Prof. Dr. M. Ehrhardt
Dipl-Math. Michèle Wandelt
|
Lecture Course in Winter Term 2012/2013:
Numerical Analysis and Simulation I:
Ordinary Differential Equations (ODEs)
Outline
15.10.2012
§ 1. ODE Models in Science
1.1 Chemical reaction kinetics
- General reaction system
- Hydrolysis of Urea
18.10.2012
1.2 Electric circuits
- Electromagnetic Oscillator with/without current source
- Colpitts Oscillator
1.3 Multibody problem
- Two-body problem
- N-body problem
1.4 Further models
- Predator-prey models: the Lotka-Volterra Equations
- Curves of Pursuit: The Fox-Rabbit Pursuit
- Epidemiology/Population Dynamics: Plants vs. Zombies
- Semidiscretization of partial differential equations: The Method of Lines
- Higher Order ODEs: Van der Pol Oscillator
- A real office problem: The Cooling Cup of Coffee
22.10.2012
§ 2. Short Synopsis on Theory of ODEs
2.1 Linear differential equations
2.2 Existence and uniqueness
2.3 Perturbation analysis
29.10.2012
§ 3. One-Step Methods
3.1 Preliminaries
3.2 Elementary integration schemes
3.3 Consistency and convergence
5.11.2012
3.4 Taylor methods for ODEs
8.11.2012
3.5 Runge-Kutta methods
12.11.2012
3.6 Dense output
3.7 Step-Size Control
15.11.2012
§ 4. Multistep Methods
4.1 Techniques based on numerical quadrature
- Adams methods
- Nyström and Milne methods
4.2 Linear difference schemes
19.11.2012
4.3 Consistency, stability and convergence
4.4 Analysis of multistep methods
22.11.2012
4.5 Techniques based on numerical differentiation
- Backward Differentiation Formulas (BDF)
- Numerical Differentiation Formulas (NDF)
4.6 Predictor-Corrector-Methods
- Algorithm: P(EC)mE method
4.7 Order control
26.11.2012
§ 5. Integration of Stiff Systems
5.1 Examples
5.2 Test equations
29.11.2012
5.3 A-stability for One-step Methods
- Definition 10: A-stability for One-step Methods
- stability function
- Definition 11: Stability domain of One-step Methods
- Example 1: Explicit/Implicit Euler Methods
- Example 2: Trapezoidal Rule
- Example 3: Explicit Midpoint Rule
- General Runge-Kutta Methods (GRK)
- Theorem 13: stability function of Runge-Kutta Method
- Definition 12: L-stability for One-step Methods
- Definition 13: Padé-approximation
03.12.2012
5.4 Implicit Runge-Kutta Methods
- Collocation methods
- Theorem 14: Order of Collocation Methods
- Solution of Nonlinear Systems
- Diagonal Implicit Runge-Kutta Methods
06.12.2012
5.5 Rosenbrock-Wanner Methods
- Construction of ROW Methods
- Order conditions
- A-stability
- Example 1: RWO schemes, GRK4A, GRK4T
10.12.2012
5.6 A-stability for Multistep Methods
- Definition 14: Stability domain of Multistep Methods
- Definition 15: A-stability for Multistep Methods
- Theorem 15: convergent explicit linear multistep methods are not A-stable
- Theorem 16: second Dahlquist barrier
- Definition 16: A(α)-stability for Multistep Methods
5.7 B-stability
- Definition 17: B-stability
- Theorem 17: Gauss-Runge-Kutta methods are B-stable
5.8 Comparison of methods
13.12.2012
§ 6. Methods for Differential Algebraic Equations
6.1 Implicit ODEs
6.2 Linear DAEs
- source terms with perturbations
- consistent choice of initial values
17.12.2012
6.3 Index Concepts
- Differential Index
- Perturbation Index
07.01.2013
6.4 Methods for General Systems
10.01.2013
6.5 Methods for Semi-Explicit Systems
6.6 Illustrative Example: Mathematical Pendulum
14.01.2013
§ 7. Boundary Value Problems
7.1 Problem Definition
- Example 1:
- Example 2:
- Separated Boundary Conditions
- Periodic Problems of non-autonomous Systems
- Periodic Problems of autonomous Systems
7.2 Single Shooting Method
- Example 1:
- Computation of Jacobian Matrix
- Sensitivity Matrix
- Sensitivity Equations
17.01.2013
7.3 Multiple Shooting Method
21.01.2013
7.4 Finite Difference Methods
- Periodic Problems
- ODE of second Order
- Example 1:
- Linear ODE of second Order
- Theorem 18:
- Theorem 19: Convergence of the finite difference method
24.01.2013
7.5 Techniques with Trial Functions
28.01.2013
§ 8. Geometric Integration
8.1 Introduction
- ODEs with conservative nature
8.2 Linear Invariants
- reversible isometry
- Example 1: chemical kinetics system
- Definition: linear invariant
- Example 2: explicit Euler method
- Example 3: linear multistep method
- Example 4: Runge-Kutta method
- Examples of linear invariants:
- chemical kinetic systems
- mechanical models: overall mass
- stochastic models: "master equation", total probability
- epidemic models: overall population
8.3 Quadratic Invariants
- Example 1: angular momentum of a free rigid body
- Definition: quadratic invariant
- Example 2: implicit mid-point rule
- Example 3: explicit Euler method
- Example 4: implicit Euler method
- Example 5: Runge-Kutta method
- Example 6: Kepler Problem
- nonlinear invariant, Hamiltonoan function
31.01.2013
8.4 Symplectic Maps
- Definition: oriented area
- oriented area preserving mappings
- linear case
- nonlinear case
- condition for symplecticness
8.5 Hamiltonian ODEs
- Example 1: motion of a pendulum
- Hamiltonian ODE
- Hamiltonian function
- symplectic character of Hamiltonian ODE
- time t flow map
- Hessian of Hamiltonian function
8.6 Approximating Hamiltonian ODEs
- Example 1: forward Euler
- Example 2: backward Euler
- Example 3: symplectic Euler
- separable Hamiltonian