Univ.-Prof. Dr. Matthias Ehrhardt Dipl.-Math. Alexander Schranner WiSe 2009/10

Introduction to Numerical Methods for Computer Simulation

Exercises No. 2

E 5: Subordinate matrix norm.

Given a norm $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}$, the subordinate matrix norm is defined via

$$||A|| := \max_{x \neq 0} \frac{||Ax||}{||x||} \qquad (x \in \mathbb{R}^n)$$

for $A \in \mathbb{R}^{n \times n}$.

- a) Verify that the subordinate matrix norm is well defined, i.e. the maximum exists.
- b) Check the four conditions of a matrix norm:
 - 1. ||A|| > 0 for all $A \in \mathbb{R}^{n \times n}$ with $A \neq 0$
 - 2. $\|\alpha A\| = |\alpha| \cdot \|A\|$ for all $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$
 - 3. $||A + B|| \leq ||A|| + ||B||$ for all $A, B \in \mathbb{R}^{n \times n}$
 - 4. $||A \cdot B|| \le ||A|| \cdot ||B||$ for all $A, B \in \mathbb{R}^{n \times n}$
- c) Verify the consistency, i.e.

$$||Ax|| \le ||A|| \cdot ||x||$$
 for all $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$.

E 6: Special matrices.

a) The matrix $A \in \mathbb{R}^{n \times n}$ is called symmetric, if $A^T = A$ holds. Prove that symmetric matrices A satisfy

$$||A||_2 = \rho(A),$$

where $\|\cdot\|_2$ is the subordinate matrix norm of the Euclidean vector norm and $\rho(A)$ the spectral radius of A. In addition, verify that, assuming det $A \neq 0$, if follows

$$\kappa_2(A) = \frac{\max\{|\lambda_1|, \dots, |\lambda_n|\}}{\min\{|\lambda_1|, \dots, |\lambda_n|\}}$$

with the condition number κ_2 corresponding to the Euclidean norm and the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A.

b) The matrix $Q \in \mathbb{R}^{n \times n}$ is called orthogonal, if $Q^{-1} = Q^T$ holds. Verify the properties

$$||Q||_2 = 1$$
 and $\kappa_2(Q) = 1$

c) Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Prove that A^{-1} is symmetric and positive definite, too.

E 7: Elementary matrix operations.

Consider the class of real elementary matrices, i.e. scaling matrices D, transposition matrices P_{ij} and row/column operators $N_{ij}(\alpha)$.

- a) Specify the determinants of these matrices.
- b) Show that each lower triangular matrix L satisfying det $L \neq 0$ can be written as the product of elementary matrices.

Remark: An arbitrary matrix A with det $A \neq 0$ can be written as the product of elementrary matrices, too, which is harder to prove.

E 8: Transformed norms.

Let ||x|| be a vector norm on \mathbb{R}^n and ||A|| the subordinate matrix norm on $\mathbb{R}^{n \times n}$.

a) Show that, given a matrix $M \in \mathbb{R}^{n \times n}$ with $det(M) \neq 0$, the function

$$\|\cdot\|_M: \mathbb{R}^n \to \mathbb{R}, \quad \|x\|_M := \|Mx\|$$

represents a vector norm.

- b) Write the subordinate matrix norm $||A||_M$ corresponding to $||x||_M$ in a form using the original matrix norm $|| \cdot ||$ and the matrices A, M.
- c) Given the matrices

$$A = \begin{pmatrix} 0.9 & 100 \\ 0 & 0.9 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 1 & 0 \\ 0 & \delta \end{pmatrix} \quad \text{with} \ \delta > 0,$$

choose a vector norm and δ such that $||A||_D = 0.91$ is satisfied in the corresponding transformed matrix norm.