conditiorf¥BCs) for the time—dependent Schrédinger equation on a
two dimensional domain.

First we derive the two dimensional discrete TBCs in confiomcwith a conservative Crank—
Nicolson-type finite difference scheme and a compact nioiet-pcheme. For this difference equa-
tions we derivadiscrete transparent boundary conditio3TBCs) in order to get highly accurate
solutions for open boundary problems. The presented désbrindary—valued problem is uncon-
ditionally stable and completely reflection—free at thermbary.

Then, since the DTBCs for the Schrédinger equation includeraolution w.r.t. time with a
weakly decaying kernel, we constragiproximateDTBCs with a kernel having the form of a finite
sum of exponentials, which can be efficiently evaluated loynrsion.

In several numerical tests we illustrate the perfect alignrpf outgoing waves independent of
their impact angle at the boundary, the stability, and efficy of the proposed method. Finally, we
apply inhomogeneous DTBCs to the transient simulation ahtum waveguides with a prescribed
electron inflow.

1 Introduction

Today’'s semiconductor devices like transistors and naiesplit-gate devices are rapidly
shrinking in their size. In this context, modeling and nuicedrsimulations play an impor-
tant role in the development and design of new devices. Wesfoa devices with ballistic
electron transport, such as electron quantum waveguideeatev Their functionality de-
pends on the formation of a 2D electron gas and on wave inggrge effects (cf. [23]).

Speaking of ballistic transport means that electrons aenasd to not suffer any col-
lision during their transit through the device (e.g. highrify materials, very small time or
length scales, and at low temperatures). A schematic viesuc a device, double gate
metal oxide semiconductor field—effect transiglpG—-MOS), is shown in Figure 1(a). At
the gates there is an applied external potential and thér@tetransport takes place from
source to drain.

We consider thesffective mass approximatiowhere the massq, is assumed to be
constant in homogenized parts of the device. The differeaterials (e.g. Si, Si¢) have
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(a) Schematic view of a double gate metal oxide semicondtieto-effect tran-

sistor (DG-MOS). The electron transport takes place froor@®to drain inc-
direction. An external potential is applied at the gates.
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(b) Simplified model of a DG-MOS

Figure 1: Schematic view and simplified model of a DG-MOS.

different effective masses. We simplify this model likesiforesented in Figure 1(b), where
only one effective mass is used and external potentigls. could be applied at the gates.
But regarding different materials and therefore differefféective masses won't change our
proposed model in principle.

Quantum waveguides are novel electronic switches of nat®siimensions. They are
made of several different semiconductor materials sudftltleaelectron flow is confined to
small channels or waveguides. Due to their sandwichedtateithe relevant geometry for
the electron current is roughly two dimensional.

Using external electrostatic potentials the “allowed oegifor the electrons, and hence
the geometry can be modified. This fact allows to control threent flow through such an
electronic device. It makes it a switch, which resemblesuasistor, but on a nanoscale (cf.
§2.1 of [2], e.g.).
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Being quantum particles, the electron transport throughiantym waveguide can be
modeled in good approximation by the following two dimemsib transient Schrodinger
equation

ha t) = i A t Vix,t t
1 ET[)(X, )— —% XQ/J(X, )+ (Xv W(Xa )7

x = (z,y) € Qt), t > 0, 1)

w(x’ 0) = T/JI(X% X € Q(O)’
P(x,t) =0, x € IN(),

on a time—dependent geomefiyt) C R? with initial dataw)! € L?(©2(0)) and homoge-
neous Dirichlet boundary conditions. Hefeandm™* denote the Planck constant and effec-
tive mass, respectively. The external real valued potesaigsfiesV (., t) € L>(£(t)) and
V(x,.) is piecewise continuous. The solutigrto (1) is a time—dependent complex valued
wave function withy (., t) € L2(Q(t)).

The spatial domain consists of (very long) leads and theastiitching region, which
sometimes has the shape of a stub. The structure can beeceatizan etched layé€X(t) of
GaAs between two layers of doped AlGaAs. Here, we shall oomgitler domain€(t) that
are piecewise constant frand monotonously growing in time. At the jump discontiresti
of the domain we shall extent the solutigrby zero, as a new initialization.

In typical applications, electrons are continuously fed ithhe leads. Depending on the
size and shape of the stub, the electron current is eithectefl 6ff—stateof the device) or
it can pass through the devicenstatg. Since the applied external potential can modify
the stub size, it hence allows to switch the device. Impordawice data for practitioners
are the ratio between the on- and the (residual) off—cumenwell as the switching time
between these two stationary states. These data can beasbfeom numerical simulations
of the described Schrddinger equation model (1).

The leads are very long compared to the typical size of theeagion and they usually
only carry (linear combinations of) plane wave solutionsr the efficiency of numerical
simulations it is therefore desirable to restrict the setioh model to a small computational
regionQ)(t) close to the stub (see Fig. 2). Hence, the leads should béfdyt using artifi-
cial boundary conditions. This is possible without chaggime solution of the Schrédinger
equation by introducingpen boundary conditiori24], which are non—local in time (con-
volution type) and in space. Open boundary conditions dtedcmansparent if they yield
identical solutions both on the original large domgift) and the reduced (computational)
domainQ(t).

