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This work is concerned with transparent boundary conditions (TBCs) for systems of Schrödinger-type equations, namely
the time-dependent kp-Schrödinger equations. These TBCs are constructed for the fully discrete scheme (Crank-Nicolson,
finite differences), in order to maintain unconditional stability of the scheme and to avoid numerical reflections. The discrete
transparent boundary conditions (DTBCs) are discrete convolutions in time and are constructed using the Z-transformed
solution of the exterior problem. We will analyse the numerical error of these convolution coefficients caused by the inverse
Z-transformation. Since the DTBCs are non-local in time and thus very costly to evaluate, we present approximate DTBCs
of a sum-of-exponentials form that allow for a fast calculation of the boundary terms.
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1 Introduction

The operating principle of quantum-electronic semiconductor devices such as resonant tunneling diodes (RTD) [20, Chap. 14]
or opto-electronic devices such as quantum-cascade lasers [21] and multi-quantum-well electro-absorption modulators [13]
relies on the tunneling process of carriers through barrier structures. Such barrier structures are typically layered semiconduc-
tor heterostructures [20], [21], [13] with a barrier thickness of a few nanometers. The transient simulation of wave packets
tunneling through such nano-scale semiconductor heterostructures is the key for the understanding of such transport processes
[24], [22], [19]. In particular transient simulations can be used to estimate tunneling times [19], charging and escape times
[24], [22], or lifetimes of the carriers [13], [23]. For the simulation of the tunneling process usually a scalar Schrödinger
equation defined by BenDaniel-Duke-type Hamiltonians [4, Chap. 3] is used [24], [19], [23]. The underlying approximation
of the electronic band structure of this type of models is that of a single parabolic band. Parabolic single-band approximations
are in good agreement with the real band structure in the vicinity of the minima of the conduction bands, that part of the band
structure which is usually occupied by the electrons. For the treatment of the holes, occupying the maxima of the valence
bands, the accuracy of parabolic single-band models is often not sufficient. This is mainly due to the fact, that the valence
bands possess a much more complex band structure [8], [4], [10], [12], [5], [19], [13]. However, the electronic states of the
holes can be approximated well by multi-band states which satisfy a so-called kp-Schrödinger equation. The time-dependent
kp-Schrödinger equation describes the time evolution of the multi-band electronic state and is a linear coupled system of
Schrödinger equations. The evolution is governed by the kp-Schrödinger operator which as an extension to the single-band
models describes a system of bands of the band structure, e.g. the four topmost valence bands [4], [10], [12], [5]. There exists
a whole bunch of such multi-band kp-models [17] including also combined models for conduction and valence bands. The
latter also allow for a non-parabolic approximation of the conduction bands. For devices where the parabolic conduction band
approximation is not sufficient such kp-models can be used. For unipolar devices where by crossing a barrier a conduction-
band to valence-band transition is possible such as resonant interband tunneling diodes (RITD) or for bipolar devices where
additionally the hole tunneling processes are important such as multi-quantum well electro-absorption modulators multi-band
modeling is necessary. In these cases the numerical solution of the time-dependent kp-Schrödinger equation can be used to
understand and to determine the tunneling properties of corresponding semiconductor heterostructures by studying the time
evolution of the multi-band electronic state.

In this paper we are concerned with the numerical treatment of a time-dependent system of kp-Schrödinger-type. Such
type of linear systems of Schrödinger equations also arise as ”parabolic systems” in electromagnetic wave propagation. In
both cases artificial boundary conditions (BCs) have to be imposed to restrict the unbounded domain, on which the differential
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equation is originally defined, to a finite computational domain. Such BCs are called transparent boundary conditions (TBCs),
if the solution on the whole space (restricted to the computational domain) is equal to the solution with the artificial BCs. The
artificial boundary splits the problem into three parts: the interesting interior problem and a left and right exterior problem. For
constant coefficients the exterior problems can be solved explicitly by the Laplace method. Assuming (spatial) C 1-continuity
of the solution at the artificial boundaries yields the TBC as a Dirichlet–to–Neumann map [1], [14]. An ad-hoc discretisation
of these continuous TBC can destroy the stability of the employed numerical scheme for the PDE and induce numerical
reflections. To avoid this, we derive discrete TBCs (DTBCs) for the fully discretised PDE. The procedure is analogous to the
continuous case and uses the Z-transformation. The inverse Laplace/Z-transformation yields a convolution in time. Hence, the
perfectly exact BC is non-local in time and therefore very costly for long–time simulations. To reduce the numerical effort, we
introduce approximate DTBCs. Since the inverse Z-transformation must be accomplished numerically for Schrödinger–type
systems, an additional small numerical error is induced.

The paper is organised as follows: Sect. 2 introduces the system of kp-Schrödinger equations and presents a quantum well
structure with a double barrier as an example that will be considered throughout this work. We derive the analytic TBC in
Sect. 3 and its discrete version in Sect. 4. Here, we also scrutinise the coefficients of the discrete convolution. We then explain
our strategy to compute the coefficients by a numerical inverse Z-transformation in Sect. 5 and discuss its numerical error.
In Sect. 6 we approximate the coefficients by a sum-of-exponentials ansatz and present a fast evaluation of the approximate
DTBC. Finally, in Sect. 7 we present numerical simulations for a quantum–heterostructure.

2 The System of kp-Schrödinger Equations

We consider a system of Schrödinger-type equations in one space dimension, namely the kp-Schrödinger equation for one-
dimensional semiconductor nanostructures. They are layered heterostructures consisting of layers of different semiconductor
materials with abrupt, planar heterojunction interfaces between the layers [20]. Typical examples are semiconductor quantum
wells and double-barrier structures [20], [4], [12]. A widely used approach for the modeling of the near-band-edge electronic
states in semiconductor nanostructure is the kp-method [15] in combination with the envelope function approximation [4],
[6], [7]. Within this approach the electronic state Ψ(r) is approximated in terms of d bands

Ψk‖
(r) = exp(ik‖ · r‖)

d∑

ν=1

ϕν(x;k‖)uν,k=0(r) with r = (r‖, x) ∈ R
3 .

