# Numerical Analysis and Simulation II: Partial Differential Equations (PDEs) 

Exercise Sheet 10 - Stiffnes matrix, Triangulation

Return of Exercise Sheet: July 5, 2012 (before the lecture)

## Homework 27:

Consider the boundary value problem

$$
\begin{aligned}
-\Delta u & =\pi^{2} \cos (\pi x), \quad(x, y) \in \Omega=(0,1)^{2} \\
\frac{\partial u}{\partial n} & =0 \quad \text { on } \quad \partial \Omega .
\end{aligned}
$$

1. State the weak formulation.
2. The boundary value problem possess a unique solution if one additionally requires $\int_{\Omega} u=0$. We choose as basis functions

$$
b_{1}(x, y)=x-\frac{1}{2}, \quad b_{2}(x, y)=\left(x-\frac{1}{2}\right)^{3} .
$$

Show that the associated ansatz functions fullfill the above condition.
3. Determine the associated stiffnes matrix and the approximation of the right hand side.
4. Compute the approximate solution $u_{h}$.
5. Show, that $\frac{\partial u_{h}}{\partial n}(0, y) \neq 0$ holds.

## Homework 28:

Consider the following Poisson equation on a unit square

$$
\begin{aligned}
-\Delta u & =f, \quad \text { in } \Omega=(0,1)^{2} \\
u & =0 \quad \text { on } \partial \Omega .
\end{aligned}
$$

The domain $\bar{\Omega}$ will be discretized uniformly with a grid of triangles with the mesh size $h$, as shown in Figure 1.

We choose the ansatz space

$$
V_{h}:=\{v \in C(\bar{\Omega}): v \text { is linear in each triangle and } v=0 \text { on } \partial \Omega\} .
$$

1. What number is $N=\operatorname{dim} V_{h}$ ?
2. $v \in V_{h}$ is given globally by the values at the $N$ grid points $\left(x_{j}, y_{j}\right)$.

We choose a basis $\left\{\psi_{i}\right\}_{i=1}^{N}$ with $\psi_{i}\left(x_{j}, y_{j}\right)=\delta_{i j}$.
Determine the derivatives of the basis function $\psi_{Z}$ in the triangles.


Abbildung 1:


Figure 2:
3. Compute the matrix elements in the stiffness matrix.
4. What is the resulting linear system?

## Homework 29:

Is the following triangulation feasible?


## Homework 30:

Show the following formula for a triangulation of a simply connected domain

$$
\# \text { triangles }+\# \text { vertices }-\# \text { edges }=1 .
$$

Why is this no longer true for multiple connected domains?