This chapter is organized as follows: In Section 2 we intoedilne concept of transpar-
ent boundary conditions (TBCs). In Section 3 we derive aralyae a discrete analogue
of the analytic TBCs in conjunction with a fourth order coropfinite difference scheme
of the Schrddinger equation. We present some numericallaiioos to illustrate the ef-
fectiveness and accuracy of our DTBCs in Section 4. Finally,give an application of
inhomogeneous DTBCs to a 2D waveguide simulation with aalell quantum transistor.
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Figure 2: T-shaped structufe with the lengthX', a channel widthy", and a stub widtho.

It is possible to enlarge the stub length frdm to L,. Inhomogeneous TBCs have to be
proposed at = 0, homogeneous TBCs at= X. The inflow atz = 0 is modeled by an
incoming functiony'™ given by linear combination of plane waves.

2 Transparent boundary conditions for the two dimensional
Schrodinger equation

To illustrate the idea of deriving transparent boundarydttions (TBCs) we first consider
the one dimensional, time—dependent Schriédinger equdfjavith a potential that satisfies
for simplicity the following assumptionsV (z,t) = V; for x < 0 andV (z,t) = V, for
x > X and allt > 0. For the treatment of nonconstant exterior potentials \ier e
reader to [18], [20], [22].

The first step of the derivation is to cut the origivahole—space problenmto three
subproblems, the interior problem on the bounded domainz < X, and a left and right
exterior problem. These problems are coupled by the assomipiat the wave function
and its spatial derivative, are continuous across the artificial boundaries at0, z = X.
Hence, thenterior problemreads

’:LZ
ihwt:—%?/fm%—V(az,t)% O<x< X, t>0,

Y(x,0) =¥ (x), 0<z<X, 2)
V2(0,t) = (Tiy)(0,1), >0,
V(X 1) = (Tp) (X, 1), t>0.

T; » denote thedirichlet-to—Neumann (DtN) mayzs the left/right boundaries, and they are
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obtained by solving the twexterior problems

2

h
thvy = ——— v + Vou, > X, >0,
2m*

v(z,0) =0, z>X, ®3)
v(oo,t) =0 and v(X,t)=®(t), t>0, ®(0)=0,
which yields (7, ®)(t) = v,(X,t) and analogously for the left mappirig at =z = 0.

Since the potential is constant in the exterior problemsgavesolve them explicitly by the
Laplace method and thus obtain the two boundary operdjgraeeded in (2) (cf. Fig. 3).

g
left exterior problem interior problem
(explicitly solvable) right
exterior
output: v,(0,1) - problem

input:
boundary data g (0,t) | =—

0 X

Figure 3: Construction idea for transparent boundary ¢mmd in 1D.

The Laplace transformation ofis given by
o
o(z,8) = / v(z,t)e S dt, s=n+if, £ €R, n>0fixed
0

Now the right exterior problem (3) is transformed to

*

2 Vr
ﬁm—ki%(s—kif)@:O, z> X,

A

(X, s) = ®(s).

(4)

Since its solutions have to decreaseras oo (since we have)(.,t) € L?(R)), we obtain
o(x,s) =€ b —i 25 (s ) (@=X) i)(s)

Hence, the Laplace—transformed Dirichlet—to—Neumanmatpel’,. reads

__ om* _.x .
T,8(s) = 0(X, 8) = —/ 7;; emi% T/sﬂ'% d(s), (5)

and7; is calculated analogously. Herd/ denotes the branch of the square root with
nonnegative real part.
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An inverse Laplace transformation of (5) yields tight TBCatx = X:

2* s Zﬁt 'l)Z)XTeh

xX7t = - _Z_
Val ) hm e dt Vt—T1

and analogously for the left artificial boundaryzat: 0. These BCs araon-local int and
of memory-type, thus requiring the storage of all previootlevels at the boundary in a
numerical discretization. A second difficulty in numerlgamplementing the continuous
TBC (6) is the discretization of the singular convolutionma. A simple calculation shows
that (6) is equivalent to thiempedance boundary condition

B0 = gt [P, )

Integrating by parts in (6) and carrying out théerivative, one sees that the resulting
kernel behaves lik€(t—3/2) for t — co. We remark that the TBC (7) was first derived
in 1982 by Papadakis [31] in the context of underwater adcaisSince the Schrodinger
equation (2) has (formally) a similar structure as the hgatgon, analogous DtN maps
for the heat equation were already given by Carslaw and d@bgjen 1959.

It is possible to extend the one dimensional TBCs (6) to repitar geometrief), X ) x
(0,Y) in 2D (cf. [8] for details). Now we consider the two dimensartime—dependent
Schrddinger equation (1) on the infinite strife= R x (0,Y"). The derivation of two
dimensional TBCs is based on taking the partial Fourieesesfy) w.r.t. y:

Y(x,y,t Z T/Jm x,t) sm( Yy) (8)

meN

(6)

Again we assume that the potentidl is constant in each of the two exterior domains:
V(z,y,t) = Vext for (z,y) € Q\Q,¢ > 0. The time evolution of the modes,, (x,t), m €
N is decoupled there. Hence, each mode satisfies=at) andx = X a one dimensional

TBC 9
iy _ —im/4 =iVt iVint,)
U :8) = Ve Vor (Ve t)), meN, (9)

with the potentialsV,,, := Vext + 5 (m”) , and the unit outward normal vectgr Here,
\/0; denotes the fractional time derlvatlve of ordge with the Fourier symbol/—iw.

