Introduction to Numerical Methods for Computer Simulation

Exercises No. 5

E 14: Linear Least Squares Problem

The data $\left(t_{i}, y_{i}\right), i=1, \ldots, 7$ with

$$
t_{1}>t_{2}>t_{3}>0, t_{4}=0, t_{5}=-t_{3}, t_{6}=-t_{2}, t_{7}=-t_{1}
$$

is to be fit with a quadratic ansatz function.
a) Determine the coefficient matrix A to solve the least squares problem

$$
\min _{x}\|A x-y\|_{2}^{2} .
$$

b) Compute the normal equations $A^{\top} A x=A^{\top} y$.

E 15: Householder Transformation Matrix

The matrix

$$
T=I-2 v v^{T}=\left(\begin{array}{cc}
1-2 v_{1}^{2} & -2 v_{1} v_{2} \\
-2 v_{1} v_{2} & 1-2 v_{2}^{2}
\end{array}\right)
$$

is given for a vector $v \in \mathbb{R}^{2}$ with $\|v\|_{2}=1$.
a) Compute T^{2}. What about the inverse T^{-1} ?
b) Determine $y=T x$ for the vector $x=s+p$, where $s \perp v$ and $p \| v$.

What kind of geometrical mapping describes T ? Draw a sketch.
c) Compute v, such that T maps the vector $x=\binom{-3 / 5}{-4 / 5}$ to the unit vector $e_{1}=\binom{1}{0}$. Is it possible to find such v for an arbitrary x ?

E 16: $\quad Q R$ and Cholesky
a) Considering the normal equations $A^{\top} A x=A^{\top} b$ to solve a least squares problem, the matrix $A^{\top} A$ might be ill-conditioned, as it can be seen in the following example.
Compute the condition number cond $\|_{\|\cdot\|_{1}}\left(A^{\top} A\right)$ for the special matrix

$$
A=\left(\begin{array}{cc}
1 & 1 \\
0.1 & 0 \\
0 & 0.1
\end{array}\right)
$$

b) Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$. Using the QR -decomposition, a Cholesky-decomposition of $A^{\top} A$ can be determined directly (without computing $A^{\top} A$).
How can you derive a Cholesky-decomposition $A^{\top} A=L L^{\top}$ applying the QRdecomposition $A=Q R, R=\binom{R^{\prime}}{0}, R^{\prime} \in \mathbb{R}^{n \times n}$?