The index ‖ indicates in-plane vectors and x denotes the growth direction of the semiconductor layers. k‖ = (k1, k2) ∈ R2

is the reduced wave vector, which will be fixed for each simulation model. uν,k=0(r) are lattice periodic, zone-center Bloch
functions varying on the atomic scale and ϕν(x;k‖) are the corresponding envelope functions describing the variation of the
wave function on the (larger) nanoscale. The vector of the envelope functions ϕ = (ϕ1, · · · , ϕd) with ϕ(x, t) ∈ Cd fulfill the
one-dimensional kp-Schrödinger equation

i
∂

∂t
ϕ = H

(
k‖,−i

∂

∂x

)
ϕ .

There is a hierarchy of kp-models [17] including 4-band, 6-band and 8-band Hamiltonians. Depending on the model Hamil-
tonian, effects such as quantum confinement, band-mixing, spin-orbit interaction and mechanical strain can be treated con-
sistently. The basic stage in this model hierarchy is the 4 × 4 Luttinger-Kohn-Hamiltonian which describes the band-mixing
between the heavy holes and the light holes [4], [11], [10], [12].

In notation we follow [3] and write the system as

i
∂

∂t
ϕ = − ∂

∂x
(m(x)

∂

∂x
ϕ) + MS(x)

∂

∂x
ϕ − ∂

∂x
(MH

S (x)ϕ) + V(x)ϕ, x ∈ R, t > 0 , (1)

with

MS(x) := M0(x)+ k1M1(x)+ k2M2(x), V(x) := k1U1(x)+ k2U2(x)+
∑

αβ

kαkβUαβ(x)+v(x)+e(x),

where the mass matrix m(x) is real and diagonal. MS(x) ∈ Cd×d is skew-Hermitian, and V(x) ∈ Cd×d is Hermitian. The
real diagonal matrix e(x) describes the variation of the band-edges. The band-mixing due to the kp-interaction of the first and
second order are described by the terms containing the matrices Mα,Uα, α = 0, 1, 2, and Uαβ , α, β = 1, 2, respectively.
The potential v can cover couplings induced by the spin-orbit interaction or by mechanical strain. When neglecting all non-
diagonal coupling terms, the system would reduce to an uncoupled system of scalar Schrödinger equations corresponding to
the case of uncoupled parabolic bands. In this sense the couplings can be interpreted as correction terms to the parabolic band
structure approximation.

Due to its Hamiltonian structure, the system (1) clearly preserves ||ϕ||2L2 in time (conservation of mass).
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2.1 The Double-Barrier Stepped Quantum-Well Structure

We now introduce an example that we will use throughout this work to illustrate the numerical results. We consider the
GaAs/AlGaAs double-barrier stepped quantum-well structure (DBSQW) introduced in [24]. The variation of the band-
edges e(x) is depicted in Fig. 1. For this kind of structure an analysis of the time evolution of wave packets tunneling through
the structure has been performed using a scalar Schrödinger equation [24]. We consider the more accurate four-band Luttinger-
Kohn-Hamiltonian [4], [11], [10], [12] modeling the band-mixing of heavy and light holes. In atomic units adapted to the
light holes (~ = 1, m0/(γ1 + 2γ2) = 1) the coefficient matrices for the corresponding 4× 4 system of Schrödinger equations
are given by m = 0.5 · diag(γ, 1, 1, γ) ,M0 = 0,

M1 =
1

2

γ3

γ1 + 2γ2

√
3i




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 , M2 =

1

2

γ3

γ1 + 2γ2

√
3




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


 ,

U11, 22 =
1

2

1

γ1 + 2γ2




γ1 + γ2 0 ∓
√

3γ2 0

0 γ1 − γ2 0 ∓
√

3γ2

∓
√

3γ2 0 γ1 − γ2 0

0 ∓
√

3γ2 0 γ1 + γ2


 , U12+U21 =

√
3γ3i

γ1 + 2γ2




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 ,

and U1 = U2 = 0 with γ = γ1−2γ2

γ1+2γ2
. The values of the band structure parameters for GaAs are given by γ1 = 6.85, γ2 = 2.1,

γ3 = 2.9. For the in-plane wave-vector k‖ we choose k1 = 2.3, k2 = 0. As initial condition we use a Gaussian wave packet

ϕ(x, 0) = (2πσ2)
1
4 exp

(
ikrx − (x − x0)

2

σ2

)
· ζ , (2)

where ζ ∈ Cd is a linear combination of eigenmodes calculated via the dispersion relation of (1) and σ = 3, x0 = −2σ and
kr =

√
6.99. The band-edge profile e(x) = e(x)I (with the identity matrix I) of the DBSQW is taken from [24] and defined

by (3).

xxL R

left

exterior

domain

right

exterior

domain

0
computational domain

Fig. 1 Variation of the band-edge e(x) for the GaAs/AlGaAs DBSQW structure.

e(x) =





0, x ≤ 0
15
2 , 0 < x ≤ 0.5
3
2 , 0.5 < x ≤ 1

0, 1 < x ≤ 1.5
15
2 , 1.5 < x ≤ 2

0, 2 < x

. (3)

The computational domain is now defined such that it contains the significant part of the initial data and the x-dependent
part of the band-edge potential (cf. Fig. 1). Therefore, we introduce in Sec. 3 TBCs at the left and right boundary x = xL and
x = xR.

