Introduction to Numerical Methods for Computer Simulation

Exercises No. 4

E 11: LU- and Cholesky-Decomposition

We consider the symmetric tridiagonal matrix:

$$
A=\left(\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

a) Compute the LU-decomposition of A .
b) Proof: A is positive definite.
c) How does a $L D L^{\top}$-decomposition of A look like (rational Cholesky)?

E 12: Residual of linear systems.
Given the linear system $A x=b$, where

$$
A=\left(\begin{array}{cc}
0.78 & 0.563 \\
0.913 & 0.659
\end{array}\right), \quad b=\binom{0.217}{0.254} .
$$

a) Compute the solution x.
b) Let there be given the following two approximations to x :

$$
x_{1}=\binom{0.999}{-1.001} \quad \text { und } \quad x_{2}=\binom{0.341}{-0.087} .
$$

The residual $r\left(x_{i}\right)$ is defined by $r\left(x_{i}\right)=A x_{i}-b, i=1,2$. Compute r and interprete the result.

E 13: Sensitivity of linear systems.
Consider the linear system $A x=b$, where

$$
A=\left(\begin{array}{cc}
10 & 11 \\
9 & 10
\end{array}\right) \quad \text { and } \quad b=\binom{1}{1}
$$

a) Sketch the image $\Phi(\mathcal{K}):=\{\Phi(x): x \in \mathcal{K}\}$ of the set

$$
\mathcal{K}:=\left\{x \in \mathbb{R}^{2}:\|x\|_{\infty}=1\right\}
$$

with respect to the linear mapping $\Phi(x):=A x$.
b) Compute the condition number of A with respect to the norm $\|\cdot\|_{\infty}$.
c) Estimate the relative error in the solution of the linear system with respect to the norm $\|\cdot\|_{\infty}$, if the computations are done with a perturbed matrix \tilde{A} and perturbed right-hand side \tilde{b}, where it holds

$$
\|\tilde{A}-A\|_{\infty} \leq 0.02 \quad \text { and } \quad\|\tilde{b}-b\|_{\infty} \leq 0.001
$$

d) Compute the exakt solution of the linear system $A x=b$. Calculate also the exact solution of the perturbed linear system $\tilde{A} \tilde{x}=\tilde{b}$, where

$$
\tilde{A}-A=\left(\begin{array}{cc}
-0.01 & 0.01 \\
0.01 & -0.01
\end{array}\right) \quad \text { and } \quad \tilde{b}-b=\binom{-0.001}{0.001} .
$$

Compare the difference between both solutions with the estimate obtained in (c).

