Introduction to Numerical Methods for Computer Simulation

Exercises No. 3

E 9: Tridiagonal Matrices

Given the tridiagonal matrix

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & & & 0 \\
a_{21} & a_{22} & a_{23} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & a_{n-1, n} \\
0 & & & a_{n, n-1} & a_{n, n}
\end{array}\right)
$$

a) First, we compute the triangular decomposition $A=L \cdot U$ without pivoting.
(Assumption: each pivot is nonzero).
Write the algorithm for this special case.
(What changes arise in comparison to a general matrix $A \in \mathbb{R}^{n \times n}$?)
How do L and U look like?
What is the complexity of the LU-decomposition here?
b) If we use partial pivoting, we obtain the decomposition $P \cdot A=L \cdot U$ with permutation matrix P.
Do L and U have the same structure as in a)?
c) During LU-decomposition of a general matrix A, the computed entries $u_{i j}$ in the upper triangular matrix $U=\left(u_{i j}\right)$ may grow (compared to A). For tridiagonal matrices and using partial pivoting, prove the estimate

$$
\left|u_{i j}\right| \leq 2 \cdot p_{0}, \quad p_{0}:=\max _{1 \leq i, j \leq n}\left|a_{i j}\right| .
$$

E 10: LU-Decomposition of Block Matrix
Given the matrix

$$
A=\left(\begin{array}{cc}
\tilde{A} & v \\
w^{\top} & \alpha
\end{array}\right) \in \mathbb{R}^{(n+1) \times(n+1)},
$$

where $\tilde{A} \in \mathbb{R}^{n \times n}$ is regular, $v, w \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$.
a) Determine the LU-decomposition of A for given $\tilde{A}=\tilde{L} \cdot \tilde{U}$.
b) Show: A is regular $\Longleftrightarrow \alpha-w^{\top} \tilde{A}^{-1} v \neq 0$.