3 The Transparent Boundary Conditions

We will now derive the analytic TBCs for the kp-Schrödinger equation (1). In the scalar case (classical Schrödinger equation),
the Laplace-transformed equation (a linear second order ODE) in the exterior domain can be solved explicitly. Afterwards,
the solution is inverse transformed, thus yielding the analytic TBC (cf. [1]). For systems of equations the inverse Laplace
transform, in general, cannot be calculated explicitly. Nevertheless, we will present the derivation of the Laplace transformed
TBC.

For the derivation we consider the Schrödinger equation in the left/right exterior domain. A Laplace transformation yields
a system of ordinary differential equations, whose solution can be given in terms of its eigenvalues and eigenvectors. We
will prove that half of the eigenvalues have positive real parts and thus yield solutions increasing for x → ∞; the other half
has negative real parts, yielding decreasing solutions. Demanding that the increasing solutions vanish in the exterior domains
leads to the TBCs.

We consider equation (1) in the bounded domain [xL, xR] together with TBCs at x = xL and x = xR. We will denote
the constant parameter matrices in the left and right exterior problem by a superscript L and R, respectively, when we need
to distinguish between the boundaries. But since the derivation for the left and right TBC is analogous, we focus on the
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right boundary and omit the superscript R until needed. The TBC at x = xR is constructed by considering (1) with constant
coefficients for x > xR, the so-called right exterior problem

iϕt = −mϕxx + iMϕx + Vϕ, x > xR, t > 0, (4)

where all coefficient matrices are constant, M = MH = −i(MS −MH
S ), andV = VH . The mass matrix m is diagonal, and

we shall henceforth assume that it is regular.
We now use the Laplace-transformation given by ϕ̂(x, s) =

∫∞

0 e−stϕ(x, t) dt , s = α + iξ , α > 0 , ξ ∈ R and
obtain from (4) the transformed right exterior problem

mϕ̂xx − iMϕ̂x = (V − isI)ϕ̂ , x > xR , (5)

which is uniquely solvable:

Lemma 3.1 Let Re(s) > 0. Then, the BVP (5) with the boundary conditions

ϕ̂(x = xR) = Φ̂ ∈ C
d , ϕ̂(x = ∞) = 0 (6)

has a unique (classical) solution.

P r o o f. W.r.o.g. we put xR = 0 and set ϕ̃(x) := ϕ̂(x) − Φ̂e−x, x > 0 to transform the BVP to homogeneous boundary
data:

(L − isI)ϕ̃(x) = g(x) := (m + iM−V + isI)Φ̂e−x ∈ L2(R+; Cd) , (7)

with the operator L := −m∂2
x + iM∂x +V defined on D(L) = H2(R+)∩H1

0 (R+). Since −m∂2
x is self-adjoined on D(L),

so is L (due to the Kato-Rellich theorem) since the lower order terms of L are infinitesimally small with respect to −m∂2
x (cf.

[18, Chap. 10]). Hence, is ∈ ρ(L), the resolvent set of L, and (7) has a unique solution ϕ̃ ∈ D(L).

The linear Dirichlet-to-Neumann map Φ̂ 7→ ϕ̂x(xR) will be the Laplace-transformed TBC that we seek.
We shall next derive an explicit form of this TBC which is useful for numerical purposes. We define ν = ϕ̂ and η = ϕ̂x

and thus obtain a system of first order differential equations
(

M im
−im 0

)

︸ ︷︷ ︸
A

(
νx

ηx

)
=

(
iV + sI 0

0 −im

)

︸ ︷︷ ︸
B

(
ν

η

)
, x > xR . (8)

It can easily be shown that the matrix A is regular with the inverse

A−1 = m−1

(
0 iI
−iI −Mm−1

)
and A−1B =

(
0 I

m−1(V − isI) im−1M

)
. (9)

Also B (and hence also A−1B) is regular for Re(s) > 0, since it is a block diagonal matrix with regular block matrices on
the diagonals (V is Hermitian and thus it is diagonalisable with real eigenvalues).

We now transform A−1B into Jordan form with A−1B = PJP−1, where P−1 contains the left eigenvectors in rows. We
sort the Jordan blocks in J with respect to an increasing real part of the corresponding eigenvalue. Thus, J can be written as
J =

(
J1 0

0 J2

)
, where J1 holds all Jordan blocks to eigenvalues with negative real parts and J2 those with positive real parts.

Due to Thm. 3.2 J1 and J2 are d × d-matrices. With P−1 =
(

P1 P2

P3 P4

)
equation (8) can be written as

P−1

(
νx

ηx

)
=

(
J1 0

0 J2

)(
P1 P2

P3 P4

)(
ν

η

)
=

(
J1 0

0 J2

)(
P1ν + P2η

P3ν + P4η

)
, x > xR . (10)

Obviously, the upper equation yields the solution components, which decrease for x → ∞ and the lower equation yields the
increasing parts. We define the left exterior problem for x < xL analogously to the right exterior problem. Then, an equation
analogous to (10) holds: the transformed TBCs for the left and right boundary are obtained by extinguishing the increasing
parts of the exterior solutions:

PL
2 ϕ̂x(xL, s) = −PL

1 ϕ̂(xL, s) , PR
4 ϕ̂x(xR, s) = −PR

3 ϕ̂(xR, s) . (11)

If the matrices PL
2 and PR

4 are regular, then the Laplace-transformed TBC can be written in Dirichlet-to-Neumann form. It is
not clear, if these matrices are regular in general, but for our example this applied for all tested values of s.

In order to understand the structure of increasing and decaying solutions of (5), we state the following theorem:
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Theorem 3.2 (Splitting Theorem) For Re(s) > 0 the regular matrix A−1B has d eigenvalues with positive real part and
d with negative real part.

