Numerical Analysis and Simulation II: Partial Differential Equations (PDEs)

Exercise Sheet 6- Discretizations of higher Order

Return of Exercise Sheet: June 14, 2012 (before the lecture)

Homework 16:

Consider the following second order boundary value problem

$$
\begin{aligned}
& -u^{\prime \prime}=f \quad \text { in } \quad \Omega=(0,1) \\
& u(0)=u(1)=0
\end{aligned}
$$

and any 3 point approximation

$$
\begin{aligned}
\frac{1}{h^{2}}\left(\alpha_{i, 0} u_{i-1}+\alpha_{i, 1} u_{i}+\alpha_{i, 2} u_{i+1}\right) & =\sum_{j=1}^{J} \beta_{i, j} f\left(\tau_{i, j}\right) \\
u_{0} & =u_{N}=0
\end{aligned}
$$

on the interval $\left[x_{i-1}, x_{i+1}\right.$], where $\alpha_{i, 0}, \alpha_{i, 1}, \alpha_{i, 2}, \beta_{i, j}$ are parameters to be determined and $\tau_{i, j} \in$ $\left[x_{i-1}, x_{i+1}\right]$ are auxiliary points. For the scheme we require:

1. The scheme is exact on a $\mathrm{L}+1$ dimensional space S, i.e.

$$
\frac{1}{h^{2}}\left(\alpha_{i, 0} s_{\ell}\left(x_{i-1}\right)+\alpha_{i, 1} s_{\ell}\left(x_{i}\right)+\alpha_{i, 2} s_{\ell}\left(x_{i+1}\right)\right)=-\sum_{j=1}^{J} \beta_{i, j} s_{\ell}^{\prime \prime}\left(\tau_{i, j}\right)
$$

for $\ell=0, \ldots, L$, where $s_{0}, s_{1}, \ldots, s_{L}$ denotes a basis of S. Usually, S is a subspace of the space of polynomials:

Lemma: If S is the space of polynomials of degree $\leq L$, then the order of consistency of the method is $L-1$.
2. Normalization condition $\sum_{j=1}^{J} \beta_{i, j}=1$.

Choose a polynomial basis and solve the following tasks:

1. Which method yields $J=1, \tau_{i, 1}=x_{i}$?
2. How to choose $\tau_{i, j}$ such that with $J=3$ one obtains the well-known method of fourth order

$$
-\frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}}=\frac{1}{12}\left(f\left(x_{i-1}\right)+10 f\left(x_{i}\right)+f\left(x_{i+1}\right)\right)
$$

3. Is it possible to obtain with $J=3$ a higher order of consistency?

Hint: Assume without loss of generality $x_{i}=0$ and consider the interval $[-h, h]$. Construct a basis of the space of polynomials having zeros at the 'right' locations.

Homework 17:

Rewrite the scheme of higher order from the lecture course:

$$
\begin{aligned}
\Lambda^{\prime} u(x) & =-\varphi(x), & & x \in \Omega_{h} \\
u(x) & =\mu(x), & & x \in \Gamma_{h}
\end{aligned}
$$

with

$$
\begin{aligned}
\Lambda^{\prime} & =\Lambda_{1}+\Lambda_{2}+\frac{h_{1}^{2}+h_{2}^{2}}{12} \Lambda_{1} \Lambda_{2} \\
\varphi & =f+\frac{h_{1}^{2}}{12} \Lambda_{1} f+\frac{h_{2}^{2}}{12} \Lambda_{2} f
\end{aligned}
$$

in the form of the discrete maximum principle. Analyse under which conditions for h_{1}, h_{2} are the assumptions of the maximum prinziples fulfilled.