Remark 2.1 Note that the exterior potentidl., in 2D may depend op. Then, the orthog-
onal mode decomposition (8) has to use the eigenfunctions of the stationary Schrodinger
equation iny with non—constanpotential V (y) (cf. [12]).

3 Discrete transparent boundary conditions for the two dimen-
sional Schrodinger equation

The numerical discretizations of the artificial boundaryditions (6), (7) and (9) is deli-
cate, as it may easily render the initial-boundary valudlero only conditionally stable
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(e.g. [28]). DTBCs for a Crank-Nicolson finite differencesdlietization of the Schrodinger
equation were first given in [6], [17] and [16] (cf. also [4]rfa recent review of the var-
ious alternative approaches and [32], [33] for enhancesnehthe discrete TBCs for the
Schrédinger equation). In this section we shall follow thhifosophy” of [6], [7], [17], [20]
andderive DTBCsinstead ofdiscretizing the continuous TB@).

For the derivation of the DTBCs we will now mimic the deriatiof the continuous
TBCs presented in Section 2 on a discrete level. First, weusig the unconditionally
stable Crank—Nicolson time—discretization scheme coetbiwith a compact nine—point
discretization in space. The DTBCs will be constructeddiyefor the resulting difference
equations.

3.1 The difference equations
We first consider the scaled time—dependent Schrddingetiegu TDSE)

Qw(way ) = __Aw( ) + V(x,y,t)w(w,y,t), (%,y) € R27 t> 07

1/1(957%0) = ¢I(9€ay)7 (fE,y) € R27

on the whole spacR?. For the derivation of the associated difference equatieatro-
duce the equidistant gria, A, With the spatial grid points:; = jAz andy, = kAy
for j, k € Z. We use the uniform time discretization = nAt, n € Ny. Hence,
Vil ~ Y(x;, Yk, tn) denotes an approximation of the solutip(r, y, t) of the Schrodinger
equation (10) on the space-time—grid. Using the compaa—paint finite difference
scheme in space combined with a Crank-Nicolson time—stgpphe discretized two di-
mensional scaled Schrddinger equation reads

(10)

D>y *2——<14-—3llﬂ-+ v )[ +2¢)+2 2ipfyn |, (1)

with 5, k € Z, n > 0. Here, we make use of the following difference operators

wn—i—l n

g
Dlj_qb]rtk: = ! At . )
2 m o Yimik — 2V Y, 3
D:B 1/}],]6 = A(L_Q
D2y, I R N
Js ik Ay? )
~ Az? + Ay?
2._ 2 2 2 12
D? = D} + D} + =——="-D} D},

the identity operator, and the abbreviations

1 1
n+3 n+3

1/}]'716 = <¢n+l + w;k) ) Vj,k =V (xj’yk’t""'%) '
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It can be shown by Taylor series that the compact differenberse (11) approximates the
scaled Schrodinger equation (10) with the or@gn\z* 4+ Ay* + At?).

Theorem 3.1 (preservation off?-norm, [33]) Let the grid functio’™ 2 be bounded for
all n € Ny. For the whole space problems of the 2D time-dependent Bitlygr equation
the schemé¢l1) then preserves th€&-norm

\memy=¢&ﬂ@§:WﬁP (12)

J,kEZ

in time.

3.2 Derivation of DTBCs for the two dimensional Schrédingerequation

Here, we review the results obtained in [33]. First, we cdeisithe scaled Schrddinger
equation

P y1) =~ Ay, 1)+ Ve 0 t), () €2 150,
1/}('%7y70) = T/JI(%?J)’ (%9) € Qv
P(x,0,t) = YP(z,Y,t) =0, re€R,t>0,

(13)

on the infinite stripeg2 = R x (0,Y") with someY” > 0 (cf. Fig. 1). Letthe initial function
! € L?(0) be compactly supported on the computational dorfain

supp 9 (2,y) C (0,X) x (0,Y) =: Q.

Remark 3.2 For the case that the initial data! (z,y) is not compactly supported inside
the computational domaift we refer the reader to [21].

The potentiall’ (z, y, ) is assumed to be ab*° (2 x R*) function in space and time,
and constant on each of the two exterior domélfis:= Q\Q. DTBCs will now be derived
at the boundaries = 0 andz = X of the computational domaifi.

