Exercise Sheet 2 to the Lecture Course "Computational Finance" (Stochastic Processes)

Task 1 (Calculating an Estimate of the Variance) (3 Points)
An estimate of the variance of M numbers x_{1}, \ldots, x_{M} is

$$
s_{M}^{2}:=\frac{1}{M-1} \sum_{i=1}^{M}\left(x_{i}-\bar{x}\right)^{2}, \quad \text { with } \quad \bar{x}:=\frac{1}{M} \sum_{i=1}^{M} x_{i}
$$

The alternative formula

$$
s_{M}^{2}:=\frac{1}{M-1}\left(\sum_{i=1}^{M} x_{i}^{2}-\frac{1}{M}\left(\sum_{i=1}^{M} x_{i}\right)^{2}\right)
$$

can be evaluated with only one loop $i=1, \ldots, M$, but should be avoided because of the danger of subtractive cancellation. The following single-loop algorithm is recommended:

$$
\begin{aligned}
\alpha_{1} & :=x_{1}, \quad \beta_{1}:=0 \\
\text { for } \quad i & =2, \ldots, M: \\
\alpha_{i} & :=\alpha_{i-1}+\frac{x_{i}-\alpha_{i-1}}{i} \\
\beta_{i} & :=\beta_{i-1}+\frac{(i-1)\left(x_{i}-\alpha_{i-1}\right)^{2}}{i}
\end{aligned}
$$

a) Show $\bar{x}=\alpha_{M}$.
b) Show $s_{M}^{2}=\beta_{M} /(M-1)$.

Task 2 (4 Points (2+2))
In Definition 1.7 the requirement (a) $W_{0}=0$ is dispensable. Then the requirement (b) reads

$$
\mathrm{E}\left(W_{t}-W_{0}\right)=0, \quad \mathrm{E}\left(\left(W_{t}-W_{0}\right)^{2}\right)=t
$$

Use these relations to deduce

$$
\begin{align*}
\mathrm{E}\left(W_{t}-W_{s}\right) & =0 \\
\operatorname{Var}\left(W_{t} W_{s}\right) & =\mathrm{E}\left(\left(W_{t}-W_{s}\right)^{2}\right)=t-s . \tag{1.21}
\end{align*}
$$

Hint: $\left(W_{t}-W_{s}\right)^{2}=\left(W_{t}-W_{0}\right)^{2}+\left(W_{s}-W_{0}\right)^{2}-2\left(W_{t}-W_{0}\right)\left(W_{s}-W_{0}\right)$

Task 3 (3 Points)

Suppose that a random variable X_{t} satises $X_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Use the formula for the expected value (first moment)

$$
\begin{equation*}
\mu:=\mathrm{E}(X):=\int_{-\infty}^{\infty} x f(x) d x . \tag{B1.4}
\end{equation*}
$$

to show

$$
E\left(X_{t}^{4}\right)=3 \sigma^{4} .
$$

- Return the solutions until Monday, November 8, before the lectures.

