Univ.-Prof. Dr. Matthias Ehrhardt Dipl.-Math. Alexander Schranner WiSe 2009/10

Introduction to Numerical Methods for Computer Simulation

Exercises No. 5

E 14: Linear Least Squares Problem

The data $(t_i, y_i), i = 1, \ldots, 7$ with

$$t_1 > t_2 > t_3 > 0$$
, $t_4 = 0$, $t_5 = -t_3$, $t_6 = -t_2$, $t_7 = -t_1$

is to be fit with a quadratic ansatz function.

a) Determine the coefficient matrix A to solve the least squares problem

$$\min_{x} \|Ax - y\|_2^2$$
.

b) Compute the normal equations $A^{\top}Ax = A^{\top}y$.

E 15: Householder Transformation Matrix

The matrix

$$T = I - 2vv^{T} = \begin{pmatrix} 1 - 2v_{1}^{2} & -2v_{1}v_{2} \\ -2v_{1}v_{2} & 1 - 2v_{2}^{2} \end{pmatrix}$$

is given for a vector $v \in \mathbb{R}^2$ with $||v||_2 = 1$.

- a) Compute T^2 . What about the inverse T^{-1} ?
- b) Determine y = Tx for the vector x = s + p, where $s \perp v$ and $p \parallel v$. What kind of geometrical mapping describes T? Draw a sketch.
- c) Compute v, such that T maps the vector $x = \begin{pmatrix} -3/5 \\ -4/5 \end{pmatrix}$ to the unit vector $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Is it possible to find such v for an arbitrary x?

E 16: *QR* and *Cholesky*

a) Considering the normal equations $A^{\top}Ax = A^{\top}b$ to solve a least squares problem, the matrix $A^{\top}A$ might be ill-conditioned, as it can be seen in the following example. Compute the condition number $\operatorname{cond}_{\|\cdot\|_1}(A^{\top}A)$ for the special matrix

$$A = \left(\begin{array}{rrr} 1 & 1 \\ 0.1 & 0 \\ 0 & 0.1 \end{array} \right)$$

b) Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Using the QR-decomposition, a Cholesky-decomposition of $A^{\top}A$ can be determined directly (without computing $A^{\top}A$). How can you derive a Cholesky-decomposition $A^{\top}A = LL^{\top}$ applying the QR-decomposition $A = QR, R = \binom{R'}{0}, R' \in \mathbb{R}^{n \times n}$?