Exercise Sheet 4 to the Lecture Course "Computational Finance"
 (Generating Random Numbers)

Task 1 (3 Points)
We consider the random number generator $N_{i}=2 N_{i-1} \bmod 11$. For $\left(N_{i-1}, N_{i}\right) \in$ $\{0,1, \ldots, 10\}^{2}$ and integer tupels with $z_{0}+2 z_{1}=0 \bmod 11$ the equation

$$
z_{0} N_{i-1}+z_{1} N_{i}=0 \quad \bmod 11
$$

defines families of parallel straight lines, on which all points $\left(N_{i-1}, N_{i}\right)$ lie. These straight lines are to be analyzed. For which of the families of parallel straight lines are the gaps maximal?

Task 2 (Lattice of the Linear Congruential Generator) (4 Points (2+2))
a) Show by induction over j

$$
N_{i+j}-N_{j}=a^{j}\left(N_{i}-N_{0}\right) \quad \bmod M
$$

b) Show for integer $z_{0}, z_{1}, \ldots, z_{m-1}$

$$
\left(\begin{array}{c}
N_{i} \\
N_{i+1} \\
\vdots \\
N_{i+m-1}
\end{array}\right)-\left(\begin{array}{c}
N_{0} \\
N_{1} \\
\vdots \\
N_{m-1}
\end{array}\right)=\left(N_{i}-N_{0}\right)\left(\begin{array}{c}
1 \\
a \\
\vdots \\
a^{m-1}
\end{array}\right)+M\left(\begin{array}{c}
z_{0} \\
z_{1} \\
\vdots \\
z_{m-1}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
a & M & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a^{m-1} & 0 & \ldots & M
\end{array}\right)\left(\begin{array}{c}
z_{0} \\
z_{1} \\
\vdots \\
z_{m-1}
\end{array}\right)
$$

Task 3 (Quality of Fibonacci-Generated Numbers) (3 Points)

Analyze and visualize the planes in the unit cube, on which all points fall that are generated by the Fibonacci recursion

$$
U_{i+1}:=\left(U_{i}+U_{i-1}\right) \quad \bmod 1 .
$$

- Return the solutions until Monday, November 28, before the lectures.

