Exercise Sheet 1 to the Lecture Course "Computational Finance"

(The Binomial Method)

Task 1 (Solution to the Binomial Model) (3 Points)

Derive from equations (1.5), (1.9) and $u d=\gamma$ for some constant γ (not necessarily $\gamma=1$ as in (1.10)) the relation

$$
u=\beta+\sqrt{\beta^{2}-\gamma} \quad \text { for } \quad \beta:=\frac{1}{2}\left(\gamma e^{-r \Delta t}+e^{\left(r+\sigma^{2}\right) \Delta t}\right)
$$

Task 2 (Anchoring the Binomial Grid at K) (4 Points (2+2))
The equation (1.10) has established a kind of symmetry for the grid. As an alternative, one may anchor the grid in another way by choosing (for even M)

$$
S_{0} u^{M / 2} d^{M / 2}=K
$$

a) Give a geometrical interpretation.
b) Derive the relevant formula for u and d.

Hint: Use Task 1
Task 3 (Price Evolution for the Binomial Method) (3 Points)
Recall that

$$
\begin{align*}
& \beta:=\frac{1}{2}\left(e^{-r \Delta t}+e^{\left(r+\sigma^{2}\right) \Delta t}\right) \\
& u=\beta+\sqrt{\beta^{2}-1} \\
& d=1 / u=\beta-\sqrt{\beta^{2}-1} \tag{1.11}\\
& p=\frac{e^{r} \Delta t-d}{u-d} .
\end{align*}
$$

For β from (1.11) and $u=\beta+\sqrt{\beta^{2}-1}$ show

$$
u=\exp (\sigma \Delta t)+\mathrm{O}\left((\Delta t)^{3}\right)
$$

Programming Task 1 Implementing the Binomial Method (5 Points)

Design and implement an algorithm for calculating the value $V^{(M)}$ of a European option. INPUT: r (interest rate), σ (volatility), T (time to expiration in years), K (strike price), S (price of asset), and the choices put or call.

Control the mesh size $\Delta t=T / M$ adaptively. For example, calculate V for $M=8$ and $M=16$ and in case of a signicant change in V use $\mathrm{M}=32$ and possibly $M=64$.
Test examples:
a) put, European, $r=0.06, \sigma=0.3, T=1, K=10, S=5$
b) call, otherwise as in a)
c) The mesh size control must be done carefully and has little relevance to error control. To make this evident, calculate for the test numbers a) a sequence of $V^{(M)}$ values, say for $M=100,101,102, \ldots, 150$, and plot the error $\left|V^{(M)}-4.430465\right|$.

- Return the solutions until Monday, October 31, before the lectures.
- Return the solutions of programming task until Monday, November 8, before the lectures.

