Introduction to Numerical Methods for Computer Simulation

Exercises No. 1

E 1: Floating Point Arithmetic

Let $B=2, t=4$, and M, E be integers.

$$
\begin{aligned}
\mathbb{G}:= & \left\{g=M \cdot B^{E}: M=0 \text { or } B^{t-1} \leq|M|<B^{t}\right\} \\
& (\mathrm{t} \text {-digit floating point numbers with basis } B) \\
\mathbb{M}:= & \left\{g=M \cdot B^{E} \in \mathbb{G}:-6 \leq E \leq-2\right\}
\end{aligned}
$$

a) Determine the largest and the smallest positive number in \mathbb{M}.
b) Sketch \mathbb{M} on the real line.
c) Determine the maximal and the minimal relative and absolute distance of two successive positive numbers in \mathbb{M}.
d) Try to express the numbers $1.625,3.7,0.02$ and 4.2 as machine numbers in \mathbb{M}.

E 2: Backward Analysis of Scalar Product

We consider the scalar product $\langle x, y\rangle$ for vectors $x=\left(x_{1}, \ldots, x_{n}\right)^{\top}, y=\left(y_{1}, \ldots, y_{n}\right)^{\top} \in \mathbb{R}^{n}$. It is calculated with the recursive formula

$$
\langle x, y\rangle:=x_{n} y_{n}+\left\langle x^{n-1}, y^{n-1}\right\rangle,
$$

where $x^{n-1}:=\left(x_{1}, \ldots, x_{n-1}\right)^{\top}$ and $y^{n-1}:=\left(y_{1}, \ldots, y_{n-1}\right)^{\top}$.
The floating point realisation of the scalar product following ($*$) calculates a solution $\langle x, y\rangle_{f l} \in \mathbb{G}$.
Apply backward analysis for $\langle x, y\rangle_{f l}$ to show the following proposition:
There exists $\hat{x}=\left(\hat{x}_{1}, \ldots, \hat{x}_{n}\right) \in \mathbb{R}^{n}$, such that

$$
\langle x, y\rangle_{f l}=\langle\hat{x}, y\rangle
$$

with (using a linearisation)

$$
\left|x_{i}-\hat{x}_{i}\right| \dot{\leq} n \varepsilon_{0}\left|x_{i}\right|, \quad i=1, \ldots, n
$$

Is the scalar product stable in terms of backward analysis?

E 3: Condition numbers

The eigenvalues of a symmetric matrix

$$
A=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right)
$$

are given by the two zeros of the characteristic polynomial $P(\lambda)=\lambda^{2}-(a+b) \lambda+a b-c^{2}$, i.e.

$$
\lambda_{1 / 2}:=\frac{a+b}{2} \pm \sqrt{\frac{(a+b)^{2}}{4}+c^{2}-a b}
$$

It holds $\lambda_{1}=\lambda_{2}$ only if $a=b$ and $c=0$. Thus we assume $a \neq b$ or $c \neq 0$. In the following, we observe just λ_{1} (λ_{2} behaves the same).
a) Show that the problem $\lambda_{1}=\varphi(a, b, c)$ is well-conditioned with respect to perturbations in a, b and c.
b) The computation of the zero λ_{1} is done in two steps now:

$$
\begin{gathered}
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \xrightarrow{\tau}\binom{p}{q} \xrightarrow{\sigma} \lambda_{1} \\
\text { with } \quad \tau(a, b, c):=\binom{-\frac{1}{2}(a+b)}{a b-c^{2}} \text { and } \sigma(p, q):=-p+\sqrt{p^{2}-q}
\end{gathered}
$$

Compute the absolute condition numbers for each step.
Is the algorithm $\sigma \circ \tau$ for computing λ_{1} stable?

E 4: Roundoff Errors and Cancellation

Given is the problem

$$
p^{2}-2 q^{2} \quad \text { with } \quad p=665857 \quad \text { and } \quad q=470832
$$

In exact arithmetic, we have

$$
p^{2}=443365544449, \quad q^{2}=221682772224, \quad 2 q^{2}=443365544448
$$

and therefore $p^{2}-2 q^{2}=1$.
Now, use your pocket calculator. Compute the results using

$$
\begin{array}{lll}
\text { i) } t=8 & \text { ii) } t=11 & \text { iii) } t=12
\end{array}
$$

significant digits. Compare these results with the exact one.
How can you compute the exact solution using 8 digits?