We introduce the uniform grifa, Ay = {(jAz,kAy) |j € Z; k=0,...,K € N}
with x; = X, yx = Y and use the time stegs = nAt, n € N. We approximate
the TDSE (13) by the difference equation (11). Adapting tbetinuous strategy and the
idea from [8] we take the explicit discrete solution on théeeior domain to eliminate the
exterior problem. This is done using firstiscrete sine—transformation

~ g K1 Tkm
J?m:EI;TZJZkSln(T)a m:177K_17 (14)

in y-direction and then &-transformation

o0
Z (A‘]??m> = @J’m(z) = Z Aj??mz_n Wlth z G (C, |Z| > 1, (15)
n=0
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in the discrete time variable. The sine—transformed schi@myefor the mode A]{Lm, m =
1,...,K—1,j<0andj > J reads

~ ~

n+1 n+1 n+1
Ym 1/’j+17m + Ym wj_Lm t Pm Yjm

= (2W - Vm) Jjﬁ-l,m + (2W - Vm) Jjn_Lm + (’{m - pm) J]T,Lmv (16)

where we use the abbreviations

A _ A+ Ay _ iAa?
- Ay STV I = 3L
™m Am2
Yjm :=1+2C (cos (7) - 1> LW = TVJ’
m™m
Km =4 (cos (7) + 4> w, (17)
4Ax?
pim = —2—2D +4C + 8W — 3”“" v
Az? ™
i <2D‘4C+2W‘TVJ'> os ()
m = 1,...,K — 1, andV; denotes the constant potential @A, which may take different

values (i.e.Vy, Vj) on each outer domain. Performing tle-transformation of (16) we
obtain ( 0
Pim(z+1)—km
(I) .
sim(z) ¥ {%’,m(z +1) —2W
j<0,5>J,m=1,...,K — 1. Note that the coefficients are constanjjian each part
of the outer domain. For the derivation of (18) we have usedahbt that the initial function
has compact support on the computational domain, hence

Ofitn =0 an = Ufm =0, m=1.. K-1j=0.

With the physical constraint that the solutim;ft . Of (11) decays fofj| — oo we calculate
the unique solutior®; ,,,(z) = (v,m(2))’ of equation (18).,,,(z) denotes that solution
of the characteristic equation

} Pjm(2) + ®j_1.m(2) =0, (18)

2 pam(z+1) = km
Com @ o D —aw ]

(z) +1=0,

which satisfiegv,,(z)| < 1. We note that this is always possible fof > 1. ®; ,,(2)
then fulfills the Z-transformed DTBCs at = 0, J for each mode:

1
P1m(2) = m%,m(z), (19a)

! D1(2), (19b)

P =G
m
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with

v (2) = —pim(z + 1) + ki + /Cimz? —2gjmz+9]m i—0J (0
I 2’ij( UJM) o

Here we use that branch of the square root, which yiglds,(z)| < 1 and we introduce
the abbreviations

2W
fijm
Com = (pjm)” — 4(Vjm)?, (21)

ej,m = ("im - pj,m)2 - 4(7j,mnj,m)27
. 2 2
Eim = —(pjm)” — 4(Vim) Njm + Pjmbm,

m =1,..., K — 1. With some tedious work one can calculate analytically Zhiverse
of (20): 271 (v m(2)) =: Eg”n)% We use the auxiliary function

z
F Zy s = ;
( Iu’.?ym) \/22 — 2,uj7mz +1
with
gjm
Wjm = —————, m=1,..., K —1. (22)
T Gm/Oim
Using the abbreviations
G,
)\j7m = 9‘7 m s
) J,m (23)
Tj,m = m _Cj,mnj,m_ng,my m = 1,...,K— 1,
nj7m

we obtain

VCim?? = 26mz +0jm

0. ,
J,m + Tj,m )F(Zaﬂj,m)

C _
by comparison of coefficients. Hence, we have

_ Pjm z _ Pjm — Km 1
2%jm % — nj,m 2%im 2= Njm

0. -
J,m + J,m )F(Z, Nj7m)7

C —
27] m \/ CJ ( o Z77j,m Z — nj,m
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and its invers@—transformﬁg.’:;)1 = (Z‘l [ — ]) reads

. o /0 m
¢y _Pim n_ Pim “m<n 1_L50> [/\1 1D ()

P 2m T 2%m NP Mjm D
n—1
-
- 77—)\ " P 1(,Ujm \/]migz jmnjm) Pk(ﬂjm)} n € Ny,
J,m Jm ]m]m

(24)

with the Legendre polynomialB, (P_; = 0), the Kronecker symbai?, and the abbrevi-
ations used in (17), (21), (22) and (23). The sine-transéaiMTBCs atj = 0 andj = J
for the 2D discrete Schrédinger (11) follow with the inveBdransformation of (19):

Dl — Lot = Ze D8 e n> 1, (25a)
DIy — O O = Ze g on> L (25b)

Remark 3.3 The convolution coefficienﬂ%% are highly oscillatory as a function of the
time stepn. In [33] it is shown that the convolution coefficierféé;zb given in(24) have the
asymptotic behaviour

()~ 0 0 (26)

asn — oo, With

_ Pim n Km — Pjm + vV Tj,m
2%m  2VmMim  2Yjm/Tim

Tjm Vjm = arg(1n;m)

forj =0, Jandm = 1,..., K — 1. This behaviour deviates from tii(t —3/2)—decay of
the continuous convolution kernel {d). Hence, it may lead to numerical cancellations in
the calculation of the convolution surf5). As an alternative we shall derive coefficients
that decay Iike(’)(n‘3/2). For the left DTBCs we therefore add equati@ba)for » and

n + 1 with the corresponding weighting factdrand —e?/1.m = —m,m (the casgj = J is
analogous) and proceed like in [17]. We define suenmed coefficients