The proof of this theorem will be obtained as a conclusion of Lem. 3.3 and Lem. 3.4. We first recall the definition of the
inertia of a matrix M :

Definition 1 The inertia of a complex matrix M is the ordered triple i(M) = (i+ (M) , i− (M) , i0 (M)), where i+(M),
i−(M) and i0(M) are the numbers of eigenvalues of M with resp. positive, negative and zero real part, all counting multi-
plicity.

Lemma 3.3 (Lemma 2 in [9]) Let F,G be d × d-matrices with G Hermitian and regular, suppose H := GF + FHG is
positive semi-definite and i0(F) = 0. Then i(F) = i(G).

In order to apply this lemma to G := A and F := A−1B we check the assumptions: Since M is Hermitian, A = AH as
well. We already noted that A is regular. Then H satisfies:

H = GF + FHG = A(A−1B) + BH(A−1)HAH = B + BH =

(
2Re(s)I 0

0 0

)
≥ 0.

It remains to show, that i0(A
−1B) = 0. To this end we prove the following lemma:

Lemma 3.4 For Re(s) > 0 the matrix A−1B has no purely imaginary eigenvalues.

P r o o f. We assume that iλ with λ ∈ R is eigenvalue of A−1B. In that case ϕ̂(x) = ϕ̌eiλx is a solution of (5) and
yields isϕ̌ = (iα − ξ)ϕ̌ = (mλ2 − Mλ + V)ϕ̌ for s = α + iξ. Hence, iα − ξ is an eigenvalue of the Hermitian matrix
mλ2 −Mλ + V. Therefore α = 0 which is a contradiction.

Conclusion 1 For any eigenvalue λ of A−1B, Re(λ) = 0 implies λ = 0. Thus, since A−1B is regular, we have
i0(A

−1B) = 0.

Hence, Lem. 3.3 applies and yields i(A−1B) = i(A). To prove Thm. 3.2, it finally remains to verify that d eigenvalues of
A are positive and d are negative. To this end we will use a continuity argument: we consider the matrix

A(ε) :=

(
εM im
−im 0

)
, ε ∈ [0, 1] .

A(0) has d positive and d negative eigenvalues, which are given by λ0
2k−1 = mk,k and λ0

2k = −mk,k, k = 1, . . . , d.
Furthermore, for all ε ∈ [0, 1] the matrix A(ε) has no zero eigenvalue (cp. to (9)). Then, for ε from zero to one d eigenvalues
of A(ε) are positive and d are negative, since the eigenvalues are continuous in ε. Thus, i(A) = (d, d, 0) holds and Lem. 3.3
implies i(A−1B) = (d, d, 0), if Re(s) > 0, which finishes the proof of Thm. 3.2.

4 The Discrete Transparent Boundary Conditions

We do not discretise the analytic BC (11) (by a numerical inverse Laplace transformation), but derive DTBCs for a full
discretisation of the whole–space problem (1). For the discretisation we choose a uniform grid with the step sizes ∆x in space
and ∆t in time: xj = xL + j∆x, tn = n∆t with j ∈ Z, n ∈ N0. We use a Crank-Nicolson scheme in time and central
differences for the first and second spatial derivatives. The discrete kp-Schrödinger equation then reads

i
∆x2

∆t
(ϕn+1

j −ϕn
j ) = −∆0

∆x
2

(mj∆
0
∆x
2

ϕ
n+ 1

2

j ) +
∆x

2

(
MSj∆

0ϕ
n+ 1

2

j − ∆0(MH
Sjϕ

n+ 1
2

j )
)

+ ∆x2Vjϕ
n+ 1

2

j , (12)

where the difference operators are ∆0
∆x
2

ϕn
j = ϕn

j+ 1
2

− ϕn
j− 1

2

, ∆0ϕn
j = (∆+ + ∆−)ϕn

j = ϕn
j+1 − ϕn

j−1 and ϕ
n+ 1

2

j =

ϕ
n+1
j

+ϕ
n
j

2 . ∆+
t denotes the forward difference in time.

Just like its continuous counterpart (1), the Crank-Nicolson scheme (12) preserves (in time) the discrete `2-norm of the
whole–space problem and is hence unconditionally stable. This is easily seen by multiplying (12) by (ϕ

n+ 1
2

j )H and summation
by parts.

For the scalar Schrödinger equation Arnold [1] derived a DTBC, which is reflection-free on the discrete level and conserves
the stability properties of the whole-space Crank-Nicolson scheme. The DTBC has the form of a discrete convolution and the
convolution coefficients can be obtained easily by a three-term recurrence formula. We will mimic the derivation of Sec. 3
on a discrete level: To derive the DTBC for (12) we solve the Z-transformed system of difference equations in the exterior
domain. Then all its solutions are determined by eigenvalues and eigenvectors, which can be distinguished into decaying and
increasing solutions by the absolute value of the involved eigenvalue. We obtain the DTBC by using the fact that the exterior
solution decays.
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In the exterior space j ≥ J (xJ = xR) the parameter matrices are constant and the discrete scheme (12) simplifies to

i
∆x2

∆t
(ϕn+1

j − ϕn
j ) = −m∆+∆−ϕ

n+1/2
j + i∆xM

1

2
∆0ϕ

n+1/2
j + ∆x2Vϕ

n+1/2
j (13)

for j ≥ J and n ≥ 0. The Z-transformation Z{ϕn
j } = ϕ̂j(z) :=

∑∞
n=0 z−nϕn

j for z ∈ C and |z| > 1 transforms (13) to

2i
∆x2

∆t

z − 1

z + 1
ϕ̂j = −m∆+∆−ϕ̂j + i∆xM

1

2
∆0ϕ̂j + ∆x2Vϕ̂j , j ≥ J . (14)

Lemma 4.1 For each z ∈ C with |z| > 1, the Z-transformed exterior problem (14) with the boundary data

ϕ̂J−1 = Φ̂ , ϕ̂∞ = 0 (15)

has a unique solution.

