Numerical Analysis and Simulation II: Partial Differential Equations (PDEs)

Exercise Sheet 12 - The Method of simple Iteration, V-Cycle, W-Cycle, Remainder Projector

Return of Exercise Sheet: July 12, 2012 (before the lecture)

Homework 34: Method of Simple Iteration

$$
(4.5(1+2+0.5+0.5+0.5) \text { Points })
$$

In the Method of Simple Iteration the parameter $\tau \in \mathbb{R}$ must be chosen such that

$$
q(\tau):=\max _{\gamma_{1} \leq t \leq \gamma_{2}}|1-\tau t|, \quad 0<\gamma_{1} \leq \gamma_{2}
$$

becomes minimal. Let $q\left(\tau^{*}\right)=\min _{\tau \in \mathbb{R}} q(\tau)$. Sketch $|1-\tau t|$ as a function of t for different values of τ and argue why

1. $q(\tau)<1$ for $0<\tau<\frac{2}{\gamma_{2}}$
2. $q\left(\tau^{*}\right)=\frac{\gamma_{2}-\gamma_{1}}{\gamma_{2}+\gamma_{1}}<1$ for $\tau=\tau^{*}=\frac{2}{\gamma_{1}+\gamma_{2}}$
holds. Explain using your draft the following remarks:
3. For $\tau=2 / \gamma_{2}$ one obtains the best possible, but still bad damping of low frequency components of the error (small eigen values).
4. For $\tau<2 / \gamma_{2}$ one can obtain a "good" damping of high frequency components of the error, e.g. on $\left[\tilde{\gamma}, \gamma_{2}\right]$ for $\tau=2 /\left(\tilde{\gamma}+\gamma_{2}\right)$.
5. $\tau=\tau^{*}$ is not suitable for the damping of high frequency error components!

Homework 35:

The notations V-cycle and W-cycle stem from the fact that the shown schemes on 3 grids in the figure are similar to the letters V and W .

How do these schemes look on 4 grids?

Homework 36:

Prove Lemma 7.4 (Properties of the Remainder projector) from Chapter 7.4 of the lecture course. Hint: Recall that for $v \in V_{k}$ holds: $\mathcal{P}_{k-1} v$ is the Galerkin-Approximation of v in V_{k-1} and use Theorem 6.6.1. Use the fact that for our model problem from Chapter 7.1 holds $\|v\|_{E, k, 0}=$ $\|v\|_{L^{2}(\Omega)}, v \in V_{k}$.

Lab-Exercise 1: Multigrid MGLab
Study the interactive MATLAB multigrid environment MGLab, see http://www.cerfacs.fr/ ~douglas/mgnet/Codes/mglab/. You will find a short description on the webpage of this lecture course.

Solve Lab-Exercise from Exercise Sheet 5 (Poisson Equation) with a two grid method without pre-smoothing, by modifying the files demo2_run.m and get_rhs.m appropriately.