)
sgnrzb = 7 e (27)
’ /0 n=20
7 m’ )
form=1,..., K —1;j=0andj = J. In Fig. 4 we give an example on the asymptotic

behaviour of the convolution coefficients. The free Scigeti equation is discretized with
J =K =50, Az = Ay = 0.02 and At = 2-107°. A solutionv is calculated for
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n = 1,...,250 time steps. In Fig. 4(a) we present the real parwﬁﬁfn and the absolute

valuew%@] in Fig. 4(b) for all modesn = 1,..., K — 1. The errorsRe (o ,,e™" 6(") ")
and|o J,mew” — Ef,f‘gl\ between the convolution coefficients and the asymptotiegsipn
(26) — which are converging to zero — are shown in Fig. 4(c) and &{g).

Theorem 3.4 (DTBCs for the 2D Schrodinger equation, [33])The sine-transformed
DTBCs atj = 0 andj = J for the discrete Schrodinger equati¢il) read

~

{/;{fm_s()m On ZS ¢0m+771m1/}1m s (283.)
T’Zy—l,m SJmTzZ)Jm ZS T;Z)Jm +nJ- lmT,Z)J 1,m* (28b)

The coefﬂmentsE ") for j=0J,m=1,...,K — 1 are given by equatioif27). For
n > 2, they can be calculated by the formula

n) _ _V Ojm )\1 n Pn(pjm) — Pro(ttjm) (29)
J,m 29jm ™ 2n —1 ’
or by the recursion
(1) _ 20— 1 fjm ) =20 o (n-1) 30
Sim T T Ay Tt S (30)
forj =0, Jandm =1,..., K — 1. These new coefficients have the asymptotic behaviour
st~ O(n7%). (31)

Remark 3.5 The idea of deriving DTBCs is to eliminate the exterior pewblby using the
explicit solution on the outer domal. This is the reason for assuming a uniform grid
on the exterior domaif2. On the computational domaift, however, the grid can be
non—uniform, or even adaptive in time.

Remark 3.6 Recently, it was discovered by the authors that a more coenteformulation
of (19)is given by

0,m(2)P1m(2) = Pom(2), Vim(2)Pj—1m(z) = Prm(2).

Here, the inverseZ-transformation ofv; ,,(z), j = 0,J already decays liked(n=3/?).
Instead of (28), this approach yields DTBCs with discrete convolutionshat ‘interior’
grid pointsj = 1, J — 1 (cf. [9] for details).
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convoluton coeffcients Re( 7)) convolution coefficients | 11|
@ Re (7)) (b) [¢7,
o Re(o n 24 e 10 On 101
(©) Re (aj,me”” - ef]?)n) () |orme™™ =5,
Figure 4. Real part (a) and absolute value (b) of the corim1utoefficients€§”2n and
real part (c) and absolute value (d) of the erdsg,rmew” — éf,”}n between the asymptotic

expansion (26) and the convolution coefficients for the nsode= l,...,K—-1lasa
function of the time steps = 1,...,250. We consider the computational dom&n=

(0,1) x (0,1) and choose the discretization parametérs K = 50, Az = Ay = 0.02
andAt =2-107°.

13
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3.3 Approximation of the DTBCs by Sums of Exponentials

An ad-hoc implementation of the discrete convolution atrtgbet boundaryz ; = X

Z T m=1,.., K—1

in (28b) with convolution coefﬁments(”) from (27) has still one disadvantage. The bound-
ary conditions of this kind are non— Iocal both in time andcgp@w.r.t. they-direction) and
therefore computations are too expensive. As a remedyi tadgef this time non—locality,
we proposed already in [8] th&um of exponentials ansaiz. to approximate the kernel
(27) by a finite sum (say. terms) of exponentials thatecaywith respect to time. This ap-
proach allows for a fast (approximate) evaluation of therdite convolution in (28b) since
the convolution can now be evaluated with a simple recuegdnemula for L auxiliary
terms and the numerical effort now remains constant in t@ethe Laplace—transformed
level this approximation amounts to replace the synsbol (z) = mwm( ) (cf. (27))
of the convolution by a rational approximation.

In the sequel we will briefly review this ansatz [8]. In orderderive a fast numerical

method to calculate the discrete convolution in (28b), waraximate the coefficients((]%
for each moden by the following ansatzsum of exponentigls

3%17 n=01,...,0m—1

~(7L L'rn
Sy, &2 § = (32)
Fm = S m melqu N = Upm, U + 1,...,

whereL,,,v,, € N are a fixed numbers. Evidently, the approximation prop@@iﬁf,%
depend orl,,, v, and the corresponding s@h,, ;, ¢, }. Thus, the choice of an (in some
sense) optimal approximation would be a difficult nonlinpaoblem, which we do not
pursue here. Instead, we propose below a deterministicanethfinding {b,,, ;, ¢, } for
fixed L,,,, v,, and for each mode.

