Numerical Analysis and Simulation II: Partial Differential Equations (PDEs)

Exercise Sheet 7- Distributive Derivatives, Sobolev Spaces, Dual Spaces)

Return of Exercise Sheet: June 21, 2012 (before the lecture)
Homework 18: Distributive derivatives
(3 Points)

1. Determine the distributive derivative of

$$
H(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

Does the generalized derivative of H exist?
2. Compute the first two distributive derivatives of

$$
f(x)=|\sin x| .
$$

Homework 19:

1. Let $\Omega \subset \mathbb{R}^{n}$ be bounded with $0 \in \Omega$. Prove that the function $u(x)=\|x\|_{2}^{\sigma}$ is an element of $H^{1}(\Omega)$, if $\sigma=0$ or $2 \sigma+n>2$.
2. Let $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}<r_{0}\right\}$ with $r_{0}<1$. Is the function

$$
u(x, y)=\left(\log \left(\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\right)\right)^{k}, \quad k<\frac{1}{2}
$$

continuous? Does $u \in H^{1}(\Omega)$ hold?

Homework 20:

Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and X^{\prime} the associated dual space, i.e. the space of continuous linear functionals on X. Show that

1. $\|F\|_{X^{\prime}}:=\sup _{x \in X \backslash\{0\}} \frac{|F(x)|}{\|x\|_{X}} \quad$ is a norm on X^{\prime}.
2. $\left(X^{\prime},\|\cdot\|_{X^{\prime}}\right)$ is a Banach space.

Lab-Exercise 3: Scheme of higher order

Solve the task from the Lab-Exercise 2 with the scheme of higher order from the lecture course, Chapter 3.7. Check again the computational order of convergence using the same kind of plot. Plot the solution for $N=8$.