P r o o f. As in the proof of Lem. 3.1, we choose J = 0, set ϕ̃j := ϕ̂j − Φ̂2−j−1, j ≥ −1, and define the bounded
self-adjoint operator

L := − 1

∆x2
m∆+∆− +

i
2∆x

M∆0 + V

(with the auxiliary definition ϕ̃−1 = 0) on `2(N0, C
d). The discrete BVP (14), (15) is then transformed to

(
L− 2i

∆t

z − 1

z + 1
I
)
ϕ̃j = fj :=

( 2i
∆t

z − 1

z + 1
I +

1

2∆x2
m +

3i
4∆x

M−V
)
Φ̂2−j−1 ∈ `2(N0). (16)

Re z−1
z+1 > 0 implies 2i

∆t
z−1
z+1 ∈ ρ(L), and hence (16) has a unique solution ϕ̃ ∈ `2(N0).

For the explicit calculation of the DTBC we define ξ̂j = ∆−ϕ̂j and reduce the order of the difference equation (14):

(
i∆x

2 M −m

−I I

)

︸ ︷︷ ︸
A

(
∆+ϕ̂j

∆+ξ̂j

)
=

(
∆x22 z−1

z+1
1
∆t iI − ∆x2V −i∆x

2 M

0 −I

)

︸ ︷︷ ︸
B

(
ϕ̂j

ξ̂j

)
, j ≥ J ,

i.e.
(

∆+ϕ̂j

∆+ξ̂j

)
= A−1B

(
ϕ̂j

ξ̂j

)
or

(
ϕ̂j+1

ξ̂j+1

)
= (A−1B + I)

(
ϕ̂j

ξ̂j

)
, j ≥ J .

The regularity of A will follow from Lem. 4.5. Solutions of (14), that are constructed with an eigenvalue λ of A−1B, are
decaying for x → ∞ if |λ + 1| < 1 and increasing if |λ + 1| > 1. Analogously to Thm. 3.2 we prove a splitting property of
A−1B + I:

Theorem 4.2 (Discrete Splitting Theorem) For |z| 6= 1, d eigenvalues of A−1B + I are located inside and the other d
eigenvalues are outside the unit circle.

A proof of Thm. 4.2 will be given succeeding to the DTBC at the end of this section.
We may again split the Jordan form J =

(
J1 0

0 J2

)
of A−1B + I , J1 ∈ Cd×d containing the Jordan blocks corresponding

to solutions decaying for j → ∞ and J2 those which increase. With the matrix of left eigenvectors P−1 =
(

P1 P2

P3 P4

)
the

equation

P−1

(
ϕ̂j+1

ξ̂j+1

)
= P−1(A−1B+I)

(
ϕ̂j

ξ̂j

)
= P−1P

(
J1 0

0 J2

)(
P1 P2

P3 P4

)(
ϕ̂j

ξ̂j

)
=

(
J1 0

0 J2

)(
P1ϕ̂j + P2ξ̂j

P3ϕ̂j + P4ξ̂j

)

holds and the transformed discrete transparent boundary conditions read

PL
1 ϕ̂1 + PL

2 ξ̂1 = 0 and PR
3 ϕ̂J + PR

4 ξ̂J = 0

for the left and right boundary, respectively.

Remark 4.3 In the considered example the matrices PR
k and PL

k (k = 1, ..., 4) were regular, but this is not clear in general.
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For regular matrices PR
4 and PL

2 the Z-transformed DTBC can be given in Dirichlet-to-Neumann form

∆−ϕ̂1 = D̂Lϕ̂1 and ∆−ϕ̂J = D̂Rϕ̂J , (17)

where D̂R = −(PR
4 )−1PR

3 and D̂L = −(PL
2 )−1PL

1 . After an inverse Z-transformation the DTBCs read

ϕn+1
1 −ϕn+1

0 −D0
Lϕn+1

1 =

n∑

k=1

Dn+1−k
L ϕk

1 and ϕn+1
J −ϕn+1

J−1 −D0
Rϕn+1

J =

n∑

k=1

Dn+1−k
R ϕk

J . (18)

Remark 4.4 Note that in equation (17) and (18) the left boundary condition is given at j = 1. Of course, the boundary
condition can also be formulated at j = 0 using ∆+ϕ̂j .

Ehrhardt and Arnold showed in [14] for a scalar Schrödinger equation that the imaginary parts of their convolution coeffi-
cients {dk

L,R} were not decaying but oscillating. Therefore they introduced the summed coefficients {sk
L,R := dk

L,R + dk−1
L,R},

which decay like O(n−3/2) and hence avoid subtractive cancellation in the evaluation of the convolution. For our coefficient
matrices {Dk

L,R} it seems difficult to rigorously prove the asymptotic behaviour, but empirically the situation is similar to the
scalar case: only the summed coefficients {Sk

L,R := Dk
L,R + Dk−1

L,R} decay. The DTBCs then read

ϕn+1
1 − ϕn+1

0 − S0
Lϕn+1

1 =

n∑

k=1

Sn+1−k
L ϕk

1 − ϕn
1 + ϕn

0 ,

ϕn+1
J − ϕn+1

J−1 − S0
Rϕn+1

J =

n∑

k=1

Sn+1−k
R ϕk

J − ϕn
J + ϕn

J−1 .