The “split” definition of {37") } in (32) is motivated by the fact that the implementation
of the right discrete TBC (286) involves a convolution sunthwi ranging only from 1 to
p = n — 1. Since the first coefﬂmerﬁ( ) does not appear in this convolution, it makes no
sense to include it in our sum of exponentlal approximatiwinich aims at simplifying the
evaluation of the convolution. Hence, one may chogse= 1 in (32). The “special form”
of EL(]O,)n andﬁgfn given in [8] suggests even to exclud%n from this approximation and to
choosev,,, = 2 in (32). We use this latter choice in our numerical impleragot in the
Example in the following 84.

Also, there is an additional motivation for choosing = 2: With the choicev,,, = 0
(or v,, = 1) we typically obtain (for each mode) two (or, resp., one)fftoent pairs
(bm.1, am,1) Of big magnitude. These “outlier” values reflect the différaature of the first
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two coefficients. Including them into our discrete sum of@xgntials would then yield less
accurate approximation results.
Let us fix L,,, and consider the formal power series:

gm(z) == ssm) + S§U$+1)ZL' + §U$+2)ZE2 +..., |z <1 (33)

If there exists théL,,, — 1|L,,,] Padé approximation

_ Pr.a(@)
Im{@) := QL. (7)

of (33), then its Taylor series

gm() = 35+ 30m a  $Gm a2 4
satisfies the conditions

852,1_88”7)”, n=uvn,Um+1,...,2L, +vy —1, (34)

due to the definition of the Padé approximation rule.

Theorem 3.7 ([8]) Let Qp,,(x) have L,, simple rootsq,,; with |g,,;| > 1, | =

., Ly,. Then
L’HL
:me,lq;;}a n:Um,Um+1,... Y (35)
where
Pr,.—1(qm
b, = —%(q’)l) T #0, l=1,...,Ly. (36)
L’HL

Remark 3.8 Let us note that the assumption in Theorem 3.7 on the rodfy.9f(z) to be
simple is not essential. For multiple roots one only has forraulate Theorem 3.7. All our
practical calculations confirm that this assumption holdsdny desired’,,,, although we
cannot prove this.

Evidently, the approximation to the convolution coefﬁd:sem( n) n DY the representation
(32) using a[L,,, — 1|L,,] Padé approximant to (33) behaves as follows: the fifst,

coefficients are reproduced exactly, see (34). Howeverasigeptotic behaviour o{(, T)n
andg((]"gnb (asn — o0) differ strongly — algebraic versus exponential decay.
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3.4 Fast Evaluation of the Discrete Convolution.

Let us consider the approximation (32) of the discrete clutiam kernel appearing in the
right discrete TBC (28b). With these “exponential” coeffitis theapproximated convolu-
tion

— Lm
n—1)
i =:§E: j{:bquml, (37)
|gm,1| > 1, of a discrete functlom, ,p=1,2,..., with the kernel coefﬁuents} ") can

be calculated by recurrence formulas, and thls WI|| redbheanumerical effort S|gn|f|cantly

A straightforward calculation (cf. [8]) yields: The valtaé}f:n Y from (37) forn > 21is
represented by

Lm
o =&, (38)
=1
where
&S = g b g ST e (39)

n=2,3,....,0=1,...,Lp.

Remark 3.9 (Transformation of approximated convolution ceefficients, [8]) Letv,, =
2. Let the approximated convolution coefﬂmem@éz1 and the coefficient pairgb,, ;, ¢}
from Theorem 3.7 be given for a sehx, Ay, A¢,V'} for all modesm = 1,..., K — 1.
Then, define for another parameter §etz*, Ay*, At*, V*} the coefﬂments{bm 1 Gt
given by

Qm,ldm - bm

Gmt = am — Qm,lbm
* A Qm — bml_)m 1+ q;knl
ml bl,QO,l — = =,
' (am - Qm,lbm)(Qm,lam - bm) I+ dm,l
sz (Am*)Z . 2 *\ 27 7%
A = 2 AL +2 Ap + i(Az“V — (Ax™)°V™),
Az? (Aw*)2 . 2 #\ 27 7%
by, = 2 A7 -2 Ap —i(Az7V — (Az")°V™).

The resulting convolution coefﬁcientégt(,"g"b>)k (obtained via (37)) are in practise
good approximations fo(sfm)*, the exact convolution coefficients for the parameters
{Az*, Ay*, At*, V*} (cf. (29) or (30)).

Finally we summarize the sum-of-exponentials approachhkyfollowing algorithm.
Foreach moden =1,..., K — 1:
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1. Prescribd.,,, v, takeAzx = Ay = At = 1 and calculate the coefﬁciemg?n, n=
VmyVUm + 1,...,2L, + vy — 1 with (29) or (30).

2. Calculate{by, i, gm,} and§§% via Padé—algorithm.

3. For givenAz*, Ay*, At*, V* use Remark 3.9 witlAz = Ay = At = 1 and
{bm,1, am,} for the computation ofb;, ;. g5, ;-

4. The corresponding coefficients, ;, ¢,,; are used for the computation éﬁi and
for the efficient calculation of the discrete convolutions.

Steps 1 and 2 are made once and for all, see [8] for tables &faeet pairs{b,, ;, ¢}
orhttp://ww. dt bc. de. vu/ for the implemented Padé algorithm (Maple code).

