Exercise Sheet 3 to the Lecture Course "Computational Finance"

 (Implied Volatility)
Task 1 (Implied Volatility) (10 Points)

For European options we take the valuation formula of Black and Scholes of the type $V=v(S, \tau, K, r, \sigma)$, where τ denotes the time to maturity, $\tau:=T-t$. The function v is defined as

$$
\begin{gather*}
d_{1}:=\frac{\log \frac{S}{K}+\left(r-\delta+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}, \tag{1a}\\
d_{2}:=d_{1}-\sigma \sqrt{T-t} \tag{1b}\\
V_{C}(S, t)=S e^{-\delta(T-t)} F\left(d_{1}\right)-K e^{-r(T-t)} F\left(d_{2}\right), \tag{1c}\\
V_{P}(S, t)=-S e^{-\delta(T-t)} F\left(-d_{1}\right)+K e^{-r(T-t)} F\left(-d_{2}\right), \tag{1d}
\end{gather*}
$$

where δ is the continuous dividend yield and F denotes the standard normal cumulative distribution. If actual market data of the price V are known, then one of the parameters considered known so far can be viewed as unknown and fixed via the implicit equation

$$
\begin{equation*}
V-v(S, \tau, K, r, \sigma)=0 \tag{}
\end{equation*}
$$

In this calibration approach the unknown parameter is calculated iteratively as solution of equation $\left({ }^{*}\right)$. Consider σ to be in the role of the unknown parameter. The volatility σ determined in this way is called implied volatility and is zero of $f(\sigma):=V-v(S, \tau, K, r, \sigma)$.
a) Implement the evaluation of V_{C} and V_{P} according to (1).
b) Design, implement and test an algorithm to calculate the implied volatility of a call. Use Newtons method to construct a sequence $x_{k} \rightarrow \sigma$. The derivative $f^{\prime}\left(x_{k}\right)$ can be approximated by the difference quotient

$$
\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

For the resulting secant iteration invent a stopping criterion that requires smallness of both $\left|f\left(x_{k}\right)\right|$ and $\left|x_{k}-x_{k-1}\right|$.
c) Calculate the implied volatilities for the data

$$
T-t=0.211, \quad S_{0}=5290.36, \quad r=0.0328
$$

and the pairs K, V from Table 1 (for more data see http://www.compfin.de). Enter for each calculated value of σ the point (K, σ) into a figure, joining the points with straight lines. (You will notice a convex shape of the curve. This shape has lead to call this phenomenon volatility smile.)

Table 1 Calls on the DAX on January 4, 1999

K	6000	6200	6300	6350	6400	6600	6800
V	80.2	47.1	35.9	31.3	27.7	16.6	11.4

- Return the solutions until Monday, November 15, before the lectures.

