Introduction to Numerical Methods for Computer Simulation

Exercises No. 8

E 22: Computation of square roots via Newton's method.

The square root of a positive real value a is given by the zero of the nonlinear equation $f(x) \equiv x^{2}-a=0$.
a) Use the Newton method $x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}$ to solve the problem involving $a=2, x^{0}=1$ and compute the first four steps.
b) Use the simplified Newton method $x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{0}\right)}$ to solve the problem involving $a=2, x^{0}=1$ and compute the first four steps.

Compare the results of both methods to the exact solution.
What are the reasons for the arising behaviour?

E 23: Convergence of Newton's method.
The Newton iteration applied to a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f \in C^{m+1}(\mathbb{R})$ reads

$$
x^{k+1}=\Phi\left(x^{k}\right):=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}, \quad k \in \mathbb{N}_{0} .
$$

a) Consider the two functions

$$
f_{1}(x)=(x-1)^{2}=x^{2}-2 x+1 \quad \text { and } \quad f_{2}(x)=(x-1)(x+1)=x^{2}-1 .
$$

Perform three steps of Newton's method with starting value $x^{0}=2$.
For which function does the technique converge faster to the exact zero $\hat{x}=1$?
b) Let \hat{x} be a simple zero of f (i.e. $f(\hat{x})=0 ; f^{\prime}(\hat{x}) \neq 0$).

Determine the order p of local convergence in the Newton method (\star).
c) Let \hat{x} be a multiple zero of f with multiplicity m (i.e. $f^{(j)}(\hat{x})=0$ for $\left.j=0,1, \ldots, m-1 ; f^{(m)}(\hat{x}) \neq 0\right)$.

Determine the order p of local convergence with respect to m. Specify a local statement about the dominating coefficient (corresponding to factor $\left.\left(x^{k}-\hat{x}\right)^{p}\right)$.
d) In a special variant of Newton's method

$$
x^{k+1}=\Phi\left(x^{k}\right):=x^{k}-\gamma \frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}, \quad k \in \mathbb{N}_{0},
$$

the ordinary correction is scaled by the constant $\gamma \in \mathbb{N}$.
For which m of part c) does ($\star \star$) converge? Determine the order of local convergence and, in case of linear convergence, the dominating coefficient in dependence on m, γ.

E 24: Accuracy of Newton's method.

The zeros of $f(x) \equiv \frac{1}{x}-a(a \in \mathbb{R})$ shall be calculated by Newton's method.
a) Show that the iteration formula reads

$$
x^{k+1}=x^{k}+x^{k}\left(1-a x^{k}\right), \quad k \in \mathbb{N}_{0} .
$$

b) Show that the error $e^{k}:=x^{k}-\frac{1}{a}$ satisfies the recursion

$$
e^{k+1}=-a\left(e^{k}\right)^{2}, \quad k \in \mathbb{N}_{0} .
$$

Employing induction, prove the statement

$$
e^{k}=-\frac{1}{a} \rho^{2^{k}}, \quad k \in \mathbb{N} \quad \text { with } \quad \rho:=\left|a x^{0}-1\right| .
$$

Which condition for ρ and x^{0} is equivalent to the global convergence of the iteration?
c) Let $\frac{1}{2} \leq a \leq 1$ and $x^{0}=1.5$.

Determine the maximum number of required iteration steps, which are necessary to obtain an approximation x^{k} of $\frac{1}{a}$ with 24 or 56 correct dual digits, repectively.
What is the corresponding number of required floating point operations?

