Introduction to Numerical Methods for Computer Simulation

Exercises No. 2

E 5: Subordinate matrix norm.

Given a norm $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the subordinate matrix norm is defined via

$$
\|A\|:=\max _{x \neq 0} \frac{\|A x\|}{\|x\|} \quad\left(x \in \mathbb{R}^{n}\right)
$$

for $A \in \mathbb{R}^{n \times n}$.
a) Verify that the subordinate matrix norm is well defined, i.e. the maximum exists.
b) Check the four conditions of a matrix norm:

1. $\|A\|>0$ for all $A \in \mathbb{R}^{n \times n}$ with $A \neq 0$
2. $\|\alpha A\|=|\alpha| \cdot\|A\|$ for all $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$
3. $\|A+B\| \leq\|A\|+\|B\|$ for all $A, B \in \mathbb{R}^{n \times n}$
4. $\|A \cdot B\| \leq\|A\| \cdot\|B\|$ for all $A, B \in \mathbb{R}^{n \times n}$
c) Verify the consistency, i.e.

$$
\|A x\| \leq\|A\| \cdot\|x\| \quad \text { for all } A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}
$$

E 6: Special matrices.
a) The matrix $A \in \mathbb{R}^{n \times n}$ is called symmetric, if $A^{T}=A$ holds. Prove that symmetric matrices A satisfy

$$
\|A\|_{2}=\rho(A)
$$

where $\|\cdot\|_{2}$ is the subordinate matrix norm of the Euclidean vector norm and $\rho(A)$ the spectral radius of A. In addition, verify that, assuming $\operatorname{det} A \neq 0$, if follows

$$
\kappa_{2}(A)=\frac{\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}}{\min \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}}
$$

with the condition number κ_{2} corresponding to the Euclidean norm and the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A.
b) The matrix $Q \in \mathbb{R}^{n \times n}$ is called orthogonal, if $Q^{-1}=Q^{T}$ holds. Verify the properties

$$
\|Q\|_{2}=1 \quad \text { and } \quad \kappa_{2}(Q)=1
$$

c) Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Prove that A^{-1} is symmetric and positive definite, too.

E 7: Elementary matrix operations.

Consider the class of real elementary matrices, i.e. scaling matrices D, transposition matrices $P_{i j}$ and row/column operators $N_{i j}(\alpha)$.
a) Specify the determinants of these matrices.
b) Show that each lower triangular matrix L satisfying $\operatorname{det} L \neq 0$ can be written as the product of elementary matrices.
Remark: An arbitrary matrix A with $\operatorname{det} A \neq 0$ can be written as the product of elementrary matrices, too, which is harder to prove.

E 8: Transformed norms.
Let $\|x\|$ be a vector norm on \mathbb{R}^{n} and $\|A\|$ the subordinate matrix norm on $\mathbb{R}^{n \times n}$.
a) Show that, given a matrix $M \in \mathbb{R}^{n \times n}$ with $\operatorname{det}(M) \neq 0$, the function

$$
\|\cdot\|_{M}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad\|x\|_{M}:=\|M x\|
$$

represents a vector norm.
b) Write the subordinate matrix norm $\|A\|_{M}$ corresponding to $\|x\|_{M}$ in a form using the original matrix norm $\|\cdot\|$ and the matrices A, M.
c) Given the matrices

$$
A=\left(\begin{array}{cc}
0.9 & 100 \\
0 & 0.9
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right) \quad \text { with } \quad \delta>0
$$

choose a vector norm and δ such that $\|A\|_{D}=0.91$ is satisfied in the corresponding transformed matrix norm.

