Numerical Analysis and Simulation II: Partial Differential Equations (PDEs)

Exercise Sheet 10- Stiffnes matrix, Triangulation
Return of Exercise Sheet: 12, 2012 (before the lecture)

Homework 27:

Show that the stiffness matrix $A=\left(a_{i j}\right), a_{i j}=a\left(b_{j}, b_{i}\right)$ from the Corollary in Chapter 6.4 (Galerkin method) is symmetric and positive definite.

Homework 28:
Consider the following Poisson equation on a unit square

$$
\begin{aligned}
-\Delta u & =f, \quad \text { in } \Omega=(0,1)^{2} \\
u & =0 \quad \text { on } \partial \Omega .
\end{aligned}
$$

The domain $\bar{\Omega}$ will be discretized uniformly with a grid of triangles with the mesh size h, as shown in Figure 1.

Abbildung 1:

Figure 2:

We choose the ansatz space

$$
V_{h}:=\{v \in C(\bar{\Omega}): v \text { is linear in each triangle and } v=0 \text { on } \partial \Omega\} .
$$

1. What number is $N=\operatorname{dim} V_{h}$?
2. $v \in V_{h}$ is given globally by the values at the N grid points $\left(x_{j}, y_{j}\right)$.

We choose a basis $\left\{\psi_{i}\right\}_{i=1}^{N}$ with $\psi_{i}\left(x_{j}, y_{j}\right)=\delta_{i j}$.
Determine the derivatives of the basis function ψ_{Z} in the triangles.
3. Compute the matrix elements in the stiffness matrix.
4. What is the resulting linear system?

Homework 29:
Is the following triangulation feasible?

Homework 30:

Show the following formula for a triangulation of a simply connected domain

$$
\# \text { triangles }+\# \text { vertices }-\# \text { edges }=1 .
$$

Why is this no longer true for multiple connected domains?