3.5 Implementation of the DTBCs

In (28) the DTBCs are written in sine—transformed space.réafimplementation in posi-
tion space would necessitate tremendous numerical c@stsetihey are implementedgn
sine-transformed space (cf. [10]). The discrete convatiuti

) Z ogr L om=1,..., K~ 1 (40)

for the right boundary: ; = JAx is calculated in sine-transformed space and inverse trans-
formed by

K-1 mk n—1
ot = 2Zs< >( ST S B (S}

=1 p=1

Since the convolution (40) only involves the solution attlbendary at past time levels (i.e.
for p < n — 1), one can directly store the sine-transformed boundariyq,d?;n Moreover,
this part of the DTBCs only enters the inhomogeneity of thedr system to be solved at
each time Ievel

The parts w Jm of the left hand side of the DTBCs (28b) has to be inverse trans
formed to phyS|caI space and we get the couplings

O 20\ N (TR L0
( S m¥Im >J,k,l - — Sln( K > SJ,mevm
g KlEAL © . [mmkY\ . 7Tk‘l
=% S . SN N sin le

fork,l = 1,...,K — 1. Hence, the 9-diagonal system of the discrete 2D Schrddinge
equation (11) obtains additional entries due to the DTBCs.
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In order to model the electron influx from the left lead, welpgescribe an incoming
plane wavep(zx, y, t) at the left boundary. Hence, inhomogeneous DTBCs have tcde u
atzg = 0:

~n ©) (~n
wl,m m - S 0,m < om )

Z o (0 = B ) = (0 =B ) . n> 1, (@1)

3

with the discrete, sine-transformed incoming wak, 0 <k<KO0<j<J These
boundary conditions are implemented analogously to the B BCs atr; = X.

4 Numerical results

In this section we first present some rather mathematicainpbes on DTBCs for the
Schrédinger equation in two dimensions. We verify numdlsiche accuracy of the DTBCs
for the free Schrodinger equation. Then we apply the DTBGkdsimulation of quantum
waveguides.

4.1 Travelling Gaussian wave functions

In this first example we solve the two dimensional, transetirddinger equation (1) dis-
cretized with the compact nine-point scheme (11) on the-tiorestant domaif = (0, 1)2.
As an initial function we choose theperiodic Gaussian wave function

—a (e x0)? — 0)? | vikpxtik
7/)I($,y) _ Z(—l)ée ) [( 0)"+(y—yo+¢) ]—i— + yy’ (x,y) € Q (42)
LEZ

with the parametera = 240, xy = 3/4, andyy = 1/4. As specified by the wave numbers
k. = 140, k, = 120 the resulting wave has a non-orthogonal impact on the boynda
(cf. Fig. 5 (b-d)). This is typically a “rough test” for TBCg&s high orthogonal solution
modes then become significally coupled into the system. H3&8Cs according to (28)
are implemented at = 0, x = 1. We consider the discretization parameté&s =
Ay = 1/120, At = 2-107°. In Figure 5(a) we show the absolute value of the initial
function (42). The evolution of this initial function acaling to the Schroédinger equation
is presented in Figure 5 (b), (c), (d) for some timgs The Gaussian beam leaves the
computational domain through the artificial boundary= 1 without being reflected back.
For the determination of the error due to the artificial bamgcconditions we compare the
numerical solution) with a numerical reference solutiahon Q = (0,2) x (0,1). The
reference solution is calculated with the same discredzagtcheme, and with DTBCs at
x =0, = 2. We obtain the relativé.>-error

W@ o) — 1/;(7 ) t)HZQ(Q)

L0 = T e

(43)
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t=0 t=10041

1W0cy. 1
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@ t, =0 (b) tn = 100At

t=20041 t=30041

1W0cy. 1
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(C) tn = 200At (d) t, = 300At

Figure 5: Absolute value of the initial function (42) and tifesolute value of the solution to
the Schrddinger equation at some time stgpsalculated with exact DTBCs at= 0 and

x = 1. The wave impinges on the boundary at a non—orthogonal amyke discretization
parameters arAr = Ay = 1/120 andAt = 2 - 1075,
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relative L,~error due to DTBCs

10—12

10*13 L

107

107157

-16

0 50 100 150 200 250 300
time steps

10

Figure 6: Relative errof.(1, 1, t,) due to the boundary conditions.

Within this test the error due to the cut—off of the initiahfition is also included. The
effects of the artificial boundary at= 2 should be negligible here, becaugessentially
does not cross this boundary during the simulation periodFigure 6 this errof (t) is
plotted. We remark that the magnitude of this error is abloerbunding error of Matlab.

4.2 Quantum waveguide simulation

Here we will present a physical application of DTBCs. Arfdidooundary conditions play
an essential role in Schrédinger based simulations of #nereh transport through quan-
tum semiconductor devices. Typical examples of practiekvance include the ballistic
transport along the channel of MOSFETSs (cf. [27], [37]) caqum waveguides (cf. [13])
for an analysis off’-shapedquantum interference transistord’hese are novel electronic
switches of nano—scale dimensions. They are made of saliffesient layers of semicon-
ductor materials such that the electron flow is confined tollsthannels or waveguides.
Due to their sandwiched structure the relevant geometrytirelectron current is essen-
tially two dimensional.

