Exercise Sheet 1 to the Lecture Course "Computational Finance" (The Binomial Method)

Task 1 (Solution to the Binomial Model) (3 Points)

Derive from equations (1.5), (1.9) and $u d = \gamma$ for some constant γ (not necessarily $\gamma = 1$ as in (1.10)) the relation

$$u = \beta + \sqrt{\beta^2 - \gamma}$$
 for $\beta := \frac{1}{2} \left(\gamma e^{-r\Delta t} + e^{(r+\sigma^2)\Delta t} \right).$

<u>Task 2</u> (Anchoring the Binomial Grid at K) (4 Points (2+2))

The equation (1.10) has established a kind of symmetry for the grid. As an alternative, one may anchor the grid in another way by choosing (for even M)

$$S_0 u^{M/2} d^{M/2} = K.$$

- a) Give a geometrical interpretation.
- b) Derive the relevant formula for u and d.

Hint: Use Task 1

Task 3 (Price Evolution for the Binomial Method) (3 Points)

Recall that

$$\beta := \frac{1}{2} \left(e^{-r\Delta t} + e^{(r+\sigma^2)\Delta t} \right)$$

$$u = \beta + \sqrt{\beta^2 - 1}$$

$$d = 1/u = \beta - \sqrt{\beta^2 - 1}$$

$$p = \frac{e^r \Delta t - d}{u - d}.$$
(1.11)

For β from (1.11) and $u = \beta + \sqrt{\beta^2 - 1}$ show

$$u = \exp(\sigma \Delta t) + O((\Delta t)^3)$$

Programming Task 1 Implementing the Binomial Method (5 Points)

Design and implement an algorithm for calculating the value $V^{(M)}$ of a European option.

INPUT: r (interest rate), σ (volatility), T (time to expiration in years), K (strike price), S (price of asset), and the choices put or call.

Control the mesh size $\Delta t = T/M$ adaptively. For example, calculate V for M = 8 and M = 16 and in case of a signicant change in V use M = 32 and possibly M = 64. Test examples:

- a) put, European, r = 0.06, $\sigma = 0.3$, T = 1, K = 10, S = 5
- b) call, otherwise as in a)
- c) The mesh size control must be done carefully and has little relevance to error control. To make this evident, calculate for the test numbers a) a sequence of $V^{(M)}$ values, say for $M = 100, 101, 102, \ldots, 150$, and plot the error $|V^{(M)} 4.430465|$.
- Return the solutions until Monday, October 31, before the lectures.
- **Return** the solutions of programming task until Monday, November 8, **before** the lectures.