It remains to prove the eigenvalue splitting of Thm. 4.2. To this end, we will first show in Lem. 4.5 that no eigenvalue of
A−1B + I has an absolute value of one. Then we will show the asserted splitting of the eigenvalues for M = 0 and argue,
that due to the continuity of the eigenvalues the border |λ| = 1 cannot be crossed.

Lemma 4.5 For |z| 6= 1 the matrix A−1B + I has no eigenvalue λ with |λ| = 1.

P r o o f. Assume that λ = a + bi with |λ| = 1 is an eigenvalue with eigenvector (ϕ̂0, ξ̂0)
> of the discrete problem (14).

Then ϕ̂j = λjϕ̂0 is a solution of the discrete problem (14). Inserting ϕ̂j = λjϕ̂0 in equation (14) yields with g(z) = z−1
z+1 :

i
2∆x2

∆t
g(z)ϕ̂0 =

(
−m(a − 1) + M∆xb + ∆x2V

)
ϕ̂0. (20)

Thus, 2ig(z)∆x2/∆ t is an eigenvalue of the Hermitian matrix −m(a − 1) + M∆xb + ∆x2V. This implies g(z) ∈ iR,
which holds iff |z| = 1.

To understand the eigenvalue-splitting for equation (14), we shall now use a perturbation argument and consider first the
special case M = 0. Then equation (14) reads

2i
∆x2

∆t

z − 1

z + 1
ϕ̂j = −m∆+∆−ϕ̂j + ∆x2Vϕ̂j . (21)

Exchanging the space index j → −j yields the identical equation. Thus, both problems have the same solutions and the
eigenvalues of A−1B + I are the same in both cases. Since decaying solutions are increasing for j → −j and vice versa, the
eigenvalues must split in d yielding decaying and d yielding increasing solutions for |z| 6= 1 and j → ∞.

To the r.h.s. of (21) we now add the term iε∆x
2 M(∆+ + ∆−)ϕ for 0 ≤ ε ≤ 1. Then, Lem. 4.5 shows that no eigenvalue

λ of the corresponding matrices A−1
ε Bε + I can have an absolute value one. Since these eigenvalues are continuous in ε, d

eigenvalues must remain inside the unit circle when ε varies from 0 to 1 and d eigenvalues stay outside. This finishes the proof
of Thm. 4.2.

5 Computation of the Convolution Coefficients by Numerical Inverse Z-Transformation

The Z-transformation (or in the analytical case the Laplace-transformation) enables us to solve the exterior domain equations
for deriving transparent boundary conditions. In the implementation the numerical inverse Z-transformation of the convolution
coefficients is a subtle problem due to its inherent instabilities.

In this section we will examine the numerical error caused by the inverse Z-transformation, since it is the crucial point in our
numerical implementation. First we review the inverse Z-transformation: Assume that the Z-transform ˆ̀(z) =

∑∞
n=0 `nz−n
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8 A. Zisowsky, A. Arnold, M. Ehrhardt, and Th. Koprucki: DTBCs for transient kp–Schrödinger Equations

is analytic for |z| > R ≥ 0. The coefficients are then recovered by `n = 1
2πi

∮
Sρ

ˆ̀(z)zn−1dz, where Sρ denotes the circle
with radius ρ > R. With the substitution z = ρeiϕ we have

`n =
ρn

2π

∫ 2π

0

ˆ̀
(
ρeiϕ) einϕdϕ . (22)

For ρ = 1 this shows that the (inverse) Z-transformation is an isometry between {`n} ∈ `2(N0) and ˆ̀
∣∣
|z|=1

∈ L2(0, 2π).
For ρ > 1, however, the amplification factors ρn in (22) will be the reason for the numerical instabilities. On the other

hand, ρ = 1 cannot be chosen either for the application to DTBCs, due to the poor regularity of D̂(z) on the unit circle.
For the scalar Schrödinger equation, e.g., d̂(z) has two branch-points of type

√
z2 − 1 (cf. [1], [14]), and hence too many

quadrature points would be necessary for the numerical evaluation of (22). But d̂(z) is analytic for |z| > 1. So, one has
to choose ρ as a compromise between more smoothness of ˆ̀

∣∣
|z|=ρ

(which allows for an efficient discretisation of (22)), and
growing instabilities for large ρ.

For the numerical inverse transformation we choose a radius r and N equidistant sampling points zk = re−ik2π/N . The
approximate inverse transform,

`N
n =

1

N
rn

N−1∑

k=0

ˆ̀(zk) eink 2π
N , n = 0, . . . N − 1 (23)

can then be calculated efficiently by an FFT. The numerical error of `N
n can be separated into εapprox, the approximation error

due to the finite number of sampling points, and the roundoff error εround, which is amplified by ρn. We shall now derive an
estimate for this error. Defining Qρ

ˆ̀ = max
0≤ϕ≤2π

∣∣∣ˆ̀
(
ρeiϕ

)∣∣∣ gives the estimate

|`n| ≤ ρnQρ
ˆ̀ . (24)

We insert the exact form of ˆ̀
k = ˆ̀(zk) into (23), change the order of summation and use the orthogonality property

`N
n =

1

N
rn

∞∑

m=0

`mr−m
N−1∑

k=0

e−imk 2π
N eink 2π

N =
1

N
rn

∞∑

m=0

`mr−m

{
N , if m = n + jN , j ∈ N0

0 , else
.

This gives `N
n − `n =

∑∞
k=1 `n+kN r−kN . Here, we insert inequality (24) and sum the geometric series, which yields

|`N
n − `n| ≤ ρnQρ

ˆ̀

∞∑

k=1

(ρ

r

)kN

= ρnQρ
ˆ̀

(
ρ
r

)N

1 −
(

ρ
r

)N for r > ρ > R. (25)

We remark that similar estimates have been derived in the application of quadrature rules to numerical integration by
Lubich, which involve Fourier transformation (cf. [16]).

