Exercise Sheet 9 to the Lecture Course "Computational Finance"
 (B-Spline and Hat-Functions)

Task 1 (Cubic B-Spline) (3+3+1 Points)
Suppose an equidistant partition of an interval be given with mesh-size $h=x_{k+1}-x_{k}$. Cubic B-splines have a support of four subintervals. In each subinterval the spline is a piece of polynomial of degree three. Apart from special boundary splines, the cubic B-splines φ_{i} are determined by the requirements

$$
\begin{array}{rlrl}
\varphi_{i}\left(x_{i}\right) & =1 & \\
\varphi_{i}(x) & \equiv 0 \quad \text { for } & x<x_{i-2} \\
\varphi_{i}(x) & \equiv 0 \quad \text { for } & & x>x_{i+2} \\
\varphi & \in C^{2}(\mathbb{R}) .
\end{array}
$$

To construct the φ_{i} proceed as follows:
a) Construct a spline $S(x)$ that satises the above requirements for the special nodes

$$
\tilde{x}_{k}:=2+k \quad \text { for } \quad k=0,1, \ldots, 4 .
$$

b) Find a transformation $T_{i}(x)$, such that $\varphi_{i}=S\left(T_{i}(x)\right)$ satises the requirements for the original nodes.
c) For which i, j does $\varphi_{i} \varphi_{j}=0$ hold?

Task 2 (Finite-Element Matrices) (3 Points)

For the hat functions φ from Section 5.2 calculate for arbitrary subinterval \mathcal{D}_{k} all nonzero integrals of the form

$$
\int \varphi_{i} \varphi_{j} \mathrm{~d} x, \quad \int \varphi_{i}^{\prime} \varphi_{j} \mathrm{~d} x, \quad \int \varphi_{i}^{\prime} \varphi_{j}^{\prime} \mathrm{d} x
$$

and represent them as local 2×2 matrices.

- Return the solutions until Monday, January 16, before the lectures.