Following the simulation of a GaAs—waveguide in [13], we ab® the T-shaped geom-
etry shown in Fig. 2 to simulate a quantum waveguide tramsigt z-direction the channel
has a length ofX = 60nm; the channel width” and the stub widthv are20nm. In order
to control the current through the channel, the stub lengithbe changed from; = 32nm
to Ly, = 40.5nm. Homogeneous DTBCs are implemented at X. An inhomogeneous
DTBC atx = 0 (cf. (41)) models the prescribed influx of electrons. Allatliboundaries
are considered as hard walls, i.e. we use homogeneous Birfmbundary conditions for
1. A (discrete) time harmonic incoming wave function

noCsin (T gikeibrg= I g (44)
on,k K

is modeling the mono-energetic constant incoming currént & 0. Here, ¢ includes
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only the lowest transversal mode. But any linear combimadiohigher modes would work
equally well, which is a great advantage compared to othdical boundary conditions
(e.g. [13]). In our example the enerdy of the incoming wave equal29.9meV and the
effective electron mass has the valug = 0.067mg, which corresponds to GaAs. In
the subsequent simulations we are mostly interested inwvtelsng and the large time
behaviour of this waveguide. Therefore we first need to cdmpustationary state corre-
sponding to a given incoming plane wave functigfic. For this initialization process we
choose the following (somewhat arbitrary) initial functio

sin (g’,—?) etk 0<z<mx
Y (z,y) = %sin <%> eika® [1 + cos <w%> } 1 <z < T9 (45)
0 T > To

with z; = 5nm andxzs = 15nm, which is consistent with the incoming wave. Then we
solve the TDSE until stationarity is reached. The value:pfcan be derived from the
discrete dispersion relation.

In the analytic case the dispersion relation for the free&tihger equation

2

.0 I3
Zha¢ - _2m* AT/) + V(l’, Y, t)¢7 (l’, y) € Q7 t> 07 (46)
on a domairR x (0,Y7) with a plane wave solution in the first orthogonal mode (c#)j4

reads

h2k?2 h27?

ko) = I
é(kz) 2m 2m*Y12

(47)

which needs to be modified for the discretized Schrédingeataon. For a given inflow

energy F, the value ofk, appearing in (45) can be derived from the followidcrete

dispersion relation To derive it, we first put the ansatz; ; = etk AT gip “TAly ,J EZL

into the spatial semi-discretization (by the compact minayt scheme) analogous to (11):

Fupneolbe) = [ = = (cos(hoa) — 1) = —5 <COS<@>_1>

m- Lot m Y1
?(Ax® + Ay?) Ay
_ 6m*Ax2Ay2 (Cos(k:ch) - 1) <COS <Tl> _ 1> :|
L 1 Ay 1
g mtian -y (COS (T) - 1>] SN

This is the dispersion relation modified due to the spatistmtization. Adding now the
correction due to the Crank-Nicolson time discretizatitglds the dispersion relation

h <2m - AtESpace(kx)>

(k) N 2ih 4+ AtEspace(ky)

(49)
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for the discrete Schrddinger equation (analogous to (1ith) atime-harmonic plane wave
solution. For a detailed analysis of the discrete disparsitation we refer to [32, 33].

For the following simulation we solve the Schrédinger egqua(l) by the difference
equation (11) without external potential, ilé.= 0. For realistic simulations of MOSFET—
channels, (1) should be coupled to the self-consistentd@dupotential inside the channel.
Since we focus on DTBCs, we shall not include this here. Butupling to the Poisson
equationinsidethe computational domain doest change the derivation or discretization
of our open BC (cf. [32]).

Fig. 7 shows the temporal evolution of the solutigr{z, y, t)|. In this simulation the
stub length is first fixed td.; = 32nm. After 1.68ps the solution reaches (essentially) a
steady stateoff-stateof the waveguide). Phenomenologically speaking, in thgeaanly
1% wave packets “fit” into the stub (cf. Fig. 7(c)). Hence, thdgdk the current flow
through the waveguide. Then,at 1.68ps the stub is enlarged at oncelip = 40.5nm.
After some transient phase, the solution converges to a tead state dn-stateof the
waveguide, cf. Fig. 7(f)). Here, two wave packets “fit” inteetstub, and the current can
flow almost unblocked through the device.

Conclusion

In this chapter we have reviewelikcrete transparent boundary conditioftg the transient
two dimensional Schrédinger equation. In particular, weedssed them for a fourth order
Numerov finite difference schemkheir numerical efficiency is demonstrated in numerical
tests on a rectangular geometry as well as for quantum walegimulations (for details
cf. [8, 10, 33]).
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Figure 7: Absolute value of the solutiop(z,y,t) of the time-dependent Schrodinger
equation (46) on the T—shaped structure from Figure 2. Téerelization parameters are
Ax = Ay = 0.25nm, At = 0.8fs,V = —F = —29.9meV, m,. = 0.067mg. (c) shows the

steady state corresponding to the short stub With= 32nm. (f) is the steady state for the

long stub withZ, = 40.5nm.
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