The other influential error is the roundoff error that depends on the machine accuracy εm and the accuracy ε in the numerical
computation of ˆ̀

k. For instance, we will use ã = a(1 + εm) as the computer representation of an exact value a. The roundoff
error of the inverse Z-transformation is calculated from equation (23). The main part results from the N fold summation of ˆ̀

k

and the exponential function:
∣∣∣˜̀Nn − `N

n

∣∣∣ ≤ rn (CNεm + ε) Qr
ˆ̀
k
.

Together with (25) the error is bounded by

|˜̀Nn − `n| ≤ ρnQρ
ˆ̀

(
ρ
r

)N

1 −
(

ρ
r

)N + rn ((N + 1)εm + ε) Qr
ˆ̀
k

+ O(ε2
m + εεm) . (26)

We shall illustrate this error behaviour in a numerical example. We calculated the series Dn for the quantum well problem
with different accuracies (20, 30 and 40 digits precision) and considered the solution obtained with 50 digits precision as a
reference solution. We used N = 256 sampling points on the circle. The Euclidean norm of the error is shown in Fig. 2(a)
for one of the 16 entries in the matrix D. For all entries the error has the same behaviour: the error decreases with growing
radius, up to a ropt, after which the roundoff error grows rapidly. Observe, that the y-axis of the plot is in logarithmic scale.
The curves for 20, 30 and 40 digits coincide for small values of r up to the radius r20

opt, r30
opt respectively.

The Fig. 2(a) shows the influence of the mantissa length on the accuracy of the calculation. Next, we want to show the
dependence of the error on the number N of sampling points. Fig. 2(b) shows five error curves with 20 digits precision; one

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 9

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
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N = 256
N = 512
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( b)

Fig. 2 Error in one element of the matrix D as a function of the radius r

(a) depending on the number of digits (with N = 256 fixed) and
(b) calculated with 20 digits precision depending on the number N of sampling points for the inverse Z-transformation.

for N= 64, 128, 256, 512 and 1024, respectively. The Euclidean norm of the error is summed up to 64. A higher number
of sampling points yields a faster decreasing error, ropt becomes smaller and of course the error at ropt becomes less. An
influence of N on the round off error is hardly discernable. Comparing the errors at the different N -depending ropt, we
notice, that the gain of taking the double number of points gets less with increasing N . Of course the error cannot become
less than the precision in the calculation of ˆ̀

n.
Since the calculation for a system is rather expensive, it is desirable to predict a radius close to ropt. For the different entries

in D the optimal radius varies only slightly - up to a difference of 0.001. We computed the matrices D̂ and Ŝ with MATLAB
with an accuracy of ε = 10−16. Thus, with a radius r = 1.018 and N = 212 sampling points, we achieve an accuracy of
10−8.

6 The Sum-of-Exponentials Ansatz and the Fast Evaluation of the Convolution

In order to reduce the numerical effort of the boundary convolutions (18), it is necessary to make some approximation. We will
use the approach of [2] to approximate the coefficients s̃n

s,l by the sum-of-exponentials ansatz and show a method to evaluate
the discrete convolution with the approximated convolution coefficients ãn

s,l efficiently.

6.1 The Sum-of-Exponentials Ansatz

The approximation has to be done for each element in S separately. We use for each s, τ = 1, . . . , d the following ansatz

s̃n
s,τ ≈ ãn

s,τ :=





s̃n
s,τ , n = 0, . . . , ν − 1

L(s,τ)∑
l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . .

, (27)

where L(s, τ) ∈ N and ν ≥ 0 are tuneable parameters. The approximation quality of this sum-of-exponentials ansatz depends
on L(s, τ), ν and the sets {gs,τ,l} and {hs,τ,l} for all s, τ = 1, . . . , d.

In the following we present a method to calculate these sets for given L(s, τ) and ν. We consider the formal power series

fs,τ (x) := s̃ν
s,τ + s̃ν+1

s,τ x + s̃ν+2
s,τ x2 + . . . , for |x| ≤ 1 . (28)

If the Padé approximation of (28) f̃s,τ (x) :=
n(L(s,τ)−1)

s,τ (x)

d
(L(s,τ))
s,τ (x)

exists (where the numerator and the denominator are polynomials

of degree L(s, τ) − 1 and L(s, τ) respectively), then its Taylor series f̃s,τ (x) = ãν
s,τ + ãν+1

s,τ x + ãν+2
s,τ x2 + . . . satisfies the

conditions ãn
s,τ = s̃n

s,τ for n = ν, ν + 1, . . . , 2L(s, τ) + ν − 1 according to the definition of the Padé approximation rule.
We now explain, how to compute the coefficient sets {gs,τ,l} and {hs,τ,l}.

Theorem 6.1 ([2], Theorem 3.1.) Let d
L(s,τ)
s,τ have L(s, τ) simple roots hs,τ,l with |hs,τ,l| > 1, l = 1, . . . , L(s, τ). Then

ãn
s,τ =

L(s,τ)∑

l=1

gs,τ,l h
−n
s,τ,l , n = ν, ν + 1, . . . ,

where

gs,τ,l := −n
(L(s,τ)−1)
s,τ (hs,τ,l)(
d
(L(s,τ))
s,τ

)′
(hs,τ,l)

hν−1
s,τ,l 6= 0 , l = 1, . . . , L(s, τ) .
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Remark 6.2 The asymptotic decay of the ãn
s,τ is exponential. This is due to the sum-of-exponentials ansatz (27) and the

assumption |hs,τ,l| > 1, l = 1, . . . , L(s, τ).

