Exercise Sheet 7 to the Lecture Course "Computational Finance"

(Finite Difference Methods)

Task 1 (Semidiscretization) $(2+3+5$ Points)
For a semidiscretization of the Black-Scholes equation

$$
\begin{equation*}
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+r S \frac{\partial V}{\partial S}-r V=0 \tag{BS}
\end{equation*}
$$

consider the semidiscretized domain

$$
0 \leq t \leq T, \quad S=S_{i}:=i \Delta S, \quad \Delta S:=\frac{S_{\mathrm{max}}}{m}, \quad i=0,1, \ldots, m
$$

for some value $S_{\text {max }}$. On this set of parallel lines define for $1 \leq i \leq m-1$ functions $w_{i}(t)$ as approximation to $V\left(S_{i}, t\right)$.
a) Using the standard second-order difference schemes, derive the system

$$
\begin{equation*}
\dot{w}+B w=0, \tag{ODE}
\end{equation*}
$$

which up to boundary conditions approximates (BS).
Here w is the vector $\left(w_{1}, \ldots, w_{m-1}\right)^{\top}$. Show that B is a tridiagonal matrix, and calculate its coefficients.
b) Use the BDF2 formula

$$
\begin{equation*}
f_{i} \approx \frac{4}{3} f_{i-1}-\frac{1}{3} f_{i-2}+\frac{2}{3} h f^{\prime}\left(x_{i}\right) \tag{BDF2}
\end{equation*}
$$

to show that

$$
w^{(\nu)}=4 w^{(\nu-1)}-3 w^{(\nu-2)}+2 \Delta t B w^{(\nu-2)}
$$

is a valid scheme to integrate ODE.
c) Implement this scheme using MATLAB

- Return the solutions until Monday, December 19, before the lectures.
- Return the solutions of programming task until Monday, December 19, before the lectures.

