Bergische Universität Wuppertal
Fachbereich Mathematik und Naturwissenschaften
Angewandte Mathematik - Numerische Analysis (AMNA)

People
Research
Publications
Teaching


Prof. Dr. M. Ehrhardt
Dipl-Math. Michèle Wandelt

Lecture Course in Winter Term 2012/2013:

Numerical Analysis and Simulation I: Ordinary Differential Equations (ODEs)



Outline
 
15.10.2012

§ 1. ODE Models in Science

1.1 Chemical reaction kinetics
  • General reaction system
  • Hydrolysis of Urea
18.10.2012
1.2 Electric circuits
  • Electromagnetic Oscillator with/without current source
  • Colpitts Oscillator
1.3 Multibody problem
  • Two-body problem
  • N-body problem
1.4 Further models
  • Predator-prey models: the Lotka-Volterra Equations
  • Curves of Pursuit: The Fox-Rabbit Pursuit
  • Epidemiology/Population Dynamics: Plants vs. Zombies
  • Semidiscretization of partial differential equations: The Method of Lines
  • Higher Order ODEs: Van der Pol Oscillator
  • A real office problem: The Cooling Cup of Coffee
22.10.2012

§ 2. Short Synopsis on Theory of ODEs

2.1 Linear differential equations
2.2 Existence and uniqueness
2.3 Perturbation analysis
29.10.2012

§ 3. One-Step Methods

3.1 Preliminaries
3.2 Elementary integration schemes
3.3 Consistency and convergence
5.11.2012
3.4 Taylor methods for ODEs
8.11.2012
3.5 Runge-Kutta methods
12.11.2012
3.6 Dense output
3.7 Step-Size Control
15.11.2012

§ 4. Multistep Methods

4.1 Techniques based on numerical quadrature
  • Adams methods
  • Nyström and Milne methods
4.2 Linear difference schemes
19.11.2012
4.3 Consistency, stability and convergence
4.4 Analysis of multistep methods
  • first Dahlquist barrier
22.11.2012
4.5 Techniques based on numerical differentiation
  • Backward Differentiation Formulas (BDF)
  • Numerical Differentiation Formulas (NDF)
4.6 Predictor-Corrector-Methods
  • Algorithm: P(EC)mE method
4.7 Order control
26.11.2012

§ 5. Integration of Stiff Systems

5.1 Examples
5.2 Test equations
29.11.2012
5.3 A-stability for One-step Methods
  • Definition 10: A-stability for One-step Methods
  • stability function
  • Definition 11: Stability domain of One-step Methods
  • Example 1: Explicit/Implicit Euler Methods
  • Example 2: Trapezoidal Rule
  • Example 3: Explicit Midpoint Rule
  • General Runge-Kutta Methods (GRK)
  • Theorem 13: stability function of Runge-Kutta Method
  • Definition 12: L-stability for One-step Methods
  • Definition 13: Padé-approximation
03.12.2012
5.4 Implicit Runge-Kutta Methods
  • Collocation methods
  • Theorem 14: Order of Collocation Methods
  • Solution of Nonlinear Systems
  • Diagonal Implicit Runge-Kutta Methods
06.12.2012
5.5 Rosenbrock-Wanner Methods
  • Construction of ROW Methods
  • Order conditions
  • A-stability
  • Example 1: RWO schemes, GRK4A, GRK4T
10.12.2012
5.6 A-stability for Multistep Methods
  • Definition 14: Stability domain of Multistep Methods
  • Definition 15: A-stability for Multistep Methods
  • Theorem 15: convergent explicit linear multistep methods are not A-stable
  • Theorem 16: second Dahlquist barrier
  • Definition 16: A(α)-stability for Multistep Methods
5.7 B-stability
  • Definition 17: B-stability
  • Theorem 17: Gauss-Runge-Kutta methods are B-stable
5.8 Comparison of methods
13.12.2012

§ 6. Methods for Differential Algebraic Equations

6.1 Implicit ODEs
6.2 Linear DAEs
  • source terms with perturbations
  • consistent choice of initial values
17.12.2012
6.3 Index Concepts
  • Differential Index
  • Perturbation Index
07.01.2013
6.4 Methods for General Systems
10.01.2013
6.5 Methods for Semi-Explicit Systems
6.6 Illustrative Example: Mathematical Pendulum
14.01.2013

§ 7. Boundary Value Problems

7.1 Problem Definition
  • Example 1:
  • Example 2:
  • Separated Boundary Conditions
  • Periodic Problems of non-autonomous Systems
  • Periodic Problems of autonomous Systems
7.2 Single Shooting Method
  • Example 1:
  • Computation of Jacobian Matrix
  • Sensitivity Matrix
  • Sensitivity Equations
17.01.2013
7.3 Multiple Shooting Method
  • Example 1:
21.01.2013
7.4 Finite Difference Methods
  • Periodic Problems
  • ODE of second Order
  • Example 1:
  • Linear ODE of second Order
  • Theorem 18:
  • Theorem 19: Convergence of the finite difference method
24.01.2013
7.5 Techniques with Trial Functions
28.01.2013

§ 8. Geometric Integration

8.1 Introduction
  • ODEs with conservative nature
8.2 Linear Invariants
  • reversible isometry
  • Example 1: chemical kinetics system
  • Definition: linear invariant
  • Example 2: explicit Euler method
  • Example 3: linear multistep method
  • Example 4: Runge-Kutta method
  • Examples of linear invariants:
    • chemical kinetic systems
    • mechanical models: overall mass
    • stochastic models: "master equation", total probability
    • epidemic models: overall population
8.3 Quadratic Invariants
  • Example 1: angular momentum of a free rigid body
  • Definition: quadratic invariant
  • Example 2: implicit mid-point rule
  • Example 3: explicit Euler method
  • Example 4: implicit Euler method
  • Example 5: Runge-Kutta method
    • condition of Cooper
  • Example 6: Kepler Problem
    • nonlinear invariant, Hamiltonoan function
31.01.2013
8.4 Symplectic Maps
  • Definition: oriented area
  • oriented area preserving mappings
    • linear case
    • nonlinear case
    • condition for symplecticness
8.5 Hamiltonian ODEs
  • Example 1: motion of a pendulum
  • Hamiltonian ODE
  • Hamiltonian function
  • symplectic character of Hamiltonian ODE
  • time t flow map
  • Hessian of Hamiltonian function
8.6 Approximating Hamiltonian ODEs
  • Example 1: forward Euler
  • Example 2: backward Euler
  • Example 3: symplectic Euler
  • separable Hamiltonian


University of Wuppertal
Faculty of Mathematics and Natural Sciences
Department of Mathematics
Applied Mathematics & Numerical Analysis Group

Last modified:   Disclaimer   ehrhardt@math.uni-wuppertal.de