The above analysis permits us to give the following description of the approximation to the convolution coefficients by
the representation (27) if we use a [L(s, τ) − 1|L(s, τ)] Padé approximant to (28): the first 2L(s, τ) + ν − 1 coefficients
are reproduced exactly; however, the asymptotic behaviour of s̃n

s,τ and ãn
s,τ (as n → ∞) differs strongly (algebraic versus

exponential decay).
We note that the Padé approximation must be performed with high precision (2L(s, τ)− 1 digits mantissa length) to avoid

a ‘nearly breakdown’ by ill conditioned steps in the Lanczos algorithm. If such problems still occur or if one root of the
denominator is smaller than 1 in absolute value, the orders of the numerator and denominator polynomials are successively
reduced. In our numerical test case we started with L(s, τ) ≡ 30 and except from two outlier values the finally reached values
of L(s, τ) were between 25 and 30. Figure 3 shows the error |s̃n

s,τ − ãn
s,τ | versus n for the outlier with L(1, 2) = 15 for the

imaginary part of s̃n
1,2 (a) and with L(2, 2) = 30 for the real part of s̃n

2,2 (b). Observe, that both plots are in logarithmic scale.
Clearly, the error increases significantly for n > 2L(s, τ) + 1.

0 10 20 30 40 50 60 70 80 90 100
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

n

error in the imaginary part of approximated summed coefficient (1,2)

(a) 0 10 20 30 40 50 60 70 80 90 100
10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

n

error in the real part of approximated summed coefficient (2,2)

(b)

Fig. 3 Error |esn

s,τ − ean

s,τ | versus n: imaginary part (a) for s = 1, τ = 2 and (b) real part for s = τ = 2.

6.2 The Fast Evaluation of the Approximate Convolution

Now we describe the fast evaluation of the discrete approximate convolution. The convolution

C(n+1)
s,τ (u) :=

n+1−ν∑

k=1

ãn+1−k
s,τ uk

τ,J , with ãn
s,τ :=

L(s,τ)∑

l=1

gs,τ,l h
−n
s,τ,l, n = ν, ν + 1, . . .

can be calculated efficiently by a simple recurrence formula:

Theorem 6.3 ([2], Theorem 4.1.)

C(n+1)
s,τ (u) =

L(s,τ)∑

l=1

C
(n+1)
s,τ,l (u) (29)

with

C
(n+1)
s,τ,l (u) = h−1

s,τ,lC
(n)
s,τ,l + gs,τ,lh

−ν
s,τ,lu

n+1−ν
τ,J , n = ν, ν + 1, . . . (30)

C
(ν)
s,τ,l(u) ≡ 0 .

6.3 Summary of the Proposed Method to Evaluate Approximate DTBCs

Step 1: For each s, τ choose L(s, τ) and ν and calculate the exact convolution coefficients s̃n
s,τ for n = 0, . . . , 2L(s, τ) + ν − 1.

Step 2: For each s, τ use the Padé approximation for the Taylor series with ãn
s,τ = s̃n

s,τ , for n = ν, ν + 1, . . . , 2L(s, τ) + ν − 1
to calculate the sets {gs,τ,l} and {hs,τ,l} for all s, τ = 1, . . . , d according to Theorem 6.1.

Step 3: Implement the recurrence formulas (29), (30) to calculate the approximate convolutions.
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7 Numerical Results

In this section we present the numerical results for simulating the transient behaviour of the quantum well with the data of
Sect. 2.1. We choose the discretisation parameters ∆x = 1/20, ∆ t = 0.015 for the computational domain [−12, 5] and
compute the convolution coefficients of the DTBC as described in Sec. 6. First, to study the behaviour of the DTBC, we
present a system of Schrödinger equations with zero potential. As initial condition we use the Gaussian wave packet of heavy
and light holes (2) stimulating a slow and a fast eigenmode. Fig. 4 shows the time-dependent behaviour of the first two
components ϕ1 (solid) and ϕ2 (dashed). We concentrate on the first two components, since there is less mass in component
three and four. The density oscillates between the components, moves to the right, fragments in two and the faster wave packet
leaves the domain of computation without any visible reflections.

Fig. 4 Time-dependent behaviour of ϕ1 (solid) and ϕ2 (dashed) for a free Schrödinger system.

Next we consider only the faster mode and add the DBSQW structure (3). When the wave packet reaches the first barrier, it
is partly reflected and partly transmitted. With advancing time some part of the density accumulates between the barriers and
is slowly transmitted through the second barrier, then leaving the domain of computation. The part of the density, which is
reflected at the first barrier moves on to the left and after some time most part of the solution leaves the computational domain
in a packet. The wave packet does not recompose smoothly.

Fig. 5 Time-dependent behaviour of ϕ1 (solid) and ϕ2 (dashed) for a system with DBSQW structure.
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In Fig. 6 we present the relative `2–error eL(t) =
‖ϕ − ϕa‖2/‖ϕ(., 0)‖2, where ϕa denotes the
approximate solution obtained with the approxi-
mated DTBCs. ϕ is the solution calculated with
exact DTBCs. In our example we used L(s, τ) =
30 initially. One observes that the error is increas-
ing in time (due to the interaction with the po-
tential) but remains after 1000 time steps below
6 ·10−3. The zoomed region shows the `2-error of
the solution for the first 60 time steps, where the
upper bound is 10−5.

Fig. 6 `2-error of the solution with approximated coefficients.

8 Conclusions and Perspectives

In this paper we showed the mathematical background for a discrete transparent boundary condition for one-dimensional
kp-Schrödinger equations in detail and approximated the DTBC by a sum-of-exponentials ansatz. We illustrated by a simple
example the quality of these DTBCs. In a succeeding paper, we will concentrate on the analysis of the tunnelling properties
of a real quantum-well structure using this tool and calculating physical parameters as charging and escape times.
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